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An algorithm is presented for detecting switch dynamics in chaotic time-waveform. By the

“switch dynamics,” we mean that the chaotic time-waveform is measured from a dynamical

system whose bifurcation parameters are occasionally switched among a set of slightly different

parameter values.

First, the switched chaotic time-waveform is divided into windows of short-term time-

waveforms. From the set of windowed time-waveforms, “qualitatively similar” parametrized

family of nonlinear predictors is constructed. “Qualitatively similar” parametrized family means

that the family of nonlinear predictors exhibits “qualitatively similar” bifurcation phenomena as

the original. By characterizing the windows of short-term chaotic time-waveforms in terms of the

“qualitative” parameters of nonlinear predictors, switch dynamics of their associated bifurcation

parameters are detected.

For the Lorenz equations, the Rössler equations, and the Mackey-Glass equations, efficiency

of the algorithm is demonstrated. In the experiment, chaotic time-waveforms contaminated with

observational noise is considered.
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1. Introduction

In the studies of chaotic time-waveform analyses [1-11], it has been supposed that the

time-waveform is stationary and the bifurcation parameters of the underlying chaotic

dynamical system are not changed. Such chaotic time-waveforms can be characterized by

the statistical property of the underlying chaotic dynamics such as fractal dimension [2],

Lyapunov exponents [3-5], Kolomogorov-Sinai entropy [6], and nonlinear predictability [7-

11]. In practice, however, bifurcation parameters of the time-waveforms measured from

real-world systems can be occasionally changed. For example, in the flow dynamics, the

system variables are sometimes composed of the fast-dynamic components and the slow-

dynamic ones [12]. The dominant fast-dynamic patterns are occasionally changed by the

slow-dynamic variables, which can be considered as the occasionally changed bifurcation

parameters.

The occasional change in the bifurcation parameters can also have a functionality for

transmitting binary code information. For example, human speech with binary word in-

formation is transmitted by the sequential changes in the oscillatory states of the vocal

system. Another example is the chaotic secret communication systems [13-15]. This com-

munication system is composed of transmitter subsystem and receiver subsystem. With a

successive change between two bifurcation parameter values, p+ and p−, the transmitter

subsystem exhibits switch dynamics among the two chaotic attractors associated with
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p+ and p−. By the Pecora-Carroll synchronization [16, 17], the switch dynamics of the

transmitter is sent to the receiver and the binary information encoded as a sequence of the

switched bifurcation parameters can be decoded in the synchronized receiver subsystem.

For the analyses of chaotic time-waveforms with such switched bifurcation parameters,

conventional techniques for analyzing chaotic time-waveforms can not be directly applied.

This is because the conventional techniques [1-11] mainly estimate statistical properties

of the underlying chaotic dynamics from long enough time-waveform data with fixed bi-

furcation parameters. Towards the analyses of chaotic time-waveforms with switched

bifurcation parameters, various new numerical algorithms have been recently developed

[18-24]. The basic numerical procedure for analyzing switch dynamics in chaotic time-

waveform is to first divide a time-waveform into windows of short-term time-waveform

data. Then dynamical closeness between the windows of the data are measured by com-

puting the difference in statistical quantity between the windowed data such as invariant

measure [18, 23, 24], cross-correlation integral [19, 22], recurrence plot [19, 20], and cross

prediction error [21]. Based on the statistical test which detects a significant change in

the statistical quantity of the chaotic time-waveform, the stationarity of the data can be

examined.

Although these algorithms have been successfully applied to various chaotic time-

waveforms with switched bifurcation parameters, there might be some limitations due to
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the following problems:

1) If the switch interval of the bifurcation parameters is short, reliable estimation of the

statistical quantities from such short-term data can not be always expected.

2) If the switched bifurcation parameter values are closely located with others and if the

time-waveform data is contaminated with observational noise, qualitative dynamics as

well as the statistical properties of the associated chaotic attractors might be similar

to each other and hence detection of a slight change in the statistical property of the

switched chaotic time-waveforms is quite difficult.

Our approach to the problem is rather different from the techniques of [18-24]. Since

the qualitative change in the chaotic time-waveform is induced by the switch in the bi-

furcation parameter values, it is natural and more efficient to detect the switch dynamics

by estimating the underlying switched bifurcation parameters.

The problem for estimating the underlying bifurcation parameters from chaotic time-

waveforms has been studied in [25, 26]. Since it is supposed that there is no information

about the functional form of the parameterized family of chaotic dynamics, estimation of

the exact bifurcation parameter values only from time-waveforms is impossible. Instead,

“qualitatively similar” bifurcation parameter values can be estimated by a simple algo-

rithm using a parametrized family of nonlinear predictors. The “qualitatively similar”
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bifurcation parameters mean that the parameters give rise to a family of nonlinear pre-

dictors which exhibits qualitatively similar bifurcation phenomena as the original. The

algorithm has been successfully applied to the Hénon family, the coupled logistic/delayed-

logistic family, and the Rössler family [25, 26].

Based on the estimation technique of the underlying bifurcation parameters, this paper

presents an algorithm for detecting switch dynamics in chaotic time-waveform. Using

three typical chaotic dynamical systems, the Lorenz equations, the Rössler equations,

and the Mackey-Glass equations, efficiency of the algorithm is demonstrated. In the

experiments, switched chaotic time-waveforms contaminated with observational noise is

considered.
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2. Algorithm for Detecting Switch Dynamics in Chaotic

Time-Waveform

2. 1 Problem Formulation

Consider a continuous-time chaotic dynamical system:

dηt

dt
= f(p(s(t)), ηt), p ∈ Rm, ηt ∈ RD, (2.1)

and its observation:

{ξt = g(ηt) | 0 ≤ t ≤ C}, (2.2)

where the bifurcation parameter p(s(t)) is occasionally changed among I-different sets of

parameter values {p(i)}i=0,1,..,I−1 by the switch signal s(t),

s(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for t ∈ V0 (⊂[0, C])
1, for t ∈ V1
...,

I − 1, for t ∈ VI−1

(2.3)

where ∪I−1
i=0Vi = [0, C] and Vi∩Vj = ∅ for i�=j.

Here we assume the followings:

(i) The functional form of the parametrized family of vector fields f : Rm × RD → RD

is not known; f is assumed to be smooth.

(ii) The functional form of g : RD → R1 is not known; g is assumed to be smooth.

(iii) D = dim ηt is not known.
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(vi) m = dim p and the sets of parameter values {p(i)}i=0,..,I−1 are not known; {p(i)}i=0,..,I−1

are closely located with each other.

Under the conditions (i)-(vi), we consider an algorithm for detecting switch dynamics

of the bifurcation parameters p in the chaotic time-waveform {ξt | 0 ≤ t ≤ C}. The

algorithm is composed of four steps. First, observational noise in the measured time-

waveform is smoothed out by an averaging filter, and high-dimensional chaotic trajectory

is reconstructed using the delay-coordinate method. Second, the chaotic trajectory is

divided into windows of short-term trajectories, and nonlinear predictors which model the

windowed chaotic trajectories are constructed within a same parametrized family. Third,

effective bifurcation parameters are extracted from the many parameters of the nonlinear

predictors by principal component analysis. Fourth, windows of shorter-term chaotic

trajectories are characterized by the principal bifurcation parameters of the nonlinear

predictors and the switch dynamics in the principal bifurcation parameters are detected

by the Linde-Buzo-Gray (LBG) clustering algorithm.

2. 2 Averaged Filtering and Delay-Coordinate Embedding

In laboratory experiments, time-waveforms are usually sampled digitally and also con-

taminated with observational noise. Hence, let us rewrite the eq. (2.2) by

{ξn = g(ηnΔt) + νn | n = 1, 2, · · ·, Ndata} (2.4)
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where Δt is the sampling rate, Ndata is the number of the data, and νn is a Gaussian

noise.

In order to smooth out the observational noise, an averaging filter is applied to the

time-waveform as

{ξ̂n =
1

W + 1

n+W∑
k=n

ξk | n = 1, 2, · · ·, Ndata −W}, (2.5)

where W is the window length of the moving average.

From the filtered time-waveform {ξ̂n | n = 1, 2, · · ·, N−W}, a d-dimensional trajectory

{Xn | n = 1+(d−1)τ, · · ·, Ndata−W} is reconstructed by using a delay-coordinate [27, 28]:

Xn = T (1xn,
2 xn, · · ·,d xn)

= T (ξ̂n, ξ̂n−τ , · · ·, ξ̂n−(d−1)τ ), (2.6)

where T denotes transposition and τ denotes a time lag. The Filtered Delay Embedding

Prevalence Theorem [28] guarantees that the reconstructed trajectory {Xn} is qualita-

tively the same as the original {ηt}.

2. 3 Nonlinear Predictors

In order to detect qualitative change in the reconstructed trajectory {Xn}, we divide the

trajectory {Xn} into J-windows of short-term trajectories with T -interval:

{Xn(i) = Xn | n = 1 + (d− 1)τ + (i− 1) T, · · ·, (d− 1)τ + i T}i=1,2,..,J . (2.7)
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For each windowed trajectory, {Xn(i)}i=1,2,..,J , we construct a nonlinear predictor F :

RL × Rd → Rd which model the trajectory dynamics as

Xn+1(i)≈F (Ω(i), Xn(i)), (2.8)

where Ω ∈ RL stands for a set of parameters of nonlinear predictor F (·, ·). Among a variety

of functional forms for nonlinear predictors such as polynomial functions [7], radial basis

functions [10], multi-layer perceptrons (MLP) [9], MLP is chosen as a nonlinear predictor

in this paper. The MLP f̃ [29] which is composed of three-layers (d-units in the input

layer, d-units in the output layer, and h-units in the hidden layer) is given by

f̃(Ω, X) = T ( f̃1(Ω, X), f̃2(Ω, X), · · ·, f̃d(Ω, X) ) (2.9)

where

f̃k(Ω, X) =
h∑

j=1

ω(k−1)h+j σ(
d∑

i=1

ωdh+(j−1)d+i
ix+ ω2dh+j ) (k = 1, 2, .., d),

σ(y) =
2

1 + e−y
− 1,

Ω = T (ω1, ω2, · · ·, ωL) with L = (2d+ 1)h.

Using the MLP, the nonlinear predictor F is constructed as

F (Ω, X) = X + Δtf̃(Ω, X). (2.10)

The parameters {Ω(i)}i=1,2,..,J which correspond to the windowed trajectories {Xn(i)}i=1,2,..,J

are computed as follows. First, J-windows of trajectories {Xn(i)}i=1,2,..,J are periodically
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ordered as

{Xn(1)}, {Xn(2)}, · · ·, {Xn(J)}, {Xn(J + 1)}(= {Xn(1)}), · · ·. (2.11)

Second, Ω(1) is computed by minimizing the cost function:

U(Ω) =
(d−1)τ+T−K∑

n=1+(d−1)τ

K∑
k=1

1

2
| Xn+k(1) − F k(Ω, Xn(1)) |2 (2.12)

via the gradient-descent method ‡ with a random initial condition Ω(1) ∈ [0, 1]L. Then,

Ω(i) (i = 2, 3, · · ·) is computed by minimizing the cost function (2.12) defined for the i-th

trajectory {Xn(i)} in a similar manner as Ω(1) except that Ω(i − 1) is selected as the

initial condition instead of the random values.

The procedures for computing {Ω(i)}i=1,2,.. are repeated until they converge to a pe-

riodic sequence as

Ω(NJ),Ω(NJ + 1), · · ·,Ω(NJ + J),Ω(NJ + J + 1)(= Ω(NJ )), · · · (2.13)

where NJ is assumed to be sufficiently large.

2. 4 Extracting Principal Bifurcation Parameters

From the nonlinear prediction parameters {Ω(i)}, principal component parameters are

extracted by the Karuhnen-Loéve (KL) transform [31-34].

‡ In our experiment, the cost function (2.12) is minimized by a single iteration of the gradient-descent
procedure Ω′ = Ω − α∇U(Ω), where ∇U(Ω) is a gradient vector and α is determined by the line-search
method which minimizes U(Ω − α∇U(Ω)). The gradient vector ∇U(Ω) is computed by the recurrent
back-propagation algorithm of [26, 30].
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First, we consider the subsequence of the parameters {Ω(i) | i = NJ , NJ + 1, · · ·, NJ +

NK − 1} (NK : element number) and compute Ω0 and {δΩi | i = 1, 2, .., NK} as

Ω0 =
1

NK

NK∑
i=1

Ω(NJ + i− 1), (2.14)

δΩi = Ω(NJ + i− 1) − Ω0. (2.15)

Second, the multivariate distribution of {δΩi | i = 1, 2, .., NK} is computed in terms of

the covariance matrix:

ΩL×L =
1

NK

NK∑
i=1

δΩi
T δΩi. (2.16)

Since ΩL×L has non-negative eigenvalues {λ1, λ2, · · ·, λL}, they are arranged in descending

order:

λ1 ≥ λ2 ≥ · · · ≥ λL ≥ 0. (2.17)

Applying KL-transformation to δΩ, the principal parameters are given by

Γ = (γ1, γ2, · · ·, γL) = T [u1 | u2 | · · · | uL]−1 δΩ (2.18)

where {u1, u2, · · ·, uL} are the eigenvectors corresponding to {λ1, λ2, · · ·, λL}.

Since the transformation (2.18) diagonalizes the covariance matrix (2.16) in Γ-space,

the diagonal elements {λ1, λ2, · · ·, λL} represent the significance of their corresponding

principal parameters {γ1, γ2, · · ·, γL}. By computing the normalized eigenvalues

Λi =
λi∑L

j=1 λj

(i = 1, 2, .., L), (2.19)
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and the cumulative significance ratio from the first to the k-th principal components

Θk =
k∑

i=1

Λi (k = 1, 2, .., L), (2.20)

the number of significant parameters M (empirically set as ΘM > 0.98) is determined.

With respect to the significant parameters ΓM , the M-parameter family of nonlinear

predictors is constructed as

Xn+1 = F (Ω(ΓM), Xn) (2.21)

where

Ω(ΓM) = T [u1 | u2 | · · · | uL]−1[ΓM | 0] + Ω0 (2.22)

where 0 denotes (L−M)-dimensional 0 column vector.

In the studies of [25, 26], it has been shown that the principal parameter family of

nonlinear predictors (2.21) exhibits qualitatively similar bifurcation phenomena as the

original (2.1), where the original bifurcation parameters p are mapped to the principal

parameters Γm via a homeomorphism ψ : Rm→Rm. This implies that the switch dynamics

in the original bifurcation parameters p can be detected in the principal parameter space

of the nonlinear predictors (2.21).

2. 5 Detection of Switch Points

In order to detect switch dynamics in the chaotic trajectory {Xn}, we characterize the

temporal dynamics of the chaotic trajectory in terms of the principal bifurcation parame-
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ters ΓM . Again, we divide the trajectory {Xn} intoQ-windows of shorter-term trajectories

with S-interval:

{Xn(i) = Xn | n = 1 + (d− 1)τ + (i− 1) S, · · ·, (d− 1)τ + i S}i=1,2,..,Q.

(2.23)

Then, each window of trajectory {Xn(i)} is characterized by the principal bifurcation

parameters ΓM(i) which approximate the trajectory dynamics as

Xn+1(i)≈F (Ω(ΓM(i)), Xn(i)). (2.24)

The principal parameters ΓM(i) can be computed by minimizing the cost function:

U(ΓM ) =
(d−1)τ+iS−K∑

n=1+(d−1)τ+(i−1)S

K∑
k=1

1

2
| Xn+k(i) − F k(Ω(ΓM ), Xn(i)) |2 (2.25)

via the quasi-Newton method [35] with random initial condition ΓM ∈ [0, 1]M .

Finally, in order to determine the number of switch parameters I and to classify

the sets of principal parameters {ΓM(i) | i = 1, 2, .., Q} into the corresponding switched

parameters {p(i) | i = 0, 1, .., I − 1}, the LBG-clustering algorithm [36] is applied. The

algorithm analyzes the distribution of the principal parameters {ΓM(i) | i = 1, 2, .., Q}

and classify them into q-nonoverlapping subgroups {ΓM(i) | i ∈ Rj}j=0,1,..,q−1 (Rj �=∅,

∪q−1
j=0Rj = {1, 2, .., Q}, Ri∩Rj = ∅ for i�=j), which minimizes the distortion function:

Dq(R1, R2, · · ·, Rq) =
1

Q Ξ

q−1∑
j=0

∑
i∈Rj

| ΓM(i) − Γ̂(j) |2, (2.26)
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Ξ = max(i,j)| ΓM(i) − ΓM(j) |2,

Γ̂(j) =
1

Nj

∑
i∈Rj

ΓM(i) (Nj: number of elements in Rj),

where Ξ is a normalization constant and Γ̂(j) is the j-th centroid.

Using the least number of clusters qopt which provides sufficiently small distortion

function Dq (empirically set as Dqopt < 0.01), we can determine the number of the switch

parameters and classify the principal parameters {ΓM(i) | i = 1, 2, .., Q} into the corre-

sponding centroids {Γ̂(i) | i = 0, 1, .., qopt − 1}. If qopt = I and the switch centroids

{Γ̂(i) | i = 0, .., qopt − 1} have one-to-one correspondence with the original switch points

{p(i) | i = 0, 1, .., I − 1}, the switch dynamics of s(t) can be correctly detected. For our

convenience, the detected switch centroids {Γ̂(0), Γ̂(1), · · ·} are denoted by binary signal

s′ = 0, 1, · · ·, respectively. Of course, there is an indeterminacy in the permutation of

the switch signal s′(t) and exactly the same switch signal as the original s(t) can not be

usually recovered. The switch points are finally determined as the time when the switch

signal s′(t) changes into another signal as s′(t) �=s′(t+ Δt).
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3. Numerical Experiments

In this section, we test our algorithm against three chaotic dynamical systems: the Lorenz

equations [37], the Rössler equations [38], and the Mackey-Glass equations [39]. It is

shown that the algorithm detects switch dynamics among two or three sets of bifurcation

parameter values.

3. 1 Lorenz Equation

As a first example, we consider the Lorenz equations [37]:

d 1ηt

dt
= σ (2ηt − 1ηt),

d 2ηt

dt
= r 1ηt − 2ηt − 1ηt

3ηt, (3.1)

d 3ηt

dt
= 1ηt

2ηt − b(s(t)) 3ηt.

In this experiment, parameter values for σ and r are fixed to

σ = 16, r = 45.6,

and the bifurcation parameter b makes switches among two values,

b(0) = 4.4, b(1) = 4, (3.2)

according to the switch signal s(t).

Let us analyze the switch dynamics of the Lorenz equations modulated by the square
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wave signal s(t) of fig. 1 (a). The chaotic time-waveform is then obtained as

{ξn = (1ηnΔt/30) + νn | n = 1, 2, .., Ndata}, (3.3)

where the sampling rate, the number of the data, and the Gaussian noise level are set

as Δt = 0.02, Ndata = 7200, and νn ∈ N(0, 0.02). The Lorenz equation is numerically

integrated by the fourth-order Runge-Kutta algorithm with a time step of 0.001.

Fig. 1(b) shows the average-filtered time-waveform {ξ̂n} with the averaging window

length of W = 7. While the observational noise has been smoothed out by the average

filter, it is difficult to recognize qualitative change in the switched chaotic time-waveform.

When the switch dynamics takes place among chaotic attractors with distinctively

different geometric structure, it is reported in [15] that the switch dynamics are discernible

in the maximum recurrent plots of the time-waveform. The maximum plots display the

geometric difference of the switching attractors and indicate the switch dynamics which

falls in either branch of the distinctive attractors. Figs. 2 show the maximum plots

obtained from the average-filtered time-waveform {ξ̂n} of fig. 1(b). Whereas the two

chaotic attractors with b = 4.4 and b = 4 may have rather different geometric structures,

the observational noise thickens their sheet geometries and mixes the domains of the

switching attractors. Hence, it is hard to distinguish the attractors and to detect the

switching points in the presence of noise. As the number of the switching attractors

increases further, systematic detection of switching attractors by simple maximum plots
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may become much more difficult.

Let us test our algorithm. First, 3-dimensional trajectory {Xn | n = 1+(d−1)τ, .., N−

W} (d = 3, τ = 4) is reconstructed from the filtered time-waveform {ξ̂n}. The trajectory

{Xn} is divided into 6-windows of trajectories {Xn(i)}i=1,2,..,6 with a time interval of

T = 1200.

Second, using the nonlinear predictors defined by eq. (2.10) with h = 10, we seek the

parameters {Ω(1),Ω(2), ..} corresponding to

{Xn(1)}, {Xn(2)}, , .., {Xn(6)}, {Xn(7)}, (= {Xn(1)}), ... (3.4)

by minimizing the cost function defined by (2.12) with K = 2.

Third, we extract effective parameters {γ1, γ2, ..} of Ω by the principal component

analysis applied to subsequence {Ω(9988), Ω(9989), .., Ω(9999)}. Fig. 3 (a) shows the

cumulative significance ratio Θk of the covariance matrix (2.16). Since Θ2 > 0.98, we set

the principal component parameters as Γ2 = (γ1, γ2). Fig. 3(b) shows the locations of the

subsequence of the parameters {Ω(9988), .., Ω(9999)} in the (γ1, γ2)-space.

Fourth, the trajectory {Xn} is divided again into 18-windows of shorter trajecto-

ries {Xn(i)}i=1,2,..,18 with a time interval of S = 400. In fig. 3 (c), the trajectories

{Xn(i)}i=1,2,..,18 are characterized by the principal parameter values {Γ2(i)}i=1,2,..,18 which

minimize the cost functions (2.25). The switch dynamics among the 2-clusters of distinc-

tive points in principal parameter space is clearly recognized. It is indeed shown in fig.
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3 (d) that the LBG-clustering is optimized by the cluster number of qopt = 2 which gives

a sufficiently small distortion function D2 < 0.01. Fig. 1 (c) shows the sequence of the

LBG-clustering signal s′(t), which predicts the original signal s(t) with good accuracy.

Hence, systematic detection of the number of switch dynamics as well as their switch

points is realized by the present algorithm.

It should be noted that, in the present experiment, switch in the bifurcation parameters

does not occur within any window of shorter-term chaotic trajectory. If a switch occurs

within a window, the principal parameter values Γ2 corresponding to the window can not

be accurately estimated. If such a switch occurs frequently and if the principal parameter

values can not be accurately estimated for many windows, identification of the number of

the switch dynamics as well as their switch points may become quite difficult. We consider,

however, that if the switch occurs only intermittently and if the bifurcation parameters

rarely change within a window, reliable estimation of the principal bifurcation parameters

is possible for “most” of the windows of chaotic trajectories. Hence, for such intermittent

switch signal, the present algorithm may identify the number of switch dynamics with

good accuracy.

19



3. 2 Rössler Equation

As a second example, we consider the Rössler equations [38]:

d 1ηt

dt
= − 2ηt − 3ηt,

d 2ηt

dt
= 1ηt + a(s(t)) 2ηt, (3.5)

d 3ηt

dt
= b 1ηt − (c(s(t)) − 1ηt)

3ηt,

where the parameter value b is fixed as b = 0.3 and the bifurcation parameters (a, c) take

three sets of values:

(a(0), c(0)) = (0.34, 5.6), (a(1), c(1)) = (0.36, 5.2), (a(2), c(2)) = (0.34, 4.8), (3.6)

according to the switch signal s(t) of fig. 4(a). The chaotic time-waveform is obtained as

{ξn = (2ηnΔt/10) + νn | n = 1, 2, .., Ndata}, (3.7)

where Δt = 0.2, Ndata = 7200, νn ∈ N(0.0, 0.02), and the Rössler equation is numerically

integrated by the fourth-order Runge-Kutta algorithm with a time step of 0.01.

Figs. 4 and 5 show the results of the detection algorithm. The parameters of the algo-

rithm are set as (W, d, τ, J, T, h,K,NJ , NK) = (5, 3, 4, 6, 1200, 8, 2, 9988, 12). According to

the principal component analysis of fig. 5(a), cumulative significance ratio of Θ2 > 0.98

is obtained. Hence, we set the principal component parameters as Γ2 = (γ1, γ2). Fig. 5

(c) shows the locations of the principal parameter values {Γ2(i)}i=1,2,..,18 corresponding
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to the 18-windows of shortly divided trajectories {Xn(i)}i=1,2,..,18 with a time interval of

S = 400. The switch dynamics among the 3-clusters of distinctive points in principal

parameter space is clearly recognized. According to the LBG-clustering analysis of fig.

5(d), it is shown that the optimal cluster number is qopt = 3. As in fig. 4 (c), the switch

signal s′(t) of the LBG-cluster data accurately predicts the original signal s(t).

3. 3 Mackey-Glass Equation

As a final example, we consider the Mackey-Glass difference-differential equation [39]:

dηt

dt
= a(s(t))

ηt−17

1 + η10
t−17

− 0.1 ηt. (3.8)

The bifurcation parameter a takes three values:

a(0) = 0.21, a(1) = 0.2, a(2) = 0.19, (3.9)

according to the switch signal s(t) of fig. 6 (a) and the corresponding chaotic time-

waveform is obtained as

{ξn = ηnΔt + νn | n = 1, 2, .., Ndata}, (3.10)

where Δt = 1.25, Ndata = 6000, νn ∈ N(0, 0.02), and the Mackey-Glass equation is

numerically integrated by the fourth-order Runge-Kutta algorithm with a time step of

0.025.

Figs. 6 and 7 show the results of the detection algorithm for the switch dynamics of the

Mackey-Glass equation. The parameters of the algorithm are set as (W, d, τ, J, T, h,K,NJ ,
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NK) = (7, 4, 8, 6, 1000, 5, 2, 9988, 12). According to the principal component analysis of

fig. 7(a), cumulative significance ratio of Θ1 > 0.98 is obtained. Hence, we set the

principal component parameters as Γ1 = (γ1). Fig. 7 (c) shows the locations of the

principal parameter values {Γ1(i)}i=1,2,..,20 corresponding to the 20-windows of shortly

divided trajectories {Xn(i)}i=1,2,..,20 with a time interval of S = 300. Switch dynamics

among the 3-clusters of distinctive points in the principal parameter space is discernible.

According to the LBG-clustering analysis of fig. 7(d), optimal cluster number is correctly

detected as qopt = 3 and the original signal s(t) can be accurately predicted by the LBG

signal s′(t) in fig. 6 (c).
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4. Conclusions and Discussions

We have presented an algorithm for detecting switch dynamics in chaotic time-waveform.

By the switch dynamics, we mean that the bifurcation parameter values are occasionally

changed in the chaotic time-waveform. Using three chaotic dynamical systems, the Lorenz

equations, the Rössler equations, and the Mackey-Glass equations, whose bifurcation pa-

rameters switch among two or three sets of slightly different parameter values, efficiency of

the algorithm is shown. For the chaotic time-waveforms contaminated with observational

noise, our algorithm have accurately detected the number of switching parameters as well

as their switching points.

It should be noted that the present algorithm is based upon the characterization

of windows of short-term chaotic time-waveforms in terms of the principal bifurcation

parameters of nonlinear predictors. Performance of the algorithm to identify the number

of switching parameters and their switching points is primarily dependent upon a reliable

estimation of the principal bifurcation parameter values corresponding to each window

of chaotic time-waveform. Reliable estimation of the corresponding principal parameters

becomes difficult when:

(a) The observational noise level is quite high.

(b) The window length of chaotic time-waveform is too short.
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(c) The bifurcation parameters frequently make switches within a window of chaotic

time-waveform.

Exact number of the switching parameters may be accurately identified when the problems

(a)-(c) are not so significant.

Limitation of the present algorithm against these problems will be studied in our future

works. Applicability of the algorithm against higher-dimensional dynamical systems such

as the spatio-temporal dynamical systems [12, 40] would be also considered in our further

studies.
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Figure 1: (a) Switch signal s(t) of the bifurcation parameter b in the Lorenz equation (3.1). (b) Average-
filtered time-waveform {ξ̂n} (2.5) recorded from the switched Lorenz equation. (c) Switch signal s′(t)
predicted by the present algorithm.

29



Figure 2: (a) Maximum recurrent plots (ξ̂max(n), ξ̂max(n + 1)) of the average-filtered time-waveform
of fig. 1(b). The crosses indicate the maximum plots of the Lorenz equation (3.1) with b = 4.0 and the
triangles indicate the maximum plots of the Lorenz equation with b = 4.4. (b)Enlargement of fig. 2(a)
with (ξ̂max(n), ξ̂max(n + 1)) ∈ [0.4, 0.8]× [0.4, 0.8].
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Figure 3: (a) Cumulative significance ratio {Θk} of the covariance matrix (2.16). (b) Locations of the
subsequence {Ω(9988), .., Ω(9999)} of the nonlinear prediction parameters in the 2-dimensional principal
space (γ1, γ2). (c) Locations of the principal parameter values {Γ2(i)}i=1,2,..,18 corresponding to the
windows of short-term trajectories {Xn(i)}i=1,2,..,18. The principal parameters are classified into 2-
groups, where the crosses indicate the points classified into “s′ = 0” and the triangles indicate the points
classified into “s′ = 1.” (d) Distortion function Dq (2.27) optimized by the LBG-clustering algorithm
with a cluster number q.
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Figure 4: (a) Switch signal s(t) of the bifurcation parameters (a,c) in the Rössler equation (3.5).
(b) Average-filtered time-waveform {ξ̂n} from the switched Rössler equation. (c) Switch signal s′(t)
predicted by the present algorithm.
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Figure 5: (a) Cumulative significance ratio {Θk}. (b) Locations of the subsequence
{Ω(9988), .., Ω(9999)} of the nonlinear prediction parameters in the 2-dimensional principal space (γ1, γ2).
(c) Locations of the principal parameter values {Γ2(i)}i=1,2,..,18 corresponding to the windows of short-
term trajectories {Xn(i)}i=1,2,..,18. The principal parameters are classified into 3-groups, where the
crosses indicate the points classified into “s′ = 0,” the triangles indicate the points classified into “s′ = 1,”
and the squares indicate the points classified into “s′ = 2.” (d) Distortion function Dq optimized by the
LBG-clustering algorithm with a cluster number q.
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Figure 6: (a) Switch signal s(t) of the bifurcation parameter a of the Mackey-Glass equation (3.8). (b)
Average-filtered time-waveform {ξ̂n} from the switched Mackey-Glass equation. (c) Switch signal s′(t)
predicted by the present algorithm.
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Figure 7: (a) Cumulative significance ratio {Θk}. (b) Locations of the subsequence
{Ω(9988), .., Ω(9999)} of the nonlinear prediction parameters in the 1-dimensional principal space (γ1).
(c) Locations of the principal parameter values {Γ1(i)}i=1,2,..,20 corresponding to the windows of short-
term trajectories {Xn(i)}i=1,2,..,20. The principal parameters are classified into 3-groups, where the
crosses indicate the points classified into “s′ = 0,” the triangles indicate the points classified into “s′ = 1,”
and the squares indicate the points classified into “s′ = 2.” (d) Distortion function Dq optimized by the
LBG-clustering algorithm with a cluster number q.
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