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This paper presents two main contributions: semi-passive replication and Lazy

Consensus. The former is a replication technique with parsimonious processing. It

is based on the latter; a variant of Consensus allowing the lazy evaluation of proposed

values.

Semi-passive replication is a replication technique with parsimonious processing.

This means that, in the normal case, each request is processed by only one single

process. The most significant aspect of semi-passive replication is that it requires a

weaker system model than existing techniques of the same family. For semi-passive

replication, we give an algorithm based on the Lazy Consensus.

Lazy Consensus is a variant of the Consensus problem that allows the lazy eval-

uation of proposed values, hence the name. The main difference with Consensus is

the introduction of an additional property of laziness. This property requires that

proposed values are computed only when they are actually needed. We present an

algorithm based on Chandra and Toueg’s Consensus algorithmfor asynchronous

distributed systems with a♦S failure detector.
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1. INTRODUCTION

A major problem inherent to distributed systems is their potential vulnerability to failures.
Indeed, whenever a single node crashes, the availability ofthe whole system may be
compromised. Interestingly, the distributed nature of those systems also provides the
means toincreasetheir reliability. Distribution makes it possible to introduce redundancy
and, thus, make the overall system more reliable than its individual parts.

Redundancy is usually introduced by the replication of components, or services. Al-
though replication is an intuitive and readily understood concept, its implementation is
difficult. Replicating a service in a distributed system requires that each replica of the ser-
vice keeps a consistent state, which is ensured by a specific replication protocol [21]. There
exist two major classes of replication techniques to ensurethis consistency:activeand
passivereplication. Both replication techniques are useful sincethey have complementary
qualities.

With active replication [31], each request is processed by all replicas in the same relative
order to ensure that replicas remain consistent. This technique ensures a fast reaction
to failures, and sometimes makes it easier to replicate legacy systems. However, active
replication uses processing resources heavily and requires the processing of requests to be
deterministic.1 This last point is a very strong limitation since, in a program, there exist
many potential sources for non-determinism [28]. For instance, multi-threading typically
introduces non-determinism.

With passive replication (also calledprimary-backup) [7, 21], only one replica (primary)
processes the request, and sends update messages to the other replicas (backups). This
technique is important because it uses less resources than active replication does, without
the requirement of operation determinism. On the other hand, the replicated service usually
has a slow reaction to failures. For instance, when the primary crashes, the failure must be
detected by the other replicas, and the request may have to bereprocessed by a new primary.
This may result in a significantly higher response time for the request being processed. For
this reason, active replication is often considered a better choice for most real-time systems,
and passive replication for most other cases [32].

In most computer systems, the implementation of passive replication is based on a syn-
chronous model, or relies on some dedicated hardware device[5, 7, 15, 29, 37]. However,
we consider here the context of asynchronous systems in which the detection of failures
is not certain. In such systems, all implementations of passive replication that we know
of are based on a group membership service and must exclude the primary whenever it is

1Determinism means that the result of an operation depends only on the initial state of a replica and the sequence
of operations it has already performed.
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FIG. 1. Semi-passive replication (no crash).
(conceptual representation: theupdate protocolactually hides several messages)
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FIG. 2. Semi-passive replication (crash of the coordinator).
(conceptual representation: theupdate protocolactually hides several messages)

suspected to have crashed (e.g., [6, 24, 34]). This is a strong practical limitation of passive
replication since this means that a mere suspicion can be turned into a failure, thus reducing
the actual fault-tolerance of the system. Conversely, there exist implementations of active
replication that neither require a group membership service nor need to kill suspected
processes (e.g., active replication based on the Atomic Broadcast algorithm proposed by
Chandra and Toueg [8]).

In this paper, we present the semi-passive replication technique; a new technique that
retains the essential characteristics of passive replication while avoiding the necessity to
force the crash of suspected processes. The most important consequence is that it makes
it possible to decouple (1) the replication algorithm from (2) housekeeping issues such
as the management of the membership. For instance, this allows the algorithm to use an
aggressive failure detection policy in order to react quickly to a crash.

1.1. Overview of Semi-Passive Replication
Semi-passive replication is a variant of passive replication that retains most of its major

characteristics (e.g., allows for non-deterministic processing, and requires less processing
than active replication). The main difference with passivereplication is that the selection of
the primary is based on the rotating coordinator paradigm [8] and not on a group membership
service as usually done in passive replication. The rotating coordinator mechanism is a
simpler mechanism and lower-level mechanism.

Informally, semi-passive replication works as follows. The client sends its request to all
replicasp1, p2, p3 (see Fig. 1). The servers know thatp1 is the first primary, sop1 handles
the requests and updates the other servers (the update messages fromp1 to {p2, p3} are not
shown on Fig. 1).

If p1 crashes and is not able to complete its job as the primary, or if p1 does not crash
but is incorrectly suspected of having crashed, thenp2 takes over as the new primary. The
details of how this works are explained later in Section 4. Figure 2 illustrates a scenario in
whichp1 crashes after handling the request, but before sending its update message. After
the crash ofp1, p2 becomes the new primary.
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These examples do not show which process is the primary for the next client requests,
nor what happens if client requests are received concurrently. These issues are explained
in detail in Section 4. However, the important point in this solution is that no process is
ever excluded from the group of servers (as in a solution based on a membership service).
In other words, in case of false suspicion, there is no join (and state transfer) that needs
later to be executed by the falsely suspected process. This significantly reduces the cost
related to an incorrect failure suspicion, i.e., the cost related to the aggressive timeout option
mentioned before.

1.2. Structure of the Paper
The contribution of this paper is twofold: semi-passive replication and Lazy Consensus.

For semi-passive replication, we give a definition of the problem and propose an algorithm
based on the Lazy Consensus abstraction. Similarly, we define the Lazy Consensus prob-
lem, and propose a correspondingalgorithm that adapts fromthe Chandra-TouegConsensus
algorithm for the♦S failure detector.

The rest of the paper is structured as follows. Section 2 presents the system model
considered in this paper, and defines various notations usedthroughout the paper. Section 3
defines the two problems considered in this paper, namely, semi-passive replication and
Lazy Consensus. In Section 4, we present our algorithm for semi-passive replication. In
Section 5, we present an algorithm for Lazy Consensus in asynchronous systems aug-
mented with a♦S failure detector. Section 6 illustrates the execution of our semi-passive
replication algorithm with selected scenarios. Section 7 concludes the paper. The two ap-
pendices present the correctness proofs of the semi-passive and Lazy Consensus algorithms
respectively.

2. SYSTEM MODEL AND DEFINITIONS

In this section, we describe the system model assumed in thispaper, and describe
important related notations and definitions.

2.1. System Model
We consider a distributed system composed of processes thatcommunicate by exchang-

ing messages only. The system is asynchronous in the sense that there exist bounds neither
on communication delays nor on process speed.

We distinguish between two kinds of processes, namely, client processes and server
replicas. The set of all clients in the system is denoted byΠC , and the set of server replicas
is denoted byΠS .2 The composition of the setΠS , initially known by all processes, do
not change over time although it might include some processes that have crashed. We also
denote the number of server processes byn = |ΠS |. In contrast, there can exist infinitely
many client processes in the system.

Processes fail by crashing (i.e., we do not consider Byzantine processes) and crashes
are permanent.3 A correct process is one that does not crash. Processes communicate
through quasi-reliable communication channels [3]. Quasi-reliable communication chan-
nels guarantee that if a correct processp sends a messagem to a correct processq, thenq

2Note thatΠC ∩ ΠS need not be empty.
3In practice, this means that whenever a crashed process recovers from crash, it takes a new identity.
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will eventually receivem. In addition, a quasi-reliable channel ensures that messages are
(1) not duplicated, (2) not corrupted, and (3) not spuriously created.

Remark. We make these assumptions in order to simplify the description of the
algorithms. Indeed, based on the literature, the algorithms can easily be extended to lossy
channels and network partitions [3, 1], and to handle process recovery [2, 23, 25]. However,
this would obscure the key idea of semi-passive replicationby introducing unnecessary
complexity.

2.2. Failure Detectors
Formally, it is impossible for processes to reach agreement(i.e., solve Consensus)

deterministically in an asynchronous distributed system where some processes can crash
[18]. This impossibility stems from the fact that, in such a system, a crashed process cannot
be distinguished from a very slow one. It follows that, the ability to detect the crash of
processes is a fundamental issue.

In this section, we present three related approaches to detect the crash of processes in a
distributed system. We begin with unreliable failure detectors as this is the basis for the
algorithms presented in this paper.

2.2.1. Unreliable Failure Detectors

The impossibility result mentioned above also applies to Lazy Consensus. Hence, in
order to solve Lazy Consensus among the server processes, weconsider that the system is
augmented with some unreliable failure detector [8] that runs between the processes inΠS .
In particular, we assume a failure detector of class♦S, sufficient to solve the Consensus
problem, and defined overΠS by the following properties [8]:

(Strong completeness) There is a time after which every process inΠS that
crashes is permanently suspected by all correct processes in ΠS .

(Eventual weak accuracy) There is a time after which some correct process in
ΠS is never suspected by any correct process inΠS .

2.2.2. Perfect Failure Detectors

Many replication algorithms rely on the ability to detect process failures accurately.
More specifically, they rely on the availability of a perfectfailure detector. In contrast with
unreliable failure detectors, a perfect failure detector is one whereby no process suspects a
process that has not crashed. A failure detector of classP (i.e., a perfect failure detector)
must enforce the property of strong completeness describedabove, and the following
property of strong accuracy [8]:

(Strong accuracy) No process is suspected before it has crashed.

In practice, a perfect failure detector can be emulated in anasynchronous system by relying
on timeouts and the ability to control, in particular provoke, the crash of processes [17].
However, although technically possible, this is also mostly undesirable, as this potentially
degrades the overall stability of the system (see [14] for details).

2.2.3. Group Membership

A group membership is a service that usually combines two different purposes (see [10]
for a detailed survey). On the one hand, a group membership isused to allow processes to
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join and leave the computation dynamically. On the other hand, group membership is used
as a way to detect the crash of processes. The main differencewith failure detectors is that,
unlike the latter, a group membership providesconsistentinformation about failures. This
often requires to exclude suspected processes from the group and consider as crashed and
ask them to take a new identity. A group membership is often used as a way to emulate a
perfect failure detector.

Essentially, providing consistent information about failures places group membership
at a higher level of abstraction than failure detectors. This difference in structure leads
to difference in behavior. A recent study by Urbán et al. [33] compares the two models
(i.e., group membership and failure detectors) using TotalOrder Broadcast4 as a reference.
Among other things, the study shows that, unlike a common belief, the overall performance
in failure-free runs of Total Order Broadcast do not change whether it is based on group
membership (optimized fixed sequencer algorithm) or unreliable failure detectors (opti-
mized Consensus-based destinations agreement algorithm). However, the study shows that
the solution based on unreliable failure detectors is several orders of magnitude more robust
to wrong suspicions. In particular, this means that more aggressive failure detectors can be
used, thus resulting in far better failover time in the occurrence of failures.

2.3. Replication Model
Without loss of generality, we define replication in the client-server model. We consider

a model in which each process is modeled as a state machine. There are two types of
processes: clients and server replicas. Clients execute the following two external events:

• send(req), the emission of the requestreq by a client; and

• receive(respreq), the reception by a client of the response to requestreq (mes-
sagerespreq ).

Server replicas execute the following two events:

• handle(req), the processing of requestreq that generates anupdate messageupdreq ;

• update(req), the modification of the state of the replica as the result of processingreq.
This must be deterministic.

We also introduce important notations to describe the replicated server. This notation is
used to express the semi-passive replication algorithm in Section 4.

• req: request message sent by a client (denoted bysender(req)).

• updreq : update message generated by a server after handling request req.

• respreq : response message to the clientsender(req), generated by a server after
handling requestreq.

• states: the state of the server processs.

• handle : (req, states) 7−→ (updreq , respreq): Processing of requestreq by the servers
in states . The result is an update messageupdreq and the corresponding response message
respreq .

4Total Order Broadcast, also known as Atomic Broadcast, is anagreement problem at the core of active
replication. Roughly speaking, messages are broadcasted concurrently, and all destination processes must deliver
the same set of message in the same relative order. A broad survey [13] has been written on the topic.
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• update : (updreq , states′) 7−→ state ′
s′ : Returns a new statestate ′

s′ , obtained by the
application of the update messageupdreq to the statestates′ . This corresponds to the event
update(req) mentioned above, wheres′ is the server that executesupdate.

2.4. Sequences
The algorithms presented in this paper rely on sequences. A sequence is a finite ordered

list of elements. With a few minor exceptions, the notation defined here is borrowed from
that of Gries and Schneider [20].

A sequence of three elementsa, b, c is denoted by the tuple〈a, b, c〉. The symbolε
denotes the empty sequence. The length of a sequenceseq is the number of elements inseq
and is denoted#seq . For instance,# 〈a, b, c〉 = 3, and#ε = 0.

Elements can be added either at the beginning or at the end of asequence. Adding an
elemente at the beginning of a sequenceseq is called prepending (see [20]) and is denoted
by eC seq . Similarly, adding an elemente at the end of a sequenceseq is called appending
and is denoted byseq B e.

We define the operator[ ] for accessing a single element of the sequence. Given a sequence
seq, seq[i ] returns thei th element ofseq. The elementseq[1 ] is then the first element of
the sequence, and is also denoted ashead .seq . The tail of a non-empty sequenceseq is the
sequence that results from removing the first element ofseq . Thus, we have

seq = head .seq C tail .seq

For convenience, we also define the following additional operations on sequences. First,
given an elemente and a sequenceseq, the elemente is a member ofseq (denotede ∈ seq)
if e is a member of the set composed of all elements ofseq . Second, given a sequenceseq

and a set of elementsS, the exclusionseq − S is the sequence that results from removing
from seq all elements that appear inS.

3. PROBLEM SPECIFICATIONS

This section presents the specification of the two problems addressed in this paper. First,
we present the specification of semi-passive replication. Second, we present the problem
of Lazy Consensus.

3.1. Specification of Semi-Passive Replication
The definition below is based on a specification framework forreplication techniques

described by D́efago [14],5 of which we only present the relevant parts here.

3.1.1. Generic Replication Problem

First of all, replications techniques are defined by the Generic Replication Problem. This
part of the specification is common to replication techniques, regardless of their strategies
(e.g., active replication, passive replication). The specificity of a given strategy is captured
by extending the definition with additional properties.

5The definition of the total order property was in fact adaptedfrom a property called “gap-free uniform total
order” proposed by Aguilera et al. [4] for the problem of Total Order Broadcast.
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(Termination) If a correct clientc ∈ ΠC sends a request, it eventually receives a
reply.

(Total order) For any two requestsreq andreq ′, if some replica executesupdate(req ′)

afterupdate(req), then a replica executesupdate(req ′) only after it has executedupdate(req).

(Update integrity) For any requestreq, every replica executesupdate(req) at
most once, and only ifsend(req) was previously executed by a client.

(Response integrity) For any eventreceive(respreq) executed by a client, the
eventupdate(req) is executed by some correct replica.

A given replication technique will operate correctly as long as it satisfies the four
properties above.

3.1.2. Passive and Semi-Passive Replication

As already mentioned, the specification above is common to replication techniques,
regardless of their approach. Hence, the specificity of a given strategy is captured by
extending the specification with additional properties. Wedefine both passive and semi-
passive replication with an additional property ofparsimony.

Passive replication, as for instance described by Budhiraja et al. [7], is expressed in a
model with perfect failure detection. In particular, they require that no more than one
server replica can be the primary at any time. This is expressed by the following property
of parsimony.

(Strong Parsimony) If a requestreq is processed by a replicap, then no other
replica processesreq unlessp crashes.

Enforcing strong parsimony requires a way to detect, with absolute certainty, the crash of
other processes. In other words, strong parsimony requiresa perfect failure detector (see
Sect. 2.2.2).

In contrast, semi-passive replication is defined with a weaker property that relates parsi-
mony to thedetectionof failures rather than theiroccurrence. The definition is expressed
as follows.

(Weak Parsimony) If the same requestreq is processed by two replicasp andq,
then at least one ofp andq is suspected by some replica.

It follows that the parsimony of a semi-passive replicationalgorithm is related to the failure
detection provided by the system model. In particular, it iseasy to see that, under a perfect
failure detector, weak and strong parsimony are in fact identical.

3.2. Specification of Lazy Consensus
The Lazy Consensus problem is a generalization over the Consensus problem that allows

processes to delay the computation of their initial value. In the traditional definition of
Consensus (e.g., [18, 8]), a process begins the problem withan initial value. In contrast,
with the definition of Lazy Consensus, a process begins without initial value. The initial
value of the process is computed only when it becomes necessary, if at all.6

6The problem is called “Lazy Consensus” in reference to its similarities with the programming technique
known as “lazy evaluation.”
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The Lazy Consensus problem is defined here as a problem among server processes, that
is, we consider only the set of processesΠS . Processes propose no value initially, but
instead provide the algorithm with an argument-less function that computes and returns a
proposed value when called. More concretely, processes begin the problem by calling the
procedureLazyConsensus(giv ), wheregiv is an argument-less function7 that, when called,
computes an initial valuev (with v 6= ⊥8) and returns it. When the algorithm callsgiv on
behalf of processp, we say thatp proposesthe valuev returned bygiv . When a processq
executesdecide(v), we say thatq decidesthe valuev. The Lazy Consensus problem is
specified inΠS by the following properties:

(Termination) Every correct process eventually decides some value.
(Uniform integrity) Every process decides at most once.
(Agreement) No two correct processes decide differently.
(Uniform validity) If a process decidesv, thenv was proposed by some process.
(Proposition integrity) Every process proposes a value at most once.
(Weak laziness) If two processesp andq propose a value, then at least one ofp

andq is suspected by some9 process inΠS .

Lazinessis the only new property with respect to the standard definition of the Consensus
problem [8]. In Section 4, we present an algorithm for semi-passive replication that uses
Lazy Consensus. Solving Lazy Consensus is discussed in Section 5.

Remark. Alternatively, stronger definitions of Lazy Consensus problems can be
given, by requiring stronger definitions of laziness. Thus,we define thequasi-strong Lazy
consensusand thestrong Lazy consensusas Lazy consensus problems that respectively
satisfy the following laziness properties:

(Quasi-strong laziness) If two processesp andq propose a value, thenp andq

are not both correct.
(Strong laziness) If a processp proposes a value, then no processq proposes a

value beforep has crashed unlessq has crashed beforep proposes a value.

4. SEMI-PASSIVE REPLICATION ALGORITHM

We begin this section by giving a general overview of the semi-passive replication
algorithm. We then present our algorithm for semi-passive replication, expressed as a
sequence of Lazy consensus problems. Finally, we prove and discuss the parsimony
property of the semi-passive replication algorithm (the correctness of the algorithm is
proved in the appendix).

4.1. Basic Idea: Consensus on “update” values
As mentioned in Section 1.1, in the semi-passive replication technique, the requests are

handled by a single process; the primary. After the processing of each request, the primary
sends anupdatemessage to the backups, as illustrated on Figure 3.

7giv stands forget initial value.
8The symbol⊥ (bottom) is a common way to denote the absence of value. This is called eithernil or null in

most programming languages.
9As a matter of fact, the Lazy Consensus algorithm presented in this paper satisfies a stronger property: two

processes propose a value only if one of them is suspected by amajorityof processes inΠS (Lemma 2.11, p. 27).
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FIG. 3. Semi-passive replication: update message sent by the primary.

Our solution is based on a sequence of Lazy Consensus problems, in which every instance
decides on thecontent of the update message. This means that the initial value of every
consensus problem is anupdate value, generated when handling the request. The cost
related to getting the initial value is high as it requires the processing of the request. So, we
want to avoid a situation in which each server processes the request, i.e., has an initial value
for consensus (or else the semi-passive replication technique could no more be qualified as
“parsimonious”). This explains the need for a “laziness” property regarding the Consensus
problem.

Expressing semi-passive replication as a sequence of Lazy Consensus problems hides
inside the consensus algorithm the issue of selecting a primary. A processp takes the role
of the primary (i.e., handles client requests) exactly whenit proposes its initial value for
Consensus.

4.2. Semi-Passive Replication Algorithm
The algorithm for semi-passive replication relies on the laziness property of the Lazy

Consensus. The laziness property of Lazy Consensus is the key to satisfy parsimonious
processing (see Sect. 4.3, p. 11). However, laziness does not affect the correctness of the
algorithm as aGeneric Replicationproblem (see Sect. A.1, p. 22; Remark 4.3, p. 12)

Variables. Every servers manages an integerk (line 5), which identifies the current
instance of the Lazy Consensus problem. Every server process also handles the variables
recvQ andhand (lines 2,3):

• recvQs is a sequence (receive queue) containing the requests received by a servers,
from the clients.
• hands is a set which consists of the requests that have been processed.

Algorithm description. We now give a textual description of the algorithm. The pseudo-
code is expressed in Algorithm 1. Briefly speaking, the algorithm relies on a sequence of
Lazy Consensus executions and works as follows:

• When a servers receives a new requestreq from a client, that request is simply
appended to the receive queuerecvQs of that server, unless it was previously received
and/or handled.
• Whenever the receive queuerecvQs is not empty and the last execution of the Lazy

Consensus has finished, a new instance of the Lazy Consensus is started. The proposition
functionhandleRequest(), invoked lazily by the Lazy Consensus algorithm, takes the first
requestreq from the receive queue, handles it, and returns a tuple(req, updreq , respreq)

containing the requestreq, an update messageupdreq , and a replyrespreq for the client.
The decision value of the Lazy Consensus is one such tuple.
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• When a servers receives the decision value(req, updreq , respreq) of an execution
of the Lazy Consensus, it forwards the reply messagerespreq to the client, updates its
state according to the update messageupdreq , and moves the requestreq from the receive
queuerecvQs to the set of handled requestshands .

Algorithm 1 (Semi-passive replication (code of server s)).

1. Initialization:
2. recvQs ← ε {sequence of received requests, initially empty}
3. hands ← ∅ {set of handled requests}
4. states ← state0

5. k ← 0

6. function handleRequest()
7. req ← head .recvQs

8. (updreq , respreq )← handle(req , states)
9. return (req , updreq , respreq )

10. end handleRequest()

11. when receive(reqc) from clientc /Task 1/
12. if reqc 6∈ hands ∧ reqc 6∈ recvQs then
13. recvQs ← recvQs B reqc

14. end if
15. end when

16. when#recvQs > 0 /Task 2/
17. k ← k + 1
18. LazyConsensus(k,handleRequest) {Solve thekth Lazy consensus}
19. wait until decide(k , (req , updreq , respreq ))
20. send (respreq ) to sender(req) {Send response to client}
21. states ← update(updreq , states) {Update the state}
22. recvQs ← recvQs − {req}
23. hands ← hands ∪ {req}
24. end when

4.3. Parsimony of the Semi-Passive Replication Algorithm
As mentioned earlier, the semi-passive replication algorithm only relies on the laziness of

the Lazy Consensus in order to satisfy the Parsimony property of semi-passive replication.
This means that laziness is the key to parsimonious processing, but it does not influence
the safety properties of the algorithm. In other words, evenif the algorithm relies on a
Consensus algorithm which does not satisfy any laziness property, the replication algorithm
still satisfies the properties of the generic replication problem discussed in Section 3.1 (but
it might not satisfy theparsimonious processingproperty, Sect. 3.1.2).

Theorem 1.1. Algorithm 1 solves the generic replication problem (definedin Sec-
tion 3.1).

The details of the proof are given in the appendix (pp. 22–24). It is nevertheless
important to note that Theorem 1.1 is proved independently of the laziness property of the
Lazy Consensus.

Lemma 4.1. Algorithm 1 withweakLazy Consensus satisfiesweakparsimony.

Proof. Processes process a request at line 8, i.e., when they propose a value. Therefore,
theweak parsimonyproperty follows directly from theweak lazinessproperty of the Lazy
Consensus.
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Theorem 4.1. Algorithm 1 withweakLazy Consensus solves thesemi-passive repli-
cationproblem.

Proof. Follows directly from Theorem 1.1 (generic replication) and Lemma 4.1 (weak
parsimony).

We now show that implementing passive replication based on Algorithm 1 merely
consists in relying on a strong Lazy Consensus algorithm (see Sect. 3.2).

Lemma 4.2. Algorithm 1 withstrongLazy Consensus satisfiesstrongparsimony.

Proof. The proof is a trivial adaptation from that of Lemma 4.1.

Corollary 4.1. Algorithm 1 withstrongLazy Consensus solves thepassive replication
problem.

Proof. Follows directly from Theorem 1.1 (generic replication) and Lemma 4.2 (strong
parsimony).

Remark. An interesting (and potentially controversial) point to raise here is that the
property of parsimony in itself is merely a question of quality of service rather than actual
correctness. Indeed, as long as the server solves the Generic Replication problem, it will
continue to operate devoid of any inconsistencies even if laziness is not satisfied.

If not for our algorithm, this remark would be quite pointless since other passive repli-
cation algorithms cannot separate both issues (generic replication and parsimony). In
contrast, our algorithm presents these issues as being orthogonal.

5. SOLVING LAZY CONSENSUS

In this section, we give an algorithm that solves the problemof Lazy Consensus defined in
Section 3.2.10 The algorithm presented here is adapted from the Chandra-Toueg consensus
algorithm for♦S [8]. Both algorithms rely on the assumption that at least a majority of the
participating processes are correct.

To better describe the difference between the Chandra-Toueg algorithm and ours, we
begin the section with an informal description of the formeralgorithm, followed by an
equally informal description of the algorithm for Lazy consensus.

Then, we describe two simple yet important optimizations that can be applied to both
algorithms. The first optimization reduces the first round byone phase, whereas the second
optimization improves the selection of coordinators when several instances of the consensus
algorithm are executed in sequence.

Finally, we describe the complete pseudo-code for our Lazy consensus algorithm, which
incorporates the two optimizations mentioned above. The adapted proofs of correctness
are presented in Appendix A.2.

5.1. Chandra-Toueg Consensus Algorithm using♦S

The Chandra-Toueg [8] consensus algorithm described here assumes a failure detector
of class♦S and that no less than a majority of the processes inΠS are correct. Figure 4

10An earlier version of this algorithm was calledDIVconsensus [12]. Note thatDIVconsensus used to
designate analgorithm, whereas Lazy Consensus now designates aproblem.
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FIG. 4. Chandra-Toueg Consensus; illustration of a single round execution.

presents the communication generated by the algorithm in a failure/suspicion-free run. The
figure depicts the four phases that constitute the first roundof the protocol. The algorithm
is now described informally.

The algorithm proceeds through a sequence of asynchronous rounds. Each round is
uniquely identified by a sequence number, and all protocol messages are identified by
the number of the round to which they belong. Being asynchronous, several rounds can
actually take place simultaneously, although they are logically ordered by their sequence
number. In each round one of the processes inΠS is defined as a coordinator for that
round. The composition ofΠS never changes and is assumed to be initially known to
all processes. Hence, the coordinator of roundr is designated deterministically by the
formula11 cr = ((r − 1) mod n) + 1, thus cycling among the set of processes. This is
commonly known as the rotating coordinator paradigm.

Processes begin the execution of the consensus with thepropose event and some propo-
sition valuev0. Each process maintains several variables, the most important of which
are: (1) the number of the current round, (2) an estimate of the decision value, and (3) a
logical timestamp associated with the estimate. The processes begin the first round of the
algorithm with the variables set to1, v0, and0, respectively.

• In Phase 1, all processes inΠS send their estimate to the coordinator of the current
round, timestamped with the round number in which they last modified it.

• In Phase 2, the coordinator waits for a proposition from a majority of the processes
in ΠS . It selects the estimate with the highest timestamp and modifies its own estimate
accordingly (breaking ties can be done arbitrarily). The coordinator then broadcasts its
estimate as its proposition for the decision value.

• In phase 3, the processes wait for a proposition from the coordinator. They adopt the
value proposed by the coordinator by changing their estimate and using the round number
as the new timestamp. Then, they acknowledge the proposition and proceed to the first
phase of the next round.

In case a process suspects the coordinator before it receives a proposition, that process
sends anegativeacknowledgment before proceeding to the first phase of the next round.

• In Phase 4, the coordinator waits until it has received an acknowledgment message
(positive or negative) from a majority of the processes. If all received acknowledgments

11To be exact, Chandra and Toueg [8] use the slightly simpler formulacr = (r mod n) + 1, which counter-
intuitively designatesp2 as the coordinator of round1, p3 for round2, and so forth.
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FIG. 5. Lazy Consensus; illustration of a single round execution. Initially, the processes hold⊥ instead of
a proposition value.
In the first round, estimate messages of the first phase are notessential to the algorithm (discussed in Sect. 5.3.1).

are positive, the proposed value becomes the decision value. The coordinator then informs
the other processes by broadcasting the decision value using Reliable Broadcast.

In contrast, if one of the received acknowledgments is negative, the coordinator gives up
and proceeds directly to the first phase of the next round.

5.2. Lazy Consensus Algorithm (informal description)
The Lazy consensus algorithm described in this paper is an adaptation of the Chandra-

Toueg algorithm that shares the same assumptions. Rather than describing the whole
algorithm, we simply present the most significant differences. Figure 5 presents the first
round of the protocol in a failure/suspicion-free run. Notice that, for the sake of simplicity,
this section presents a simplified version of the algorithm.

In the Lazy consensus algorithm, processes begin the execution of the algorithm by
proposing a function (or a lambda closure) calledgiv which, if called, computes a propo-
sition value and returns it. Other than that, processes maintain the same variables as in
the Chandra-Toueg algorithm, namely, (1) the number of the current round, (2) an es-
timate of the decision value, and (3) a logical timestamp associated with the estimate.
Unlike Chandra-Toueg, processes do not begin with a proposition value, and hence set their
estimate to⊥, thus representing the absence of a value.

The rest of the algorithm is the same as with Chandra-Toueg’s, with the following
exception. In Phase 2, the coordinator of the round gathers estimate messages from a
majority of processes. Among the estimates received and including its own, the coordinator
takes the one, different from⊥, that has the highest timestamp. If no such estimate exists,
because they are all equal to⊥, then the coordinator computes its proposition value by
calling the functiongiv . It then sets its own estimate to the return value of the function and
uses that value as its proposition for the round.

Doing so ensures that the functiongiv is called only when necessary. In fact, it is
not difficult to see that any single process will call the function at most once. Beside, in
the worst case, the function can only be called by about half of the processes plus one.
Intuitively, this is because, if a majority of the processeshave called that function, then the
coordinator of any subsequent round will receive at least one estimate different from⊥ in
the second phase of their round.

5.3. Optimizations
The full algorithm (presented in Section 5.4) includes two important optimizations that

we present now. The first optimization reduces the overhead of the protocol in failure-free
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runs. The second optimization is concerned with situationswhere several executions of the
algorithm are performed in sequence, and the performance penalty that is associated with
the crash of the first processes.

5.3.1. Optimization of the First Phase

As observed by Schiper [30], the first phase in the first round of the Chandra-Toueg
consensus algorithm (see Sect. 5.1) is not essential for thealgorithm. The reason is that,
in the first phase, it is known by all processes that the estimate of every processes is
their proposition value, timestamped with zero. Hence, when the coordinator collects
the estimates in phase two, it can pick any of the estimates asthe proposition value. In
particular, the coordinator can selectits ownestimate as the proposition value, regardless
of the estimates sent by other processes.

Similarly, with Lazy Consensus, all processes start with the value⊥ as their estimate.
Consequently, the coordinator of the first phase cannot expect anything but⊥ from the
other processes. Hence, in the first round, the algorithm skips the first phase and proceeds
directly to the second phase.

Notice that this optimization applies only to the first round. It is nevertheless useful
as, during a failure-free and suspicion-free execution, the latency degree of the protocol is
determined by the first round only.

5.3.2. Adaptive rotating coordinator

Several important algorithms involve a sequence of consensus executions. In addition
to the semi-passive replication algorithm described in this paper, this is also the case with
several Total Order Broadcast algorithms (e.g., [8, 19]), Generic Broadcast [26], some
consensus-based group membership services [10], fault-tolerant mobile agents [27].

Unfortunately, in this situation, there is a practical problem inherent to the use of the
rotating coordinator. In the rotating coordinator paradigm, every instance of the consensus
algorithm selects a coordinator by cycling through processes always in the same sequence,
say 〈p1, . . . , pn〉. This means thatp1 is coordinator for round1, p2 for round 2, etc.
Assume now thatp1 crashes before consensus numberk, then consensusk and every
furtherexecution of the consensus will always fail in the first round(p1, the coordinator of
round1 has crashed), hence always requiring at least two rounds to decide. This extra cost
(two rounds instead of one) cannot be easily avoided for consensus numberk. However,
the cost can be avoided for consensusk + 1 and after, by a simple modification to the
rotating coordinator that incurs no additional message.

Let us illustrate this with an example. Consider that, for consensus numberk, the
processes ofΠS are ordered as follows:〈p1, p2, p3, p4, p5〉, which definesp1 as the first
coordinator (see Fig. 6). Assume thatp1 crashes just before the execution of consensusk,
and thus the first round fails. Assume again that, after consensusk, all processes can
agree on the following permutation of the processes inΠS : 〈p2, p3, p4, p5, p1〉. Then, if
consensusk + 1 uses the new permutation, thenp2 becomes the coordinator of the first
round and consensusk + 1 can be solved in one single round in spite of the crash ofp1.

Obviously, reaching an agreement on a new permutation for the rotating sequence re-
quires exactly this,... reaching an agreement. The idea of our optimization is that, during
consensusk, processes reach an agreement not only on the decision valuefor consensusk,
but also on a permutation vector to be used during thenext executionof the consensus, that
is, consensus numberk + 1. In fact, the permutation vector can be seen as an implicit part
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FIG. 6. Permutations ofΠS and selection of a coordinator.

of the decision value. As a result, the agreement on the permutation generatesno additional
message.

More concretely, this occurs as follows. The processes start consensusk with a permu-
tation vectorpvk agreed by all processes. For the first execution of the consensus, the
permutation vectorpv1 is determined statically as being the identity[1, 2, . . . , n]. Then,
each executionk of the consensus agrees on the permutation vector for the next execu-
tion pvk+1. A permutation vectorpvk is used during the execution of consensusk to
determine the coordinator of roundr ascr = pvk [((r − 1) mod n) + 1]. During consen-
susk, the agreement on the next permutation vectorpvk+1 occurs as follows. The processes
manage two estimate variables instead of a single one:estVp for the decision value, and
estPp for the permutation vector. When a coordinator proposes a value, it also proposes
a permutation vector with itself as the first coordinator (this is done in Alg. 2 at lines 6
and 32). When the consensus decides, the agreed permutationvector becomespvk+1 and
is used later, for the execution of consensusk + 1.

Because a crashed processp cannot propose a value after it has crashed, it is easy to see
thatp does not remain the first coordinator for more than one entireconsensus execution
after it has crashed.

Remark. One could possibly mistake the adaptive rotating coordinator for a form of
group membership. To prevent this misconception, we would like to emphasize here that
adaptive rotating coordinator is merely an extension to therotating coordinator paradigm
and by no means a replacement for a group membership. The latter is indeed a higher-level
abstraction, and hence differs by several fundamental aspects.

First and most importantly, with the adaptive rotating coordinator, the composition
of the set of processes is static and hence never changes. This is clearly unlike group
membership whose primary role is to allow the dynamic join and leave of processes during
the computation.

Second, specifications of group membership [10] include thenotion of view synchrony
that imposes some restrictions on the delivery of application messages. In contrast, this
notion is irrelevant to the adaptive rotating coordinator.

Third, a secondary role of a group membership service is to ensure that system resources
(i.e., retransmission buffer emptied, etc) are eventuallyreclaimed. Again, the adaptive
rotating coordinator has nothing to do with resource management as this occurs at a
different abstraction level.



SEMI-PASSIVE REPLICATION AND LAZY CONSENSUS 17

Finally, with group membership, the agreement on the composition of the group can
occur independently from the execution of group communication protocols. In contrast,
the mechanism of the adaptive rotating coordinator is embedded within the consensus
protocol and cannot occur independently.

Remark. Note that we have presented the idea of the adaptive rotatingcoordinator
using a simple reordering policy. This is enough to illustrate the idea but it is possible,
in practice, to use better strategies for the permutation. Changing the reordering policy
does not compromise the correctness of the algorithms, as long as the permutation vector
is modified only at line 6 and 32 in Algorithm 2.

5.4. Lazy Consensus Algorithm with♦S

We now describe the complete algorithm in more details. Algorithm 2 (page 18) solves
the Lazy Consensus problem with a♦S failure detector and the assumption that at least a
majority of the processes inΠS are correct.

5.4.1. Variables

We first present variables that are retained between execution instances of the algorithm.
These variables are global within a single process, but not shared among processes.

• pvk represents the permutation vector for consensus instancek. It is determined
during consensus executionk−1.

• pv1 is set initially by all processes to be the identity vector, that is,[1, 2, . . . , n]. It is
used as the permutation vector for the first consensus execution, that is, instance1.

The consensus is initiated by calling the procedureLazyConsensus, which takes two
arguments. The first argument is the instance numberk. The second argument is an
argument-less function, or closure, calledgiv . When evaluated,giv computes and returns
a proposition valuev 6= ⊥ (see Sect. 3.2). When a processp executesvp ← eval giv , we
say that the process proposes the valuevp.

The following variables are local to procedureLazyConsensusand play an important
role in the algorithm.

• estVp is the estimate that processp has about the decision value.

• estPp is the estimate that processp has about the next permutation vector.

• rp is the round number, initially set to0, but incremented before beginning the round.

• tsp is the round number when the estimates(estVp, estPp) were last changed. It is
initially set to0.

5.4.2. Algorithm description

We now give a brief description of each phase of the algorithm. Notice that phases 3
and 4 are nearly unchanged from the Chandra-Toueg algorithmdescribed in Section 5.1.

• In Phase 1, all processes inΠS send their estimatesestVp andestPp to the coordinator
of the current round, timestamped with the round number in which they last modified them.
According to the optimization of Sect. 5.3.2, the first phaseis entirely skipped during the
first round.
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• In Phase 2, the coordinator waits for a proposition from a majority of the processes
in ΠS , except during the first round when the coordinator has nothing to wait for (optimiza-
tion of Sect. 5.3.2). In the receive statement,k andrp are pattern matching arguments, i.e.,
the process waits for a message with the givenk andrp value. The other arguments are
output arguments. The coordinator filters the received estimatesestVq and its own. If at
least one of them is defined (6= ⊥), then the coordinator selects the estimates(estVq, estPq)

with the highest timestamp and modifies its own estimates(estVp, estPp) accordingly.
Conversely, if all of the estimates received in the phase areundefined (= ⊥), then the
coordinator proposes a value by evaluating the functiongiv , and sets its estimateestVp

to the return value of the function. After that, the coordinator broadcasts its estimates
(estVp, estPp).

• In phase 3, the processes wait for a proposition from the coordinator. They adopt the
value proposed by the coordinator by changing their estimates(estVcp

, estPcp
), using the

round number as the new timestamp. Then, they acknowledge the proposition and proceed
to the first phase of the next round. In case a process suspectsthe coordinator before it
receives a proposition, that process sends anegativeacknowledgment before it proceeds to
the first phase of the next round.

• In Phase 4, the coordinator waits for an acknowledgment froma majority of the
processes. If all received acknowledgments are positive, the proposed value(estVp, estPp)

becomes the decision value and the coordinator informs the other processes by broadcasting
the decision value using Reliable Broadcast. On the other hand, if one of the received
acknowledgments is negative, no decision is taken and the coordinator proceeds directly to
the first phase of the next round.

• Upon receiving the decision message with(estVq, estPq), a process decidesestVq and
sets the permutation vectorpvk+1 to estPq. The permutation vectorpvk+1 is used for the
next consensus executionk + 1.

Algorithm 2 (Lazy Consensus (code of process p).).

1. Initialization:
2. pv

1 ← [1, 2, . . . , n]

3. procedure LazyConsensus(k, function giv : ∅ 7→ v) {code for consensus instancek}
4. pv

k := permutation vector obtained during instancek − 1
5. estVp ← ⊥ {p’s estimate of the decision value}
6. estPp ← {rotatepv

k until p is first}
7. statep ← undecided

8. rp ← 0 {rp is p’s current round number}
9. tsp ← 0 {tsp is the last round in whichp updated(estVp, estPp), initially 0}

10. while statep = undecided do {rotate through coordinators until decision reached}
11. cp ← pv

k [(rp mod n) + 1] {cp is the current coordinator}
12. rp ← rp + 1

13. Phase 1: {all processesp send(estVp, estPp) to the current coordinator}
14. if rp > 1 then
15. send(k, p, rp, estVp, estPp, tsp) to cp

16. end if

17. Phase 2: {coordinator gathers
l

(n+1)
2

m

estimates and proposes new estimate}

18. if p = cp then
19. if rp = 1 then
20. estVp← eval giv() {p proposesa value}
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21. else
22. wait until [for

l

(n+1)
2

m

processesq : received(k, q, rp, estVq , estPq, tsq) from q]

23. msgsp[rp]← {(k, q, rp, estVq , estPq , tsq) | p received(k, q, rp, estVq , estPq , tsq) from q}
24. t← largesttsq such that(k, q, rp, estVq , estPq , tsq) ∈ msgsp[rp]
25. if estVp = ⊥ and ∀(k, q, rp, estVq , estPq , tsq) ∈ msgsp[rp] : estVq = ⊥ then
26. estVp← eval giv() {p proposesa value}
27. else
28. estVp← select oneestVq 6= ⊥ s.t. (k, q, rp, estVq , estPq , t) ∈ msgsp[rp]
29. estPp ← estPq

30. end if
31. end if
32. send(k, p, rp, estVp, estPp) to all
33. end if

34. Phase 3: {all processes wait for new estimate proposed by current coordinator}
35. wait until [received(k, cp, rp, estVcp , estPcp ) from cp or cp ∈ Dp] {query failure detectorDp}

36. if [received(k, cp, rp, estVcp , estPcp ) from cp] then {p received(estVcp , estPcp ) fromcp}
37. estVp← estVcp

38. estPp← estPcp

39. tsp ← rp

40. send(k, p, rp, ack) to cp

41. else {p suspects thatcp crashed}
42. send(k, p, rp, nack) to cp

43. end if

44. Phase 4: {the current coordinator waits for replies from a majority ofprocesses.}
{If those replies indicate that a majority of processes adopted its estimate,}

{the coordinator R-broadcasts a decide message}
45. if p = cp then

46. wait until [for
l

(n+1)
2

m

processesq : received(k, q, rp, ack) or (k, q, rp, nack)]

47. if [for
l

(n+1)
2

m

processesq : received(k, q, rp, ack)] then

48. R-broadcast(k, p, rp, estVp, estPp, decide)
49. end if
50. end if
51. end while
52. end LazyConsensus

53. when R-deliver(k, q, rq, estVq , estPq , decide) {if p R-delivers a decide msg,p decides accordingly}
54. if statep = undecided then
55. decide(k, estVq)
56. pv

k+1 ← estPq {updates the permutation vector for the next execution}
57. statep ← decided

58. end if
59. end when

6. SELECTED SCENARIOS FOR SEMI-PASSIVE REPLICATION

Algorithm 2 may seem complex, but most of the complexity is due to the explicit handling
of failures and suspicions. So, in order to show that the complexity of the algorithm does not
make it inefficient, we illustrate typical executions of thesemi-passive replication algorithm
based on Lazy Consensus using♦S.

We first present the semi-passive replication in a good run (no failure, no suspicion), as
this is the most common case. We then show the execution of thealgorithm in the face of
a single process crash. Other cases can easily be inferred from these two simple scenarios.

6.1. Semi-Passive Replication in Good Runs
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FIG. 7. Semi-passive replication (good run). The critical path request-response is highlighted in gray. The
execution of the Lazy Consensus is also depicted in Fig. 5.
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FIG. 8. Semi-passive replication with one failure (worst case). The critical path request-response is
highlighted in gray. The execution of the Lazy Consensus in the case of one crash is also depicted in Fig. 6.

We call “good run” a run in which no server process crashes andno failure suspicion is
generated. Let Figure 7 represent the execution of Lazy Consensus numberk. The server
processp1 is the initial coordinator for consensusk and also the primary. After receiving
the request from the client, the primaryp1 handles the request. Once the processing is
done,p1 has the initial value for consensusk. According to the Lazy consensus protocol,
p1 multicasts the update messageupd to the backups, and waits forack messages. Once
ack messages have been received (actually from a majority), processp1 can decide on
upd , and multicast thedecide message to the backups. As soon as thedecide message is
received, the servers update their state, and send the replyto the client.

It is noteworthy that the state updates do not appear on the critical path of the client’s
request (highlighted in gray on the figure).

6.2. Semi-Passive Replication in the Case of One Crash
Figure 8 illustrates the worst case latency for the client inthe case of one crash, without

incorrect failure suspicions. The worst case scenario happens when the primaryp1 (i.e., the
initial coordinator of the Lazy Consensus algorithm) crashes immediately after processing
the client request, but before being able to send the update messageupd to the backups
(compare with Fig. 7). In this case, the communication pattern is different from usual
algorithms for passive replication in asynchronous systems, as there is here no membership
change.

In more detail, the execution of the Lazy Consensus algorithm runs as follows. If the pri-
maryp1 crashes, then the backups eventually suspectp1, send a negative acknowledgment
messagenack to p1 (the message is needed by the consensus algorithm), and start a new
round. The server processp2 becomes the coordinator for the new round, i.e., becomes the
new primary, and waits forestimate messages from a majority of servers: these messages
might contain an initial value for the consensus, in which casep2 does not need to process
the client request again. In our worst case scenario, the initial primary p1 has crashed
before being able to multicast the update valueupd . So none of theestimate messages
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received byp2 contain an initial value. In order to obtain one, the new primaryp2 processes
the request received from the client (Fig. 8), and from that point on, the scenario is similar
to the “good run” case of the previous section (compare with Fig. 7).

7. CONCLUSION

Semi-passive replication is a replication technique that does not rely on a group mem-
bership for the selection of the primary. While retaining the essential characteristics of
passive replication (i.e., non-deterministic processingand parsimonious use of processing
resources), semi-passive replication can be solved in an asynchronous system using a♦S
failure detector. This is a significant strength over almostall current systems that imple-
ment replication techniques with parsimonious processing. Indeed, in those systems, the
replication algorithm requires to force the crash of excluded processes in order to make
progress, and thus combines the selection of the primary with the composition of the group.

A second contribution of this paper, Lazy Consensus, is an extension of the Consensus
problem to allow the lazy evaluation of process propositions. This means that processes
compute their initial value in a “least effort” way, captured with a Laziness property. We
have discussed these issues in details in the paper, and presented an algorithm to solve Lazy
Consensus. The algorithm was adapted from the Chandra-Toueg consensus algorithm
using♦S [8], and relies on the same assumptions. Even though we have not discussed this
issue, other Consensus algorithms could also easily be adapted to solve Lazy Consensus
(e.g., [22, 30, 35, 36]).

The semi-passive replication algorithm proposed in this paper is based on solving the
problem of Lazy Consensus. The semi-passive replication algorithm however only relies on
the conventional properties of Consensus for ensuring the consistency of the replicas. The
Laziness property of Lazy Consensus is however the key to therestrained use of resources in
semi-passive replication. Depending directly on the quality of failure detectors, the laziness
(and hence the parsimony of semi-passive replication) is related to the amount of synchrony
exhibited by the system. In particular, in a synchronous system, semi-passive replication
ensures that a client request is processed by only one correct replica. Conversely, in the
worst case, a single request is never processed by more than about half of the replicas.
This behavior is desirable as it naturally allows for a graceful degradation of the replicated
service.

We mentioned that semi-passive replication does not require a group membership service,
and explained why this is an advantage. This may however givethe wrong impression
that semi-passive replication is incompatible with a groupmembership service, or that
we believe that such a service is not useful. This is of coursenot the case, but we
regard semi-passive replication as being a lower-level protocol than group membership.
Decoupling the replication protocol from housekeeping issues (e.g., releasing resources
held by a crashed process, adding or removing processes dynamically) is more elegant and
has several advantages in terms of performance, as discussed in [9, 11].

Finally, from the standpoint of clients, our semi-passive replication algorithm is protocol-
compatible with active replication. In particular, clients need no specific knowledge about
the server replicas, beyond what is necessary to address them as a group. This, combined
with the fact that both replication techniques can be implemented based on consensus,
makes it much easier for both techniques to coexist. For instance, the use of semi-passive
replication in a CORBA Object Group Service made it possibleto chose the replication
type (active or semi-passive) as a strictly server-side issue and on a per request basis [16].
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APPENDIX: PROOFS OF CORRECTNESS

A.1. CORRECTNESS PROOF OF THE SEMI-PASSIVE REPLICATION
ALGORITHM

We prove that our algorithm for semi-passive replication (Algorithm 1, page 11) satisfies
the properties of the Generic Replication Problem given in Section 3.1. The proof assumes
that (1) procedureLazyConsensussolves the Lazy Consensus problem according to the
specification given in Section 3.2 (ignoring the laziness property12), and (2) at least one
replica is correct. Solving Lazy Consensus is discussed in Section 5. In fact, Lazy
Consensus solves Consensus, which is enough to prove the correctness of the algorithm as
a Generic Replication algorithm.

Lemma 1.1 (Termination). If a correct clientc ∈ ΠC sends a request, it eventually
receives a reply.

Proof. The proof is by contradiction. Letreqc be a request sent by a correct clientc

that never receives a reply. Asc is correct, all correct replicas inΠS eventually receivereqc
at line 10, and insertreqc into their receive queuerecvQs at line 11. By the assumption
thatc never gets a reply, no correct replica decides at line 14 on(reqc ,−, ): if one correct
replica would decide, then by the Agreement and Terminationproperty of Lazy Consensus,
all correct replicas would decide on(reqc ,−,−). As we assume that there is at least one
correct replica then, by the property of the reliable channels, and becausec is correct,c
would eventually receive a reply. Consequently,reqc is never inhand of any replica, and
thus no replicas removesreqc from recvQs (Hypothesis A).

Let t0 be the earliest time such that the requestreqc has been received by every replica
that has not crashed. LetbeforeReqCs denote the prefix of sequencerecvQs that consists
of all requests inrecvQs that have been received beforereqc. After t0, no new request can
be inserted inrecvQs beforereqc , and hence none of the sequencesbeforeReqC can grow.

Let l be the total number of requests that appear beforereqc in therecvQ of any replica:

l =
∑

s∈ΠS

{

0 if s has crashed
#beforeReqCs otherwise

After time t0, the value ofl cannot increase since all new request can only be inserted
after reqc. Besides, after every decision of the Lazy Consensus at line19, at least one
replicas′ removes the requestreqhs′

at the head ofrecvQs′ (l.7, l.22). The requestreqhs′
is

necessarily beforereqc in recvQs′ , and hence belongs tobeforeReqCs′ . As a result, every
decision of the Lazy Consensus leads to decreasing the valueof l by at least1.

Sincereqc is never removed fromrecvQs (by Hyp. 1.1.1), Task 2 is always enabled
(#recvQs ≥ 1). So, because of the Termination property of Lazy Consensus, the value
of l decreases and eventually reaches0 (this is easily proved by induction onl).

Let t1 be the earliest time at which there is no request beforereqc in the receive
queuerecvQ of any replica (l = 0). This means that, at timet1, reqc is at the head of the
receive queue of all running replicas, and the next execution of Lazy Consensus can only

12See Sect. 4.3, p. 11.
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decide on requestreqc (l.7). Therefore, every correct replicas eventually removesreqc
from recvQs , a contradiction with Hypothesis A.

Lemma 1.2. For any requestreq, every replica executesupdate(req) at most once.

Proof. Whenever a replica executesupdate(req) (line 21), it has decided on(req,−,−)

at line 15, and insertsreq into the set of handled requestshand (line 18). By the Agreement
property of Lazy Consensus, every replica that decides at line 15 decides also on(req,−,−)

and inserts alsoreq into hand at line 18. As a result, no replica can selectreq again at
line 7, and(req,−,−) cannot be the decision of any subsequent Lazy Consensus.

Lemma 1.3 (Total order). For any two requestsreq andreq ′, if some replica executes
update(req ′) after update(req), then a replica executesupdate(req ′) only after it has
executedupdate(req).

Proof. Let req and req ′ be two requests, and letp be some replica that executes
update(req ′) after it executesupdate(req). Sincep has executedupdate(req), it has
decided(req, updreq ,−) at line 19. Letk1 be the value of variablek when p decides
(req, updreq ,−). Similarly,p has executedupdate(req ′). Letk2 be the value of variablek
when p decides(req ′, updreq′,−). Becausep executesupdate(req) before it executes
update(req ′), it decides(req, updreq ,−) before it decides(req ′, updreq′,−). Therefore,
k1 < k2.

Let q be any replica that executesupdate(req ′). To prove the lemma, we show thatq

executesupdate(req) before it executesupdate(req ′).
Sinceq executesupdate(req ′), it also decides(req ′, updreq′,−). Let k′

2 be the value of
variablek when it does so. By Lemma 1.2 (at most once) there is only one possible valuek′

2.
By the Agreement property of Lazy consensus and the fact thatp decidesupdate(req ′) for
k = k2, it follows thatk2 = k′

2.
If q has decided on the instancek2 of Lazy consensus, it must have also decided something

for k = k1 becausek1 < k2. Again, by the Agreement property of Lazy consensus and the
fact thatp has decided(req, updreq ,−) whenk = k1, q has decided(req, updreq ,−) when
k = k1. By the algorithm, a process executes theupdate event corresponding to a decision
before it starts the next instance of the Lazy consensus. So,becausek1 < k2, processq
executesupdate(req) before it executesupdate(req ′).

Lemma 1.4. If a replica executesupdate(req), thensend(req) was previously executed
by a client.

Proof. If a replica p executesupdate(req), then some replicaq has selected and
processed the requestreq at line 7 and line 8 respectively. It follows thatreq was previously
received byq, asreq belongs to the sequencerecvQs . Therefore,req was sent by some
client.

Lemma 1.5 (Update integrity). For any requestreq, every replica executesupdate(req)

at most once, and only ifsend(req) was previously executed by a client.

Proof. The result follows directly from Lemma 1.4 and Lemma 1.2.

Lemma 1.6 (Response integrity). For any eventreceive(respreq ) executed by a
client,update(req) is executed by some correct replica.

Proof. If a client receivesrespreq , thensend(respreq) was previously executed by some
replica (line 16). Therefore, this replica has decided(req, updreq , resreq) at line 15. By
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the Termination and Agreement properties of Lazy Consensus, every correct replica also
decides(req, updreq , resreq) at line 15, and executesupdate(req) at line 17. The lemma
follows from the assumption that at least one replica is correct.

Theorem 1.1. Algorithm 1 solves the generic replication problem (definedin Sec-
tion 3.1).

Proof. Follows directly from Lemma 1.3 (total order), Lemma 1.5 (update integrity),
Lemma 1.6 (response integrity), and Lemma 1.1 (termination).

A.2. CORRECTNESS PROOF OF THE LAZY CONSENSUS ALGORITHM

Here, we prove the correctness of our Lazy Consensus algorithm (Algorithm 2, page 18).
The algorithm solves the weak Lazy Consensus problem using the♦S failure detector, with
a majority of correct processes. Lemma 2.2–2.5 are adapted from the proofs of Chandra
and Toueg [8] for the Consensus algorithm with♦S. Without loss of generality and unless
specified otherwise, all proofs are expressed for some instancek of the Lazy consensus.

Lemma 2.1. No correct process remains blocked forever at one of thewait statements.

Proof. There are threewait statements to consider in Algorithm 2 (l.22, l.35, l.46).
The proof is by contradiction. Letr be the smallest round number in which some correct
process blocks forever at one of thewait statements.

In Phase 2, we must consider two cases:

1. If r is the first round, then the current coordinatorc = pvk[1] does not wait in Phase 2
(l.19), hence it does not block in Phase 2.

2. If r > 1 then, all correct processes reach the end of Phase 1 of roundr, and they all
send a message of the type(k,−, r, estV ,−,−) to the current coordinatorc = pvk[((r −

1) mod n) + 1] (l.15). Since a majority of the processes are correct, at least
l

(n+1)
2

m

such
messages are sent toc andc does not block in Phase 2.

For Phase 3, there are also two cases to consider:

1. c eventually receives
l

(n+1)
2

m

message of the type(k,−, r, estV ,−,−) in Phase 2.
2. c crashes.

In the first case, every correct process eventually receives(k, c, r, estVc,−) (l.35). In the
second case, sinceD satisfies strong completeness, for every correct processp there is a
time after whichc is permanently suspected byp, that is,c ∈ Dp. Thus in either case,
no correct process blocks at the secondwait statement (Phase 3, l.35). So every correct
process sends a message of the type(k,−, r, ack) or (k,−, r,nack) to c in Phase 3 (resp.
l.40, l.42). Since there are at least

l

(n+1)
2

m

correct processes,c cannot block at thewait
statement of Phase 4 (l.46). This shows that all correct processes complete roundr—a
contradiction that completes the proof of the lemma.

Lemma 2.2 (Termination). Every correct process eventually decides some value.

Proof. There are two possible cases:

1. Some correct process decides.If some correct process decides, then it must have R-
delivered some message of type(k,−,−,−,−, decide) (l.53)). By the agreement property
of Reliable Broadcast, all correct processes eventually R-deliver this message and decide.
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2. No correct process decides.SinceD satisfies eventual weak accuracy, there is a
correct processq and a timet such that no correct process suspectsq after timet. Let t′ ≥ t

be a time such that all faulty processes crash. Note that after time t′ no process suspectsq.
From this and Lemma 2.1, because no correct process decides there must be a roundr such
that: (i) all correct processes reach roundr after timet′ (when no process suspectsq), and
(ii) q is the coordinator of roundr (i.e.,q = pvk[((r− 1) mod n)+1]). Sinceq is correct,
then it eventually sends a message to all processes at the endof Phase 2 (l.32):

• If r = 1 (first round), thenq does not wait for any message, and sends(k, q, r, estVq,−)

to all processes at the end of in Phase 2.

• For roundr > 1, then all correct processes send their estimates toq (l.15). In
Phase 2,q receives

l

(n+1)
2

m

such estimates, and sends(k, q, r, estVq,−) to all processes.

In Phase 3, sinceq is not suspected by any correct process after timet, every correct
process waits forq’s estimate (l.35), eventually receives it, and replies with anack to q

(l.40). Furthermore, no process sends anack to q (that can only happen when a process
suspectsq). Thus, in Phase 4,q receives

l

(n+1)
2

m

messages of the type(k,−, r, ack ) (and
no messages of the type(k,−, r,nack)), and q R-broadcasts(k, q, r, estVq,−, decide)

(l.48). By the validity and agreement properties of Reliable Broadcast, eventually all
correct processes R-deliverq’s message (l.53) anddecide(l.55)—a contradiction.

So, by Case 2 at least one correct process decides, and by Case1 all correct processes
eventually decide.

Lemma 2.3 (Uniform integrity). Every process decides at most once.

Proof. Follows directly from Algorithm 2, where no process decidesmore than once.

Lemma 2.4 (Uniform agreement). No two processes decide differently.

Proof. If no process ever decides, the lemma is trivially true. If any process decides, it
must have previously R-delivered a message of the type(k,−,−,−,−, decide) (l.53). By
the uniform integrity property of Reliable Broadcast and the algorithm, a coordinator pre-
viously R-broadcast this message. This coordinator must have received

l

(n+1)
2

m

messages
of the type(k,−,−, ack) in Phase 4 (l.46). Letr be the smallest round number in which
l

(n+1)
2

m

messages of the type(k,−, r, ack ) are sent to a coordinator in Phase 3 (l.40). Let

c denote the coordinator of roundr, that is,c = pvk[((r − 1) mod n) + 1]. Let estVc

denotec’s estimate at the end of Phase 2 of roundr. We claim that for all roundsr′ ≥ r, if
a coordinatorc′ sendsestVc′ in Phase 2 of roundr′ (l.32), thenestVc′ = estVc.

The proof is by induction on the round number. The claim trivially holds forr′ = r.
Now assume that the claim holds for allr′, r ≤ r′ < x. Let cx be the coordinator of
roundx, that is,cx = pvk[((x − 1) mod n) + 1]. We will show that the claim holds for
r′ = x, that is, ifcx sendsestVcx

in Phase 2 of roundx (l.32), thenestVcx
= estVc.

From Algorithm 2 it is clear that ifcx sendsestVcx
in Phase 2 of roundx (l.32) then it

must have received estimates from at least
l

(n+1)
2

m

processes (l.22).13 Thus, there is some
processp such that (1)p sent a(k, p, r, ack ) message toc in Phase 3 of roundr (l.40), and
(2) the message(k, p, x, estVp,−, tsp) is inmsgscx

[x ] in Phase 2 of roundx (l.23). Sincep

13Note thatr < x hence roundx is not the first round.
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sent(k, p, r, ack) to c in Phase 3 of roundr (l.40),tsp = r at the end of Phase 3 of roundr

(l.39). Sincetsp is nondecreasing,tsp ≥ r in Phase 1 of roundx. Thus, in Phase 2 of
roundx, the message(k, p, x, estVp,−, tsp) is in msgscx

[x] with tsp ≥ r. It is easy to see
that there is no message(k, q, x, estVq,−, tsq) in msgscx

[x] for which tsq ≥ x. Let t be
the largesttsq such that message(k, q, x, estVq,−, tsq) in msgscx

[x ]. Thus,r ≤ t < x.
In Phase 2 of roundx, cx executesestVcx

← estVq where(k, q, x, estVq,−, t) is in
msgscx

[x ] (l.28). From Algorithm 2, it is clear thatq adoptedestVq as its estimate in
Phase 3 of roundt (l.37). Thus, the coordinator of roundt sentestVq to q in Phase 2 of
roundt (l.32). Sincer ≤ t < x, by the induction hypothesis,estVq = estVc. Thus,cx sets
estVcx

← estVc in Phase 2 of roundx (l.28). This concludes the proof of the claim.
We now show that, if a process decides a value, then it decidesestVc. Suppose that some

processp R-delivers(k, q, rq, estVq,−, decide), and thus decidesestVq. By the uniform
integrity property of Reliable Broadcast and the algorithm, processq must have R-broadcast
(k, q, rq, estVq,−, decide) in Phase 4 of roundrq (l.48). From Algorithm 2, some processq

must have received
l

(n+1)
2

m

messages of the type(k,−, rq, ack ) in Phase 4 of roundrq

(l.47). By the definition ofr, r ≤ rq . From the above claim,estVq = estVc.

Lemma 2.5 (Uniform validity). If a process decidesv, thenv was proposed by some
process.

Proof. From Algorithm 2, it is clear that allestimatesthat a coordinator receives in
Phase 2 are proposed values. Therefore, the decision value that a coordinator selects from
theseestimatesmust be the value proposed by some process. Thus, uniform validity of
Lazy Consensus is also satisfied.

The two propertiesproposition integrityandweak lazinessare specific to the Lazy Con-
sensus problem. In order to prove them, we first prove some lemmas.

Lemma 2.6. Every process that terminates the algorithm considers the same value for
the next permutation vectorpvk+1 after termination of consensusk.

Proof. The proof is a trivial adaptation of Lemma 2.4 (uniform agreement) toestP and
the fact thatpvk+1 is set at line 56.

Lemma 2.7. Given a sequence of Lazy Consensus problems, processes begin every
instancek of the problem with the same permutation vectorpvk.

Proof. The proof is by induction on the instance numberk. Initially, all processes begin
the first instance withk = 1 and the same permutation vectorpv1 = [1, 2, . . . , n], defined
to be the identity.

The induction step requires to show that, if all processes begin instancek−1 with the same
pvk−1, then they also begin instancek with the samepvk. This comes as a consequence
of Lemma 2.6 and the fact that no process starts an instance before it has completed the
previous one. This completes the proof.

Lemma 2.8. For each processp in ΠS , after p changes its estimate estVp to a value
different from⊥, then estVp 6= ⊥ is always true.

Proof. A processp changes the value of its estimateestVp only at lines 20, 26, 28,
and 37. Assuming thatestVp is different from⊥, we have to prove that a processp does
not setestVp to⊥ if it reaches one of the aforementioned lines.
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The result is trivial for lines 20, 26 (by hypothesis the function giv never returns⊥) and
line 28 (the process selects a value explicitly different from⊥).

At line 37, a process sets its estimate to a value received from the coordinator. This
value is sent by the coordinatorcp at line 32. Before reaching this line,cp changed its own
estimateestVcp

at one of the following lines: 20, 26, or 28. As shown above,estVcp
is

never set to⊥ at these lines.

Lemma 2.9. During a roundr, a processp proposes a value only ifp is coordinator of
roundr and estVp = ⊥.

Proof. We say that a process proposes a value when it executesestVp ← eval giv

(line 20 or 26). By line 18,p proposes a value only ifp is the coordinator of the round (i.e.,
p = cp). Let us consider line 20 and line 26 separately.

Line 20: The test at line 19 ensures that line 20 is executed only during the first round.
Before executing line 20,estVp of the coordinatorp is trivially equal to⊥ (initial value).

Line 26: The result directly follows from the test at line 25.

Lemma 2.10 (Proposition integrity). Every process proposes a value at most once.

Proof. We say that a process propose a value when it executesestVp ← eval giv

(lines 20 and 26). We prove the result by contradiction. Assume that some processp
proposes a value twice. By definitiongiv returns a value different from⊥. By Lemma 2.8,
onceestVp 6= ⊥, it remains different from⊥ forever. By Lemma 2.9,p proposes a value
only if estVp = ⊥. A contradiction with the fact thatp proposes a value twice.

Lemma 2.11. If two processesp andq propose a value, then at least one ofp andq is
suspected by a majority of processes inΠS .

Proof. We prove this by contradiction. We assume that neitherp nor q are suspected
by a majority of processes inΠS . From Lemma 2.9 and the rotating coordinator paradigm
(there is only one coordinator in each round),p andq do not propose a value in the same
round. Letrp (resp.rq) be the round in whichp (resp.q) proposes a value. Let us assume,
without loss of generality, thatp proposes beforeq (rp < rq).

During roundrp, any process inΠS either suspectsp or adoptsp’s estimate (lines 35, 36,
37). Sincep is not suspected by a majority of processes inΠS (assumption), a majority of
processes adoptp’s estimate. By Lemma 2.8, it follows that (1) a majority of the processes
have an estimate different from⊥ for any roundr > rp.

Consider now roundrq with coordinatorq. At line 22,q waits for a majority of estimate
messages. From (1), at least one of the estimate messages contains an estimateestV 6= ⊥.
So the test at line 25 returns false, andq does not callgiv at line 26. A contradiction with
the fact thatq proposes a value in roundrq .

Corollary 2.1 (Weak laziness). If two processesp andq propose a value, then at
least one ofp andq is suspected by some processes inΠS .

Proof. Follows directly from Lemma 2.11.

Lemma 2.11 is obviously not necessary to prove the weak laziness property defined in
Section 3.2. However, as stated in Footnote 9 on page 9, it is interesting to show that our
algorithm ensures a property stronger than weak laziness. The property is established by
Lemma 2.11.
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Theorem 2.1. Algorithm 2 solves the weak Lazy Consensus problem using♦S in
asynchronous systems withf =

⌊

n−1

2

⌋

.

Proof. Follows directly from Lemma 2.2 (termination), Lemma 2.3 (uniform integrity),
Lemma 2.4 (agreement), Lemma 2.5 (validity), Lemma 2.10 (proposition integrity), and
Lemma 2.1 (weak laziness).
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