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This paper presents two main contributions: semi-passiptcation and Lazy
Consensus. The former is a replication technigue with pamsious processing. It
is based on the latter; a variant of Consensus allowing #yedealuation of proposed
values.

Semi-passive replication is a replication technique wifspnonious processing.
This means that, in the normal case, each request is pracbgsanly one single
process. The most significant aspect of semi-passive atjolitis that it requires a
weaker system model than existing techniques of the sami/fdfor semi-passive
replication, we give an algorithm based on the Lazy Consensu

Lazy Consensus is a variant of the Consensus problem toatsathe lazy eval-
uation of proposed values, hence the name. The main differeith Consensus is
the introduction of an additional property of laziness. sThroperty requires that
proposed values are computed only when they are actualjedeéNVe present an
algorithm based on Chandra and Toueg's Consensus algofithasynchronous
distributed systems with &S failure detector.

Key Words: replication techniques, fault tolerance, high availayiliailure de-
tectors, asynchronous systems, consensus, group meipbelistributed systems

A preliminary version of this paper appeareddroc. 17th IEEE Intl. Symp. on Reliable Distributed Systems
(IEEE CS Press, pp. 43-50) [12].
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1. INTRODUCTION

A major probleminherentto distributed systems is theieptiail vulnerability to failures.
Indeed, whenever a single node crashes, the availabilithefwhole system may be
compromised. Interestingly, the distributed nature ofsthgystems also provides the
means tancreasetheir reliability. Distribution makes it possible to inttace redundancy
and, thus, make the overall system more reliable than ifgithdal parts.

Redundancy is usually introduced by the replication of congmts, or services. Al-
though replication is an intuitive and readily understootaept, its implementation is
difficult. Replicating a service in a distributed systemuiegs that each replica of the ser-
vice keeps a consistent state, which is ensured by a spegification protocol [21]. There
exist two major classes of replication techniques to enthiseconsistency:active and
passivereplication. Both replication techniques are useful sithey have complementary
qualities.

With active replication [31], each request is processedlbgplicas in the same relative
order to ensure that replicas remain consistent. This tqukrensures a fast reaction
to failures, and sometimes makes it easier to replicatecleggstems. However, active
replication uses processing resources heavily and regjtiesprocessing of requests to be
deterministict This last point is a very strong limitation since, in a pragrahere exist
many potential sources for non-determinism [28]. For ineta multi-threading typically
introduces non-determinism.

With passive replication (also call@dimary-backup[7, 21], only one replica (primary)
processes the request, and sends update messages to theeplibas (backups). This
technique is important because it uses less resources¢haa i@plication does, without
the requirement of operation determinism. On the other taiedeplicated service usually
has a slow reaction to failures. For instance, when the pyitrashes, the failure must be
detected by the other replicas, and the request may haveeptmeessed by a new primary.
This may result in a significantly higher response time ferrgquest being processed. For
this reason, active replication is often considered a beltigice for most real-time systems,
and passive replication for most other cases [32].

In most computer systems, the implementation of passiMeation is based on a syn-
chronous model, or relies on some dedicated hardware dgvigel15, 29, 37]. However,
we consider here the context of asynchronous systems irhvthé detection of failures
is not certain. In such systems, all implementations of ipasgplication that we know
of are based on a group membership service and must exclegeithary whenever it is

1Determinism means that the result of an operation deperigsothe initial state of a replica and the sequence
of operations it has already performed.
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FIG. 1. Semi-passive replication (no crash).
(conceptual representation: thpdate protocohctually hides several messages)
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FIG. 2. Semi-passive replication (crash of the coordinator).
(conceptual representation: thpdate protocohctually hides several messages)

suspected to have crashed (e.g., [6, 24, 34]). This is agprattical limitation of passive

replication since this means that a mere suspicion can bedunto a failure, thus reducing
the actual fault-tolerance of the system. Converselygtleaist implementations of active
replication that neither require a group membership sermior need to kill suspected
processes (e.g., active replication based on the Atomiadrast algorithm proposed by
Chandra and Toueg [8]).

In this paper, we present the semi-passive replicatiomiqole; a new technique that
retains the essential characteristics of passive rejgitathile avoiding the necessity to
force the crash of suspected processes. The most impodasgeguence is that it makes
it possible to decouple (1) the replication algorithm fro®) fiousekeeping issues such
as the management of the membership. For instance, thigsalle algorithm to use an
aggressive failure detection policy in order to react glyité a crash.

1.1. Overview of Semi-Passive Replication

Semi-passive replication is a variant of passive replicathat retains most of its major
characteristics (e.g., allows for non-deterministic @ssing, and requires less processing
than active replication). The main difference with passe@ication is that the selection of
the primary is based on the rotating coordinator paradigar{@not on a group membership
service as usually done in passive replication. The rgatoordinator mechanism is a
simpler mechanism and lower-level mechanism.

Informally, semi-passive replication works as follows.eTtlient sends its request to all
replicaspi, p2, ps (see Fig. 1). The servers know thatis the first primary, s@; handles
the requests and updates the other servers (the updateyeefsanp, to {p., ps} are not
shown on Fig. 1).

If p; crashes and is not able to complete its job as the primary,ardoes not crash
but is incorrectly suspected of having crashed, thetakes over as the new primary. The
details of how this works are explained later in Section 4uFé 2 illustrates a scenario in
which p; crashes after handling the request, but before sendingdtate message. After
the crash op1, p, becomes the new primary.
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These examples do not show which process is the primary éonédxt client requests,
nor what happens if client requests are received conclyreftiese issues are explained
in detail in Section 4. However, the important point in thidusion is that no process is
ever excluded from the group of servers (as in a solutiondbasea membership service).
In other words, in case of false suspicion, there is no joid(state transfer) that needs
later to be executed by the falsely suspected process. ibmiicantly reduces the cost
related to an incorrectfailure suspicion, i.e., the cdsteel to the aggressive timeout option
mentioned before.

1.2. Structure of the Paper

The contribution of this paper is twofold: semi-passivditgtion and Lazy Consensus.
For semi-passive replication, we give a definition of thebpem and propose an algorithm
based on the Lazy Consensus abstraction. Similarly, weadtfinLazy Consensus prob-
lem, and propose a corresponding algorithm that adaptstire@handra-Toueg Consensus
algorithm for the(S failure detector.

The rest of the paper is structured as follows. Section 2eptasthe system model
considered in this paper, and defines various notationsthemaghout the paper. Section 3
defines the two problems considered in this paper, namatyi-gassive replication and
Lazy Consensus. In Section 4, we present our algorithm foi-passive replication. In
Section 5, we present an algorithm for Lazy Consensus incasgnous systems aug-
mented with a0 S failure detector. Section 6 illustrates the execution afsemi-passive
replication algorithm with selected scenarios. Sectionffctudes the paper. The two ap-
pendices present the correctness proofs of the semi-passiM_azy Consensus algorithms
respectively.

2. SYSTEM MODEL AND DEFINITIONS

In this section, we describe the system model assumed inpdper, and describe
important related notations and definitions.

2.1. System Model

We consider a distributed system composed of processestimahunicate by exchang-
ing messages only. The system is asynchronous in the saatshdle exist bounds neither
on communication delays nor on process speed.

We distinguish between two kinds of processes, namelyntclieocesses and server
replicas. The set of all clients in the system is denotel pyand the set of server replicas
is denoted bylls.> The composition of the sdlg, initially known by all processes, do
not change over time although it might include some procethst have crashed. We also
denote the number of server processesby |IIg|. In contrast, there can exist infinitely
many client processes in the system.

Processes fail by crashing (i.e., we do not consider Bymargrocesses) and crashes
are permanerit. A correct process is one that does not crash. Processes auoateu
through quasi-reliable communication channels [3]. Quelkable communication chan-
nels guarantee that if a correct proces®ends a message to a correct procesg theng

2Note thatlIl- N IIg need not be empty.
31n practice, this means that whenever a crashed procesgredeom crash, it takes a new identity.
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will eventually receiven. In addition, a quasi-reliable channel ensures that messaig
() not duplicated, (2) not corrupted, and (3) not spuripgstated.

Remark. We make these assumptions in order to simplify the desoriptf the
algorithms. Indeed, based on the literature, the algostbam easily be extended to lossy
channels and network partitions [3, 1], and to handle poEVvery [2, 23, 25]. However,
this would obscure the key idea of semi-passive replicabpintroducing unnecessary
complexity.

2.2. Failure Detectors

Formally, it is impossible for processes to reach agreerfient solve Consensus)
deterministically in an asynchronous distributed systelmen® some processes can crash
[18]. This impossibility stems from the fact that, in suclyatem, a crashed process cannot
be distinguished from a very slow one. It follows that, thdigbto detect the crash of
processes is a fundamental issue.

In this section, we present three related approaches totdbtecrash of processes in a
distributed system. We begin with unreliable failure dadesas this is the basis for the
algorithms presented in this paper.

2.2.1. Unreliable Failure Detectors

The impossibility result mentioned above also applies tayL@onsensus. Hence, in
order to solve Lazy Consensus among the server processesnsieer that the system is
augmented with some unreliable failure detector [8] thasioetween the processedig.
In particular, we assume a failure detector of class sufficient to solve the Consensus
problem, and defined ové&fs by the following properties [8]:

(STRONG COMPLETENESS) There is a time after which every processlin that
crashes is permanently suspected by all correct processis i

(EVENTUAL WEAK ACCURACY) Thereis atime after which some correct process in
IIs is never suspected by any correct procedgdn

2.2.2. Perfect Failure Detectors

Many replication algorithms rely on the ability to detecbpess failures accurately.
More specifically, they rely on the availability of a perféamiture detector. In contrast with
unreliable failure detectors, a perfect failure detecd@rie whereby no process suspects a
process that has not crashed. A failure detector of dgfafise., a perfect failure detector)
must enforce the property of strong completeness descabesde, and the following
property of strong accuracy [8]:

(STRONG AcCURACY) No process is suspected before it has crashed.

In practice, a perfect failure detector can be emulated asgnchronous system by relying
on timeouts and the ability to control, in particular proepkhe crash of processes [17].
However, although technically possible, this is also nyostidesirable, as this potentially
degrades the overall stability of the system (see [14] ftaiti.

2.2.3. Group Membership
A group membership is a service that usually combines twierdifit purposes (see [10]
for a detailed survey). On the one hand, a group membershieid to allow processes to
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join and leave the computation dynamically. On the othedhgroup membership is used
as a way to detect the crash of processes. The main diffevaticilure detectors is that,
unlike the latter, a group membership providessistentnformation about failures. This
often requires to exclude suspected processes from the graliconsider as crashed and
ask them to take a new identity. A group membership is oftenl @s a way to emulate a
perfect failure detector.

Essentially, providing consistent information aboutudedls places group membership
at a higher level of abstraction than failure detectors.sTdifference in structure leads
to difference in behavior. A recent study by @rbet al. [33] compares the two models
(i.e., group membership and failure detectors) using Totder Broadcadtas a reference.
Among other things, the study shows that, unlike a commaehéhe overall performance
in failure-free runs of Total Order Broadcast do not changeter it is based on group
membership (optimized fixed sequencer algorithm) or uaipédi failure detectors (opti-
mized Consensus-based destinations agreement algarittowpver, the study shows that
the solution based on unreliable failure detectors is stweeders of magnitude more robust
to wrong suspicions. In particular, this means that moreeggive failure detectors can be
used, thus resulting in far better failover time in the ocence of failures.

2.3. Replication Model
Without loss of generality, we define replication in the stiserver model. We consider
a model in which each process is modeled as a state machinere @he two types of
processes: clients and server replicas. Clients execaifelibwing two external events:

e send(req), the emission of the requesty by a client; and
o receive(respreq), the reception by a client of the response to requegt(mes-
sagerespreq)-

Server replicas execute the following two events:

e handle(req), the processing of requesty that generates anpdate messagepd,,;

e update(req), the modification of the state of the replica as the resultof@ssingeg.
This must be deterministic.

We also introduce important notations to describe the cafgd server. This notation is
used to express the semi-passive replication algorithneai& 4.

e req: request message sent by a client (denotegkbyier(req)).

¢ upd,.,: Update message generated by a server after handling tegges

o respr,. response message to the clieahder(req), generated by a server after
handling requesteq.

e statey: the state of the server process

o handle : (req, states) — (updreq, respreq): Processing of requestq by the serves
in states. The resultis an update message, ., and the corresponding response message

T€SPreq-

4Total Order Broadcast, also known as Atomic Broadcast, imgmreement problem at the core of active
replication. Roughly speaking, messages are broadcastedicently, and all destination processes must deliver
the same set of message in the same relative order. A broaeyq4aB] has been written on the topic.
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o update : (updyeq, states) — statel,: Returns a new stat&ate’,, obtained by the
application of the update messagel,., to the statestates,. This corresponds to the event
update(req) mentioned above, whekéis the server that executapdate

2.4. Sequences

The algorithms presented in this paper rely on sequencesqéesice is a finite ordered
list of elements. With a few minor exceptions, the notatiefirted here is borrowed from
that of Gries and Schneider [20].

A sequence of three elementsb, ¢ is denoted by the tupléu, b, ¢). The symbole
denotes the empty sequence. The length of a sequeqethe number of elements keg
and is denotedtseq. For instance# (a, b, ¢) = 3, and#te = 0.

Elements can be added either at the beginning or at the endegfieence. Adding an
element at the beginning of a sequenge is called prepending (see [20]) and is denoted
by e <1 seq. Similarly, adding an elementat the end of a sequenese is called appending
and is denoted byeq > e.

We define the operat¢}for accessing a single element of the sequence. Given arsegjue
seq, seq[i] returns thei™® element ofseq. The elementeq[1] is then the first element of
the sequence, and is also denotedaasl.seq. The tail of a non-empty sequenesy is the
sequence that results from removing the first elemenrtg@f Thus, we have

seq = head.seq < tail.seq

For convenience, we also define the following additionarapens on sequences. First,
given an element and a sequenceyg, the element is a member ofeq (denotect € seq)
if e is a member of the set composed of all elements@f Second, given a sequeneg
and a set of elemenfs, the exclusiorseq — S is the sequence that results from removing
from seq all elements that appear %

3. PROBLEM SPECIFICATIONS
This section presents the specification of the two probletdssssed in this paper. First,
we present the specification of semi-passive replicati@to8d, we present the problem
of Lazy Consensus.

3.1. Specification of Semi-Passive Replication
The definition below is based on a specification frameworkréplication techniques
described by Bfago [14]° of which we only present the relevant parts here.

3.1.1. Generic Replication Problem

First of all, replications techniques are defined by the Gefeplication Problem. This
part of the specification is common to replication technguegardless of their strategies
(e.g., active replication, passive replication). The #sty of a given strategy is captured
by extending the definition with additional properties.

5The definition of the total order property was in fact adagdtedth a property called “gap-free uniform total
order” proposed by Aguilera et al. [4] for the problem of Ta@ader Broadcast.
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(TeErMINATION) If a correct clientc € IIo sends a request, it eventually receives a
reply.

(ToTAL ORDER) Foranytworequestgqandreq’, if somereplica executegdate(req’)
afterupdate(req), then areplicaexecutesdate(req’) only after it has executebdate(req).

(UPDATE INTEGRITY) For any requesteg, every replica executespdate(req) at
most once, and only ifend(req) was previously executed by a client.

(RESPONSE INTEGRITY) For any eventreceive(resp,.,) e€xecuted by a client, the
eventupdate(req) is executed by some correct replica.

A given replication technique will operate correctly asdoas it satisfies the four
properties above.

3.1.2. Passive and Semi-Passive Replication

As already mentioned, the specification above is common gbicegion techniques,
regardless of their approach. Hence, the specificity of argstrategy is captured by
extending the specification with additional properties. &&ine both passive and semi-
passive replication with an additional propertypairsimony

Passive replication, as for instance described by Budh#tgl. [7], is expressed in a
model with perfect failure detection. In particular, thegquire that no more than one
server replica can be the primary at any time. This is expreby the following property
of parsimony.

(STrRONG PARSIMONY) If a requestreq is processed by a repliga then no other
replica processesq unlessp crashes.

Enforcing strong parsimony requires a way to detect, wittoalie certainty, the crash of
other processes. In other words, strong parsimony reqaipesfect failure detector (see
Sect. 2.2.2).

In contrast, semi-passive replication is defined with a veegkoperty that relates parsi-
mony to thedetectionof failures rather than theoccurrence The definition is expressed
as follows.

(WEAK PARSIMONY) If the same requestkyg is processed by two replicasandg,
then at least one gf andq is suspected by some replica.

It follows that the parsimony of a semi-passive replicatitgorithm is related to the failure
detection provided by the system model. In particular, @gsy to see that, under a perfect
failure detector, weak and strong parsimony are in facttidah

3.2. Specification of Lazy Consensus
The Lazy Consensus problem is a generalization over thegbsns problem that allows
processes to delay the computation of their initial value.thle traditional definition of
Consensus (e.g., [18, 8]), a process begins the problemanithitial value. In contrast,
with the definition of Lazy Consensus, a process begins withmtial value. The initial
value of the process is computed only when it becomes nagess all.®

6The problem is called “Lazy Consensus” in reference to itsilarities with the programming technique
known as “lazy evaluation.”
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The Lazy Consensus problem is defined here as a problem aransmg processes, that
is, we consider only the set of procesdés. Processes propose no value initially, but
instead provide the algorithm with an argument-less famcthat computes and returns a
proposed value when called. More concretely, processen tiegproblem by calling the
procedurd.azyConsensiigiv), wheregiv is an argument-less functibthat, when called,
computes an initial value (with v # 18) and returns it. When the algorithm call& on
behalf of procesg, we say thap proposeghe valuev returned bygiv. When a procesg
executesiecide(v), we say thay decidesthe valuev. The Lazy Consensus problem is
specified inllg by the following properties:

(TERMINATION) Every correct process eventually decides some value.

(UNIFORM INTEGRITY) Every process decides at most once.

(AGrEEMENT) No two correct processes decide differently.

(UNIFORM VALIDITY) If a process decides thenv was proposed by some process.

(PROPOSITION INTEGRITY) Every process proposes a value at most once.

(WEAK LAZINESS) If two processe® andq propose a value, then at least onepof
andq is suspected by sorferocess illg.

Lazinesss the only new property with respect to the standard defimitif the Consensus
problem [8]. In Section 4, we present an algorithm for seasgive replication that uses
Lazy Consensus. Solving Lazy Consensus is discussed ilnSéct

Remark. Alternatively, stronger definitions of Lazy Consensus peois can be
given, by requiring stronger definitions of laziness. Thusdefine thejuasi-strong Lazy
consensusind thestrong Lazy consenswus Lazy consensus problems that respectively
satisfy the following laziness properties:

(QUASI-STRONG LAZINESS) If two processe® andg propose a value, themandg
are not both correct.

(STRONG LAZINESS) If a processp proposes a value, then no processroposes a
value before has crashed unlegshas crashed befogeproposes a value.

4. SEMI-PASSIVE REPLICATION ALGORITHM

We begin this section by giving a general overview of the spassive replication
algorithm. We then present our algorithm for semi-passag@ication, expressed as a
sequence of Lazy consensus problems. Finally, we prove @mudiss the parsimony
property of the semi-passive replication algorithm (therectness of the algorithm is
proved in the appendix).

4.1. Basic Idea: Consensus on “update” values
As mentioned in Section 1.1, in the semi-passive replicagchnique, the requests are
handled by a single process; the primary. After the prongssi each request, the primary
sends ampdatemessage to the backups, as illustrated on Figure 3.

7 giw stands foiget initial value

8The symbolL (bottom) is a common way to denote the absence of value. Shiglied eithenil or null in
most programming languages.

9As a matter of fact, the Lazy Consensus algorithm presentéliis paper satisfies a stronger property: two
processes propose a value only if one of them is suspectedlayoaity of processes il s (Lemma 2.11, p. 27).
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FIG. 3. Semi-passive replication: update message sent by therqgrima

Our solution is based on a sequence of Lazy Consensus prebiewhich every instance
decides on theontent of the update messagehis means that the initial value of every
consensus problem is arpdate valuggenerated when handling the request. The cost
related to getting the initial value is high as it requirespinocessing of the request. So, we
want to avoid a situation in which each server processeethesst, i.e., has an initial value
for consensus (or else the semi-passive replication tgqakrtould no more be qualified as
“parsimonious”). This explains the need for a “lazinessigerty regarding the Consensus
problem.

Expressing semi-passive replication as a sequence of Langabisus problems hides
inside the consensus algorithm the issue of selecting aapyin®A proces® takes the role
of the primary (i.e., handles client requests) exactly wingmoposes its initial value for
Consensus.

4.2. Semi-Passive Replication Algorithm
The algorithm for semi-passive replication relies on tt@nass property of the Lazy
Consensus. The laziness property of Lazy Consensus is yhi lgatisfy parsimonious
processing (see Sect. 4.3, p. 11). However, laziness daedfact the correctness of the
algorithm as &eneric Replicatioproblem (see Sect. A.1, p. 22; Remark 4.3, p. 12)

Variables. Every servers manages an integér (line 5), which identifies the current
instance of the Lazy Consensus problem. Every server s@es handles the variables
recv@ andhand (lines 2,3):

e recv()s IS @ sequence (receive queue) containing the requestsedday a serves,
from the clients.
e handy is a set which consists of the requests that have been peatess

Algorithm description. We now give a textual description of the algorithm. The pgeud
code is expressed in Algorithm 1. Briefly speaking, the atbor relies on a sequence of
Lazy Consensus executions and works as follows:

e When a serves receives a new requestq from a client, that request is simply
appended to the receive quenev(, of that server, unless it was previously received
and/or handled.

e Whenever the receive queuerv(y is not empty and the last execution of the Lazy
Consensus has finished, a new instance of the Lazy Consarstasted. The proposition
functionhandleRequest()nvoked lazily by the Lazy Consensus algorithm, takes ttst fi
requestreg from the receive queue, handles it, and returns a tl@ upd,cq, r€SpPreq)
containing the requestkq, an update messaggd,.,, and a replyresp,., for the client.
The decision value of the Lazy Consensus is one such tuple.
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e When a server receives the decision valueeq, upd,cq, respreq) Of an execution
of the Lazy Consensus, it forwards the reply messagg,., to the client, updates its
state according to the update messagé..,, and moves the requesty from the receive
queuerecv@; to the set of handled requesdisnd,.

ALGORITHM 1 (SEMI-PASSIVE REPLICATION (CODE OF SERVER s)).

1. [Initialization:

2 recvQs «— € {sequence of received requests, initially empty
3. hands — 0 {set of handled requests
4 states — state?

5 k<20

6. function handleRequest()

7 req «— head.recvQs

8. (updreq , T€SPreq) <— handle(reg, states)
9. return (req, updreq, respreq)

0. endhandleRequest()

1

11. whenreceiveteq.) from clientc /TAsk 1/
12. if reqe € hands A reqe &€ recv@s then

13. recvQs «— recvQs > reqe

14.  endif

15. end when

16. when#recv@Qs > 0 /Task 2/
17. k—k+1

18. LazyConsensys,handleRequept {Solve thek*" Lazy consensys
19. wait until decide(k, (req, updreq, respreq))

20. send fespreq) 10 sender(req) {Send response to clignt
21. states < update(updreq, states) {Update the statp

22. recvQs «— recvQs — {req}
23. hands — hands U {req}
24. end when

4.3. Parsimony of the Semi-Passive Replication Algorithm

As mentioned earlier, the semi-passive replication algorionly relies on the laziness of
the Lazy Consensus in order to satisfy the Parsimony prppésgemi-passive replication.
This means that laziness is the key to parsimonious praagdsit it does not influence
the safety properties of the algorithm. In other words, e¥¢he algorithm relies on a
Consensus algorithm which does not satisfy any lazinegsepty the replication algorithm
still satisfies the properties of the generic replicationhpem discussed in Section 3.1 (but
it might not satisfy thgarsimonious processingroperty, Sect. 3.1.2).

THEOREM 1.1. Algorithm 1 solves the generic replication problem (defimedbec-
tion 3.1).

The details of the proof are given in the appendix (pp. 22—-2K)is nevertheless
important to note that Theorem 1.1 is proved independefittymlaziness property of the
Lazy Consensus.

LeMMA 4.1. Algorithm 1 withweakLazy Consensus satisfieeakparsimony.

Proof. Processes process arequest at line 8, i.e., when they prapatue. Therefore,
theweak parsimonproperty follows directly from theveak lazinesproperty of the Lazy
Consensus. ®
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THEOREM 4.1. Algorithm 1 withweakLazy Consensus solves themi-passive repli-
cationproblem.

Proof. Follows directly from Theorem 1.1 (generic replicationfldremma 4.1 (weak
parsimony). ®

We now show that implementing passive replication based lyorBAhm 1 merely
consists in relying on a strong Lazy Consensus algorithe &&t. 3.2).

LeMMA 4.2, Algorithm 1 withstrongLazy Consensus satisfigsongparsimony.

Proof. The proof is a trivial adaptation from that of Lemma 4.1

CoROLLARY 4.1. Algorithm 1 withstrongLazy Consensus solves fiassive replication
problem.

Proof. Follows directly from Theorem 1.1 (generic replicationfldremma 4.2 (strong
parsimony). ®

Remark. An interesting (and potentially controversial) point tisehere is that the
property of parsimony in itself is merely a question of gtyadif service rather than actual
correctness. Indeed, as long as the server solves the G&uwepiication problem, it will
continue to operate devoid of any inconsistencies eveuniifidggss is not satisfied.

If not for our algorithm, this remark would be quite poinesince other passive repli-
cation algorithms cannot separate both issues (generiicatpn and parsimony). In
contrast, our algorithm presents these issues as beinopaomial.

5. SOLVING LAZY CONSENSUS

Inthis section, we give an algorithm that solves the proldébazy Consensus definedin
Section 3.2° The algorithm presented here is adapted from the Chandragi@nsensus
algorithm for{S [8]. Both algorithms rely on the assumption that at least ponitg of the
participating processes are correct.

To better describe the difference between the Chandraglalgerithm and ours, we
begin the section with an informal description of the forraggorithm, followed by an
equally informal description of the algorithm for Lazy census.

Then, we describe two simple yet important optimizatiorat ttan be applied to both
algorithms. The first optimization reduces the first roundbg phase, whereas the second
optimization improvesthe selection of coordinators wharesal instances of the consensus
algorithm are executed in sequence.

Finally, we describe the complete pseudo-code for our Lamgensus algorithm, which
incorporates the two optimizations mentioned above. Theptedl proofs of correctness
are presented in Appendix A.2.

5.1. Chandra-Toueg Consensus Algorithm usingsS
The Chandra-Toueg [8] consensus algorithm described lssterees a failure detector
of classQS and that no less than a majority of the processdsgdrare correct. Figure 4

10An earlier version of this algorithm was callddZVconsensus [12]. Note thddZVconsensus used to
designate aalgorithm, whereas Lazy Consensus now designatg®hlem
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FIG. 4. Chandra-Toueg Consensus; illustration of a single rouedugion.

presents the communication generated by the algorithmaitad/suspicion-free run. The
figure depicts the four phases that constitute the first ratfitioe protocol. The algorithm
is now described informally.

The algorithm proceeds through a sequence of asynchrooounsis. Each round is
uniquely identified by a sequence number, and all protocasages are identified by
the number of the round to which they belong. Being asynabusnseveral rounds can
actually take place simultaneously, although they areckdlyi ordered by their sequence
number. In each round one of the processeH nis defined as a coordinator for that
round. The composition dfl¢ never changes and is assumed to be initially known to
all processes. Hence, the coordinator of round designated deterministically by the
formula! ¢" = ((r — 1) mod n) + 1, thus cycling among the set of processes. This is
commonly known as the rotating coordinator paradigm.

Processes begin the execution of the consensus wittrtipese event and some propo-
sition valuevy. Each process maintains several variables, the most iantoof which
are: (1) the number of the current round, (2) an estimateefirtision value, and (3) a
logical timestamp associated with the estimate. The peaseisegin the first round of the
algorithm with the variables set 1q vy, and0, respectively.

e In Phase 1, all processeslity send their estimate to the coordinator of the current
round, timestamped with the round number in which they lasdified it.

e In Phase 2, the coordinator waits for a proposition from aonitgj of the processes
in IIs. It selects the estimate with the highest timestamp and fiegdis own estimate
accordingly (breaking ties can be done arbitrarily). Therdinator then broadcasts its
estimate as its proposition for the decision value.

e In phase 3, the processes wait for a proposition from thedinator. They adopt the
value proposed by the coordinator by changing their eséiraatl using the round number
as the new timestamp. Then, they acknowledge the propositid proceed to the first
phase of the next round.

In case a process suspects the coordinator before it recaipeoposition, that process
sends anegativeacknowledgment before proceeding to the first phase of tkieraend.

¢ In Phase 4, the coordinator waits until it has received amaesledgment message
(positive or negative) from a majority of the processes.llIfeceived acknowledgments

170 be exact, Chandra and Toueg [8] use the slightly simplendtac™ = (r mod n) + 1, which counter-
intuitively designate®s as the coordinator of rountl p3 for round2, and so forth.
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FIG.5. Lazy Consensus; illustration of a single round executianitially, the processes hold instead of
a proposition value.
In the first round, estimate messages of the first phase aessential to the algorithm (discussed in Sect. 5.3.1).

are positive, the proposed value becomes the decision.vaheecoordinator then informs
the other processes by broadcasting the decision valug Reliable Broadcast.

In contrast, if one of the received acknowledgments is megahe coordinator gives up
and proceeds directly to the first phase of the next round.

5.2. Lazy Consensus Algorithm (informal description)

The Lazy consensus algorithm described in this paper is aptation of the Chandra-
Toueg algorithm that shares the same assumptions. Ratherdiscribing the whole
algorithm, we simply present the most significant diffeescFigure 5 presents the first
round of the protocol in a failure/suspicion-free run. Metthat, for the sake of simplicity,
this section presents a simplified version of the algorithm.

In the Lazy consensus algorithm, processes begin the éapauft the algorithm by
proposing a function (or a lambda closure) caliéd which, if called, computes a propo-
sition value and returns it. Other than that, processestainithe same variables as in
the Chandra-Toueg algorithm, namely, (1) the number of tiveeat round, (2) an es-
timate of the decision value, and (3) a logical timestammeiased with the estimate.
Unlike Chandra-Toueg, processes do not begin with a préposialue, and hence set their
estimate tal, thus representing the absence of a value.

The rest of the algorithm is the same as with Chandra-Touegth the following
exception. In Phase 2, the coordinator of the round gathetismiae messages from a
majority of processes. Among the estimates received ahadimg its own, the coordinator
takes the one, different from, that has the highest timestamp. If no such estimate exists,
because they are all equal 1g then the coordinator computes its proposition value by
calling the functioryiv. It then sets its own estimate to the return value of the fanand
uses that value as its proposition for the round.

Doing so ensures that the functigiw is called only when necessary. In fact, it is
not difficult to see that any single process will call the ftioigc at most once. Beside, in
the worst case, the function can only be called by about Hatlfi@ processes plus one.
Intuitively, this is because, if a majority of the proceskase called that function, then the
coordinator of any subsequent round will receive at leastestimate different from_ in
the second phase of their round.

5.3. Optimizations
The full algorithm (presented in Section 5.4) includes tmportant optimizations that
we present now. The first optimization reduces the overhétitegrotocol in failure-free
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runs. The second optimization is concerned with situatwamsre several executions of the
algorithm are performed in sequence, and the performantatyehat is associated with
the crash of the first processes.

5.3.1. Optimization of the First Phase

As observed by Schiper [30], the first phase in the first rouinthe Chandra-Toueg
consensus algorithm (see Sect. 5.1) is not essential fal@foeithm. The reason is that,
in the first phase, it is known by all processes that the estimé every processes is
their proposition value, timestamped with zero. Hence, wthe coordinator collects
the estimates in phase two, it can pick any of the estimatélseaproposition value. In
particular, the coordinator can selétst ownestimate as the proposition value, regardless
of the estimates sent by other processes.

Similarly, with Lazy Consensus, all processes start withvhlue | as their estimate.
Consequently, the coordinator of the first phase cannotadxgeything butl from the
other processes. Hence, in the first round, the algorithpsgkie first phase and proceeds
directly to the second phase.

Notice that this optimization applies only to the first rounid is nevertheless useful
as, during a failure-free and suspicion-free executiom)dtency degree of the protocol is
determined by the first round only.

5.3.2. Adaptive rotating coordinator

Several important algorithms involve a sequence of conseegecutions. In addition
to the semi-passive replication algorithm described ia ffaper, this is also the case with
several Total Order Broadcast algorithms (e.g., [8, 19pn&ic Broadcast [26], some
consensus-based group membership services [10], fdetatd mobile agents [27].

Unfortunately, in this situation, there is a practical gdesb inherent to the use of the
rotating coordinator. In the rotating coordinator paradigvery instance of the consensus
algorithm selects a coordinator by cycling through proessdways in the same sequence,
say (p1,.-.,pn). This means thap; is coordinator for round, p. for round?2, etc.
Assume now thap; crashes before consensus numbgthen consensuk and every
further execution of the consensus will always fail in the first rogmnd the coordinator of
roundl has crashed), hence always requiring at least two roundscidel This extra cost
(two rounds instead of one) cannot be easily avoided foremsiss numbek. However,
the cost can be avoided for consengus 1 and after, by a simple modification to the
rotating coordinator that incurs no additional message.

Let us illustrate this with an example. Consider that, fonsgnsus numbek, the
processes oflg are ordered as follows{p;, p2, p3, pa, p5), Which definep; as the first
coordinator (see Fig. 6). Assume thatcrashes just before the execution of consetsus
and thus the first round fails. Assume again that, after aonss:, all processes can
agree on the following permutation of the processeHin (po, ps, p4,ps,p1). Then, if
consensug + 1 uses the new permutation, thesn becomes the coordinator of the first
round and consensiés+ 1 can be solved in one single round in spite of the cragh of

Obviously, reaching an agreement on a new permutation #ordtating sequence re-
quires exactly this,... reaching an agreement. The ideaodptimization is that, during
consensus, processes reach an agreement not only on the decisionfealtensensus,
but also on a permutation vector to be used duringnive executioof the consensus, that
is, consensus numbgr+ 1. In fact, the permutation vector can be seen as an implicit pa
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FIG. 6. Permutations oflg and selection of a coordinator.

of the decision value. As aresult, the agreement on the gation generataso additional
message

More concretely, this occurs as follows. The processesatasensug with a permu-
tation vectorpv® agreed by all processes. For the first execution of the censethe
permutation vectopv! is determined statically as being the idenfity2, ...,n]. Then,
each executiort of the consensus agrees on the permutation vector for thieemexu-
tion pv*. A permutation vectopv* is used during the execution of consengut
determine the coordinator of roundasc” = pv” [((r — 1) mod n) + 1]. During consen-
susk, the agreement on the next permutation veptot occurs as follows. The processes
manage two estimate variables instead of a single esgy, for the decision value, and
estB, for the permutation vector. When a coordinator proposedueyié also proposes
a permutation vector with itself as the first coordinatoiq(fls done in Alg. 2 at lines 6
and 32). When the consensus decides, the agreed permutatiom becomepv*+ and
is used later, for the execution of consenkus 1.

Because a crashed processannot propose a value after it has crashed, it is easy to see
thatp does not remain the first coordinator for more than one entirsensus execution
after it has crashed.

Remark. One could possibly mistake the adaptive rotating coordirfatr a form of
group membership. To prevent this misconception, we wadkédtb emphasize here that
adaptive rotating coordinator is merely an extension tardit@ing coordinator paradigm
and by no means a replacement for a group membership. Taeititideed a higher-level
abstraction, and hence differs by several fundamentatéspe

First and most importantly, with the adaptive rotating aboator, the composition
of the set of processes is static and hence never changes.isTtlearly unlike group
membership whose primary role is to allow the dynamic joid i@ave of processes during
the computation.

Second, specifications of group membership [10] includentiteon of view synchrony
that imposes some restrictions on the delivery of appbecathessages. In contrast, this
notion is irrelevant to the adaptive rotating coordinator.

Third, a secondary role of a group membership service isgarerthat system resources
(i.e., retransmission buffer emptied, etc) are eventuataimed. Again, the adaptive
rotating coordinator has nothing to do with resource mamege as this occurs at a
different abstraction level.
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Finally, with group membership, the agreement on the coitipnsf the group can
occur independently from the execution of group commuigogbrotocols. In contrast,
the mechanism of the adaptive rotating coordinator is emdadvithin the consensus
protocol and cannot occur independently.

Remark. Note that we have presented the idea of the adaptive rotetingdinator
using a simple reordering policy. This is enough to illusrthe idea but it is possible,
in practice, to use better strategies for the permutationan@ing the reordering policy
does not compromise the correctness of the algorithms nasdse the permutation vector
is modified only at line 6 and 32 in Algorithm 2.

5.4. Lazy Consensus Algorithm with0S
We now describe the complete algorithm in more details. Algm 2 (page 18) solves
the Lazy Consensus problem with)& failure detector and the assumption that at least a
majority of the processes iig are correct.

5.4.1. Variables
We first present variables that are retained between exedastances of the algorithm.
These variables are global within a single process, buthreoesl among processes.

e pv”* represents the permutation vector for consensus instance is determined
during consensus executién- 1.

e pv!is setinitially by all processes to be the identity vectoattis,[1,2, ...,n]. Itis
used as the permutation vector for the first consensus éaagthat is, instance.

The consensus is initiated by calling the proceduaeyConsensusvhich takes two
arguments. The first argument is the instance nunibeiThe second argument is an
argument-less function, or closure, callgd. When evaluatedjiv computes and returns
a proposition value # L (see Sect. 3.2). When a processxecutes,, — eval giv, we
say that the process proposes the vajue

The following variables are local to procedurazyConsensuand play an important
role in the algorithm.

estV, is the estimate that procegfias about the decision value.
estB, is the estimate that proceg$ias about the next permutation vector.
rp IS the round number, initially set t but incremented before beginning the round.

e ts, is the round number when the estimatestV,, estR,) were last changed. It is
initially set to0.

5.4.2. Algorithm description
We now give a brief description of each phase of the algoritiNotice that phases 3
and 4 are nearly unchanged from the Chandra-Toueg algod#stribed in Section 5.1.

¢ In Phase 1, all processeslity send their estimatesst\], andestB, to the coordinator
of the current round, timestamped with the round number iickvtney last modified them.
According to the optimization of Sect. 5.3.2, the first phizsentirely skipped during the
first round.
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¢ In Phase 2, the coordinator waits for a proposition from aonitgj of the processes
in I1g, except during the first round when the coordinator has ngttu wait for (optimiza-
tion of Sect. 5.3.2). In the receive statemédrandr, are pattern matching arguments, i.e.,
the process waits for a message with the gikea_ndrp value. The other arguments are
output arguments. The coordinator filters the receivednedésest\, and its own. If at
least one of them is definegk(_L), then the coordinator selects the estimégess\/, estR,)
with the highest timestamp and modifies its own estiméest\,, estP,) accordingly.
Conversely, if all of the estimates received in the phaseuadefined £ 1), then the
coordinator proposes a value by evaluating the functi@n and sets its estimatesty,
to the return value of the function. After that, the coordarebroadcasts its estimates
(estV,, estR,).

¢ In phase 3, the processes wait for a proposition from thedinator. They adopt the
value proposed by the coordinator by changing their esés(ast\, , estR. ), using the
round number as the new timestamp. Then, they acknowleége tposition and proceed
to the first phase of the next round. In case a process sudpeat®ordinator before it
receives a proposition, that process sendsgativeacknowledgment before it proceeds to
the first phase of the next round.

e In Phase 4, the coordinator waits for an acknowledgment feomajority of the
processes. If all received acknowledgments are positiegptoposed valugest\,, estR,)
becomes the decision value and the coordinator informgties processes by broadcasting
the decision value using Reliable Broadcast. On the othed hi& one of the received
acknowledgments is negative, no decision is taken and threlcator proceeds directly to
the first phase of the next round.

¢ Upon receiving the decision message wiglst\/, estR,), a process decidest\, and
sets the permutation vectpy**! to estP,. The permutation vectgsv*! is used for the
next consensus executiént 1.

ALGORITHM 2 (LAzy CONSENSUS (CODE OF PROCESS p).).

1. Initialization:

2. pvl —[1,2,...,n]
3. procedure LazyConsensug, function giv : ) — v) {code for consensus instank¢
4. pv¥ := permutation vector obtained during instanke- 1
5. est\, — L {p’s estimate of the decision valpe
6.  esth, «— {rotatepv” until p is first}
7. statep < undecided
8. rp—0 {rp is p's current round number
9. tsp 0 {tsyp is the last round in whicly updated(est\,,, estR, ), initially 0}
10. while state, = undecided do {rotate through coordinators until decision reached
11. cp «— pvF [(rp mod n) + 1] {¢p is the current coordinatdr
12. rp—Tp+1
13. Phase 1: {all processeg send(estV,, estR,) to the current coordinatdyr
14. if rp, > 1then
15. sendk, p, rp, estV,, esth,, tsp) to ¢p
16. end if
17. Phase 2: {coordinator gathers[(”T“)W estimates and proposes new estinyate
18. if p = cp then
19. if 7, = 1then

20. estV, «— eval giv() {p proposes value:
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else
wait until [for [ W processes : received(k, g, rp, est\,, estR;, tsq) fromq]

msgs,[rp] < {(k,q,p, €51\, €StRy, tsq) | p received(k, q, rp, €stVy, estRy, tsq) from g}
t « largesttsq such thatk, g, rp, est\y, estRy, tsq) € msgs,[rp)
if esty, = L andV(k,q,rp,est\y, estRy, tsq) € msgs,[rp] : est\y = L then

estV, «— eval giv() {p proposes value:
else

est\, « select oneestV, # L s.t. (k, q,p, est\Vy, estRy, t) € msgs,[rp]

esth, < estR;

(n+1)
2

end if
end if
sendk, p, rp, estV,, estR,) to all
end if
Phase 3: {all processes wait for new estimate proposed by currentdinator}

wait until [received(k, Cp,Tp, est\.,, estR.,) from ¢, or ¢, € Dp] {query failure detectoD,, }

if [received(k, cp, rp, est\,,, estR. ) from c,] then {p received(est\.,, , estk. ) fromc, }
est\}, — est\;,
esth, «— estR;,

tsp < Tp
sendk, p, rp, ack) to cp
else {p suspects that, crashed
sendk, p, rp, nack) to cp
end if
Phase 4: {the current coordinator waits for replies from a majoritymbcesseg.
{If those replies indicate that a majority of processes addpts estimate,
{the coordinator R-broadcasts a decide mesgage
if p = cp then

(n+1)
2

wait until [for [ W processeg : received(k, q, rp, ack) or (k, g, p, nack)]

if [for [("QLI)W processesg : received(k, ¢, rp, ack)] then
R-broadcastk, p, rp, est\,,, estB,, decide)
end if
end if
end while
end LazyConsensus

when R-deliver(k, g, rq, est\;, estR;, decide) {if p R-delivers a decide msg,decides accordingly
if statep = undecided then
decide(k, est\})
pvitl — estP, {updates the permutation vector for the next execjtion
statep < decided
end if
end when

6. SELECTED SCENARIOS FOR SEMI-PASSIVE REPLICATION

Algorithm 2 may seem complex, but most of the complexity is tiLthe explicit handling
of failures and suspicions. So, in order to show that the dexity of the algorithm does not
make it inefficient, we illustrate typical executions of #emi-passive replication algorithm
based on Lazy Consensus usip§.

We first present the semi-passive replication in a good rorfditure, no suspicion), as
this is the most common case. We then show the execution @flgloeithm in the face of
a single process crash. Other cases can easily be infeoradHiese two simple scenarios.

6.1. Semi-Passive Replication in Good Runs
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highlighted in gray. The execution of the Lazy Consensubéncase of one crash is also depicted in Fig. 6.

We call “good run” a run in which no server process crasheswarfdilure suspicion is
generated. Let Figure 7 represent the execution of Lazy €wmus numbek. The server
proces®; is the initial coordinator for consensisand also the primary. After receiving
the request from the client, the primapy handles the request. Once the processing is
done,p; has the initial value for consensks According to the Lazy consensus protocol,
p1 multicasts the update message! to the backups, and waits fack messages. Once
ack messages have been received (actually from a majorityfepsp; can decide on
upd, and multicast thelecide message to the backups. As soon asdifigde message is
received, the servers update their state, and send thetoetbly client.

It is noteworthy that the state updates do not appear on ttieatpath of the client’'s
request (highlighted in gray on the figure).

6.2. Semi-Passive Replication in the Case of One Crash

Figure 8 illustrates the worst case latency for the clienh@case of one crash, without
incorrect failure suspicions. The worst case scenarioéapwhen the primany; (i.e., the
initial coordinator of the Lazy Consensus algorithm) cessimmediately after processing
the client request, but before being able to send the updassage:pd to the backups
(compare with Fig. 7). In this case, the communication patte different from usual
algorithms for passive replication in asynchronous systa@s there is here no membership
change.

In more detail, the execution of the Lazy Consensus algonitms as follows. If the pri-
maryp; crashes, then the backups eventually sugpedend a negative acknowledgment
messagewack to p; (the message is needed by the consensus algorithm), ahd sew
round. The server process becomes the coordinator for the new round, i.e., becomes the
new primary, and waits fo¢stimate messages from a majority of servers: these messages
might contain an initial value for the consensus, in whicbega does not need to process
the client request again. In our worst case scenario, thialiprimary p; has crashed
before being able to multicast the update valye€. So none of thesstimate messages
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received by, contain an initial value. In order to obtain one, the new iy, processes
the request received from the client (Fig. 8), and from ttwétioon, the scenario is similar
to the “good run” case of the previous section (compare wiigh F).

7. CONCLUSION

Semi-passive replication is a replication technique theetsdhot rely on a group mem-
bership for the selection of the primary. While retaining #ssential characteristics of
passive replication (i.e., non-deterministic processind parsimonious use of processing
resources), semi-passive replication can be solved inyarchsonous system using(aS
failure detector. This is a significant strength over almadisturrent systems that imple-
ment replication techniques with parsimonious processindeed, in those systems, the
replication algorithm requires to force the crash of exellighrocesses in order to make
progress, and thus combines the selection of the primahythét composition of the group.

A second contribution of this paper, Lazy Consensus, is &nsion of the Consensus
problem to allow the lazy evaluation of process proposgiofihis means that processes
compute their initial value in a “least effort” way, captdreith a Laziness property. We
have discussed these issues in details in the paper, amhrdsn algorithm to solve Lazy
Consensus. The algorithm was adapted from the ChandrayTouresensus algorithm
using{S [8], and relies on the same assumptions. Even though we ludekstussed this
issue, other Consensus algorithms could also easily beediapsolve Lazy Consensus
(e.g., [22, 30, 35, 36]).

The semi-passive replication algorithm proposed in thizepas based on solving the
problem of Lazy Consensus. The semi-passive replicatgorighm however only relies on
the conventional properties of Consensus for ensuringdhsistency of the replicas. The
Laziness property of Lazy Consensus is however the key t@ttmined use of resourcesin
semi-passive replication. Depending directly on the dyafifailure detectors, the laziness
(and hence the parsimony of semi-passive replication)ase® to the amount of synchrony
exhibited by the system. In particular, in a synchronousesgs semi-passive replication
ensures that a client request is processed by only one toemixa. Conversely, in the
worst case, a single request is never processed by more lioan laalf of the replicas.
This behavior is desirable as it naturally allows for a gfakgegradation of the replicated
service.

We mentioned that semi-passive replication does not requgroup membership service,
and explained why this is an advantage. This may howevertgavrong impression
that semi-passive replication is incompatible with a grougmbership service, or that
we believe that such a service is not useful. This is of courgethe case, but we
regard semi-passive replication as being a lower-levetopm than group membership.
Decoupling the replication protocol from housekeepingiéss(e.g., releasing resources
held by a crashed process, adding or removing processemibaily) is more elegant and
has several advantages in terms of performance, as disdng$e 11].

Finally, from the standpoint of clients, our semi-passg@ication algorithm is protocol-
compatible with active replication. In particular, clismeed no specific knowledge about
the server replicas, beyond what is necessary to addrassah@ group. This, combined
with the fact that both replication techniques can be imgetad based on consensus,
makes it much easier for both techniques to coexist. Foammts, the use of semi-passive
replication in a CORBA Object Group Service made it possiblehose the replication
type (active or semi-passive) as a strictly server-sidesisgd on a per request basis [16].
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APPENDIX: PROOFS OF CORRECTNESS

A.l. CORRECTNESS PROOF OF THE SEMI-PASSIVE REPLICATION
ALGORITHM

We prove that our algorithm for semi-passive replicatiolgfkithm 1, page 11) satisfies
the properties of the Generic Replication Problem givereiction 3.1. The proof assumes
that (1) proceduréazyConsensusolves the Lazy Consensus problem according to the
specification given in Section 3.2 (ignoring the lazinessperty'?), and (2) at least one
replica is correct. Solving Lazy Consensus is discussedeti® 5. In fact, Lazy
Consensus solves Consensus, which is enough to prove tleetr@ss of the algorithm as
a Generic Replication algorithm.

LemMma 1.1 (Termination). If a correct clientc € Il sends a request, it eventually
receives a reply.

Proof. The proof is by contradiction. Leteg. be a request sent by a correct client
that never receives a reply. Ass correct, all correct replicas ifig eventually receiveeq,
at line 10, and inserteq. into their receive queueecv@; at line 11. By the assumption
thatc never gets a reply, no correct replica decides at line 14ran, —, ): if one correct
replica would decide, then by the Agreement and Terminagiioperty of Lazy Consensus,
all correct replicas would decide dneq., —, —). As we assume that there is at least one
correct replica then, by the property of the reliable chésyrend because s correct,c
would eventually receive a reply. Consequentdy, is never inhand of any replica, and
thus no replica removesreg. from recv@, (Hypothesis A).

Let ¢y be the earliest time such that the request has been received by every replica
that has not crashed. LétforeReqC; denote the prefix of sequenececv@; that consists
of all requests inecv@, that have been received beforg.. After ¢y, no new request can
be inserted inecv@;s beforereq., and hence none of the sequenbgereReqC can grow.

Let! be the total number of requests that appear befarein the recv@ of any replica:

I = Z { 0 if s has crashed
#beforeReqCs otherwise
sellg
After time ¢y, the value ofl cannot increase since all new request can only be inserted
after req.. Besides, after every decision of the Lazy Consensus atlfneat least one
replicas’ removes the requesty;, , at the head ofecv@Q, (1.7, 1.22). The requestegy, , is
necessarily beforeeq,. in recv@,/, and hence belongs teforeReqCy . As a result, every
decision of the Lazy Consensus leads to decreasing the oblu®y at leastl.
Sincereq,. is never removed fromecv@, (by Hyp. 1.1.1), Task 2 is always enabled
(#recv@s > 1). So, because of the Termination property of Lazy Conserikasvalue
of [ decreases and eventually reachéthis is easily proved by induction di
Let ¢; be the earliest time at which there is no request befere in the receive
queuerecv@ of any replica { = 0). This means that, at timg, req. is at the head of the
receive queue of all running replicas, and the next exeautfd.azy Consensus can only

125ee Sect. 4.3, p. 11.
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decide on requesteq. (1.7). Therefore, every correct replicaeventually removeseq,
from recv@)s, a contradiction with Hypothesis A.m

LeEMMA 1.2. For any requesteq, every replica executegdate(req) at most once.

Proof. Whenever a replica executesdate(req) (line 21), it has decided ofreq, —, —)
atline 15, and insertsq into the set of handled requesisnd (line 18). By the Agreement
property of Lazy Consensus, every replica that decidesai’ decides also dmegq, —, —)
and inserts als@eq into hand at line 18. As a result, no replica can seleej again at
line 7, and(req, —, —) cannot be the decision of any subsequent Lazy Consenmus.

LemMA 1.3 (Total order). Forany two requestgeg andreq’, if some replica executes
update(req’) after update(req), then a replica executespdate(req’) only after it has
executedipdate(req).

Proof. Let req and req’ be two requests, and let be some replica that executes
update(req’) after it executeupdate(req). Sincep has executedipdate(req), it has
decided(req, updy.q, —) at line 19. Letk; be the value of variablé whenyp decides
(req, updreq, —). Similarly, p has executedpdate(req’). Letk, be the value of variable
when p decides(req’, upd,.q, —). Becausep executesupdate(req) before it executes
update(req), it decides(req, upd,.q, —) before it decidegreq’, upd,eq, —). Therefore,
k1 < ko.

Let ¢ be any replica that executegdate(req’). To prove the lemma, we show that
executesipdate(req) before it executespdate(req’).

Sinceq executesipdate(req’), it also decidegreq’, upd,e,, —). Letk} be the value of
variablek whenitdoes so. By Lemma 1.2 (at most once) there is only ossilple valué:),.

By the Agreement property of Lazy consensus and the facptiatidesupdate(req’) for
k = ko, it follows thatk, = k.

If ¢ has decided on the instangeof Lazy consensus, it must have also decided something
for k = k1 becausé; < ko. Again, by the Agreement property of Lazy consensus and the
fact thatp has decidedreq, upd,.q, —) Whenk = k1, ¢ has decidedreq, upd,,, —) when
k = k1. By the algorithm, a process executesihéate event corresponding to a decision
before it starts the next instance of the Lazy consensusb&muse:; < ko, process;
executesipdate(req) before it executespdate(req’). M

LeEMmMA 1.4. Ifareplicaexecutespdate(req), thensend(req) was previously executed
by a client.

Proof. If a replicap executesupdate(req), then some replicg has selected and
processed the requesy at line 7 and line 8 respectively. It follows thad; was previously
received byg, asreq belongs to the sequencecv@,. Therefore,req was sent by some
client. m

LemMA 1.5 (Update integrity). Foranyrequestegq, every replica execute@date(req)
at most once, and only iend(req) was previously executed by a client.

Proof. The result follows directly from Lemma 1.4 and Lemma 1.1

LeEMMA 1.6 (Response integrity). For any eventreceive(respr,) €xecuted by a
client, update(req) is executed by some correct replica.

Proof. Ifaclientreceivesesp,.,, thensend(resp,.;) was previously executed by some
replica (line 16). Therefore, this replica has decided;, upd,.,, res,.q) at line 15. By
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the Termination and Agreement properties of Lazy Conseresssy correct replica also
decides(req, updreq, Tesreq) at line 15, and executagdate(req) at line 17. The lemma
follows from the assumption that at least one replica isexirr B

TueorEM 1.1. Algorithm 1 solves the generic replication problem (define&®ec-
tion 3.1).

Proof. Follows directly from Lemma 1.3 (total order), Lemma 1.5dafe integrity),
Lemma 1.6 (response integrity), and Lemma 1.1 (terminatiom

A.2. CORRECTNESS PROOF OF THE LAZY CONSENSUS ALGORITHM

Here, we prove the correctness of our Lazy Consensus dlgoilgorithm 2, page 18).
The algorithm solves the weak Lazy Consensus problem usaS failure detector, with
a majority of correct processes. Lemma 2.2-2.5 are adapiedthe proofs of Chandra
and Toueg [8] for the Consensus algorithm wiil. Without loss of generality and unless
specified otherwise, all proofs are expressed for someriostaof the Lazy consensus.

LemMA 2.1. No correct process remains blocked forever at one ofithie statements.

Proof. There are thresvait statements to consider in Algorithm 2 (.22, 1.35, 1.46).
The proof is by contradiction. Letbe the smallest round number in which some correct
process blocks forever at one of tvait statements.

In Phase 2, we must consider two cases:

1. If r is the first round, then the current coordinater pv*[1] does not wait in Phase 2
(1.19), hence it does not block in Phase 2.

2. If > 1 then, all correct processes reach the end of Phase 1 of rquamtl they all
send a message of the tyfde —, r, estV, —, —) to the current coordinater= pv*[((r —
1) mod n) + 1] (1.15). Since a majority of the processes are correct, at [é_a;_ﬂ such
messages are sentd¢@andc does not block in Phase 2.

For Phase 3, there are also two cases to consider:

1. c eventually receive#@} message of the typ&, —, r, estV,—, —) in Phase 2.
2. c crashes.

In the first case, every correct process eventually recéivesr, est\., —) (1.35). In the
second case, sind@ satisfies strong completeness, for every correct prgeéissre is a
time after whichc is permanently suspected by that is,c € D,. Thus in either case,
no correct process blocks at the secovadt statement (Phase 3, 1.35). So every correct
process sends a message of the fype-, r, ack) or (k, —, r, nack) to ¢ in Phase 3 (resp.
.40, 1.42). Since there are at legstf) | correct processes,cannot block at thevait
statement of Phase 4 (1.46). This shows that all correctqas®s complete round—a
contradiction that completes the proof of the lemmm.

LeMmaA 2.2 (Termination). Every correct process eventually decides some value.
Proof. There are two possible cases:

1. Some correct process decidesf some correct process decides, then it must have R-
delivered some message of tyge —, —, —, —, decide) (1.53)). By the agreement property
of Reliable Broadcast, all correct processes eventuatgReer this message and decide.
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2. No correct process decides.SinceD satisfies eventual weak accuracy, there is a
correct procesgand a time such that no correct process suspectfier timet. Lett’ > ¢
be a time such that all faulty processes crash. Note thattafte ¢’ no process suspeais
From this and Lemma 2.1, because no correct process deb&tesnust be a roundsuch
that: (i) all correct processes reach rourafter timet’ (when no process suspegls and
(ii) g is the coordinator of round(i.e.,q = pv*[((r — 1) mod n) + 1]). Sinceg is correct,
then it eventually sends a message to all processes at thef Phdse 2 (1.32):

o If r = 1 (firstround), they does not wait for any message, and s€idg, r, estV,, —)
to all processes at the end of in Phase 2.

e For roundr > 1, then all correct processes send their estimateg (idL5). In
Phase 2¢ receives[‘”T“)W such estimates, and sendsq, r, est\,, —) to all processes.

In Phase 3, since is not suspected by any correct process after timevery correct
process waits fog's estimate (1.35), eventually receives it, and replieshvéih ack to ¢
(1.40). Furthermore, no process sendsazkto ¢ (that can only happen when a process
suspectg). Thus, in Phase 4 receives[%w messages of the tydé, —, r, ack) (and

no messages of the tyfé, —, r, nack)), andg¢ R-broadcastgk, g, r, estV,, —, decide)
(1.48). By the validity and agreement properties of RekaBlroadcast, eventually all
correct processes R-delivgs message (1.53) amdiecide(l.55)—a contradiction.

So, by Case 2 at least one correct process decides, and byl Gdiseorrect processes
eventually decide. m

Lemma 2.3 (Uniform integrity). Every process decides at most once.

Proof. Follows directly from Algorithm 2, where no process decidese than once ®

LeMma 2.4 (Uniform agreement). No two processes decide differently.

Proof. If no process ever decides, the lemma is trivially true. if process decides, it
must have previously R-delivered a message of the type, —, —, —, decide) (1.53). By
the uniform integrity property of Reliable Broadcast and #hgorithm, a coordinator pre-
viously R-broadcast this message. This coordinator mus rm:eivec{Lgﬂ messages
of the type(k, —, —, ack) in Phase 4 (1.46). Let be the smallest round number in which
[Lgﬂ messages of the tygé, —, r, ack) are sent to a coordinator in Phase 3 (1.40). Let
c denote the coordinator of round that is,c = pv*[((r — 1) mod n) + 1]. Let est\,
denotec’s estimate at the end of Phase 2 of roundVe claim that for all rounds’ > r, if
a coordinator’ sendsestV.: in Phase 2 of round’ (1.32), thenest\., = est\,.

The proof is by induction on the round number. The claim &y holds forr’ = r.
Now assume that the claim holds for allr < v < z. Let ¢, be the coordinator of
roundz, that is,c, = pv*[((z — 1) mod n) + 1]. We will show that the claim holds for
r’ = x, thatis, ifc, sendsest\,, in Phase 2 of round (1.32), thenest\., = est\..

From Algorithm 2 it is clear that it,, sendsestV., in Phase 2 of round (1.32) then it
must have received estimates from at Ie{ésfrﬂ processes (I.22% Thus, there is some
proces® such that (1p sent &k, p, r, ack) message to in Phase 3 of round (1.40), and
(2) the messagg, p, x, estV,, —, tsp) is in msgs,, [¢] in Phase 2 of round (1.23). Sincep

13Note thatr < = hence round: is not the first round.
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sent(k, p,r, ack) to c in Phase 3 of round (1.40), ts, = r at the end of Phase 3 of round
(1.39). Sincets, is nondecreasings, > r in Phase 1 of round. Thus, in Phase 2 of
roundz, the messagé, p, z, estV,, —, tsp) IS in msygs,, [x] with ts, > r. Itis easy to see
that there is no messagg, ¢, z, est\,, —, ts,) in msgs,, [z] for which ts, > x. Lett be
the largests, such that messadé, ¢, z, est\,, —, ts,) in msgs, [z]. Thus,r <t < .

In Phase 2 of round, ¢, executesestV,, — estV, where(k,q,x,estV,, —,t) is in
msgse, [z] (1.28). From Algorithm 2, it is clear thag adoptedestV, as its estimate in
Phase 3 of round (1.37). Thus, the coordinator of rourtdsentestV, to ¢ in Phase 2 of
roundt (1.32). Sincer <t < z, by the induction hypothesisst\, = est\.. Thus,c, sets
est\., < est\. in Phase 2 of round (1.28). This concludes the proof of the claim.

We now show that, if a process decides a value, then it dee&t¥s Suppose that some
procesy R-delivers(k, ¢, rq, estV,, —, decide), and thus decidesstV,. By the uniform
integrity property of Reliable Broadcast and the algoritpnocesg must have R-broadcast
(k,q,7q,estV,, —, decide) in Phase 4 of round, (1.48). From Algorithm 2, some procegs
must have receive@Lgﬂ messages of the typé, —, rq, ack) in Phase 4 of round,
(1.47). By the definition of, r < r,. From the above claingst\, = est\.. ®

Lemma 2.5 (Uniform validity). If a process decides thenv was proposed by some
process.

Proof. From Algorithm 2, it is clear that akstimateghat a coordinator receives in
Phase 2 are proposed values. Therefore, the decision Vatia toordinator selects from
theseestimatesnust be the value proposed by some process. Thus, unifoidityaf
Lazy Consensus is also satisfieda

The two propertieproposition integrityandweak lazinesare specific to the Lazy Con-
sensus problem. In order to prove them, we first prove sommbesn

LEMMA 2.6. Every process that terminates the algorithm considersangesvalue for
the next permutation vectgrv*! after termination of consensis

Proof. The proofis a trivial adaptation of Lemma 2.4 (uniform agneat) toestP and
the fact thapv*t! is set at line 56. m

LeMMA 2.7. Given a sequence of Lazy Consensus problems, processesebegy
instancek of the problem with the same permutation vegiof.

Proof. The proofis by induction on the instance numbetnitially, all processes begin
the first instance wittk = 1 and the same permutation vector' = [1,2,. .., n], defined
to be the identity.

The induction step requires to show that, if all processgstiastance-—1 with the same
pv*, then they also begin instangewith the samepv”*. This comes as a consequence
of Lemma 2.6 and the fact that no process starts an instarioeebiehas completed the
previous one. This completes the prool

LeEMMA 2.8. For each procesg in Ilg, afterp changes its estimate esttb a value
different from.L, then esty # L is always true.

Proof. A processp changes the value of its estimaistV, only at lines 20, 26, 28,
and 37. Assuming thastV, is different from_L, we have to prove that a procgssloes
not setestV,, to L if it reaches one of the aforementioned lines.
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The result is trivial for lines 20, 26 (by hypothesis the ftiog giv never returns.) and
line 28 (the process selects a value explicitly differeanfrL).

At line 37, a process sets its estimate to a value received fhe coordinator. This
value is sent by the coordinatey at line 32. Before reaching this line, changed its own
estimateest V.., at one of the following lines: 20, 26, or 28. As shown aboxg)V ., is
never set tal at these lines. &

LeMMA 2.9. During a roundr, a proces® proposes a value only ifis coordinator of
roundr and esty = L.

Proof. We say that a process proposes a value when it exeeat§s — eval giv
(line 20 or 26). By line 18p proposes a value onlyifis the coordinator of the round (i.e.,
p = cp). Letus consider line 20 and line 26 separately.

Line 2Q The test at line 19 ensures that line 20 is executed onlynduhie first round.
Before executing line 2G;st V), of the coordinatop is trivially equal to_L (initial value).

Line 26 The result directly follows from the test at line 258

LeMma 2.10 (Proposition integrity). Every process proposes a value at most once.

Proof. We say that a process propose a value when it exeestds «— eval giv
(lines 20 and 26). We prove the result by contradiction. Assuhat some procegs
proposes a value twice. By definitigtw returns a value different from. By Lemma 2.8,
onceestV, # L, it remains different fromL forever. By Lemma 2.9 proposes a value
only if estV,, = L. A contradiction with the fact that proposes a value twice ®

LemMA 2.11. If two processep andq propose a value, then at least onepadindg is
suspected by a majority of processedlig.

Proof. We prove this by contradiction. We assume that neitheor ¢ are suspected
by a majority of processes ifig. From Lemma 2.9 and the rotating coordinator paradigm
(there is only one coordinator in each roundgndq do not propose a value in the same
round. Letr, (resp.r,) be the round in which (resp.q) proposes a value. Let us assume,
without loss of generality, that proposes before (r, < 7).

During roundr,,, any process ilils either suspecigor adoptg’s estimate (lines 35, 36,
37). Sincep is not suspected by a majority of processeH jn(assumption), a majority of
processes adopts estimate. By Lemma 2.8, it follows that (1) a majority oétprocesses
have an estimate different from for any round- > r,,.

Consider now round, with coordinator. Atline 22,q waits for a majority of estimate
messages. From (1), at least one of the estimate messadamesam estimatest 1V # L.

So the test at line 25 returns false, andoes not calliv at line 26. A contradiction with
the fact thaty proposes a value in roung. ®

CoroLLARY 2.1 (Weak laziness). If two processep andq propose a value, then at
least one op andgq is suspected by some processeH in

Proof. Follows directly from Lemma 2.11.m

Lemma 2.11 is obviously not necessary to prove the weakdasiproperty defined in
Section 3.2. However, as stated in Footnote 9 on page 9,rtdsesting to show that our
algorithm ensures a property stronger than weak lazinelss.pioperty is established by
Lemma 2.11.
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THEOREM 2.1. Algorithm 2 solves the weak Lazy Consensus problem usihdn

asynchronous systems with= | 251 |.

Proof. Follows directly from Lemma 2.2 (termination), Lemma 2.8iform integrity),

Lemma 2.4 (agreement), Lemma 2.5 (validity), Lemma 2.10gpsition integrity), and
Lemma 2.1 (weak laziness)m
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