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Abstract

This paper presents numerical studies of applying back-propagation learning

to a delayed recurrent neural network (DRNN). The DRNN is a continuous-

time recurrent neural network having time delayed feedbacks and the back-

propagation learning is to teach spatio-temporal dynamics to the DRNN.

Since the time-delays make the dynamics of the DRNN infinite-dimensional,

the learning algorithm and the learning capability of the DRNN are differ-

ent from those of the ordinary recurrent neural network (ORNN) having

no time-delays. First, two types of learning algorithms are developed for a

class of DRNNs. Then, using chaotic signals generated from the Mackey-

Glass equation and the Rössler equations, learning capability of the DRNN

is examined. Comparing the learning algorithms, learning capability, and

robustness against noise of the DRNN with those of the ORNN and time

delay neural network (TDNN), advantages as well as disadvantages of the

DRNN are investigated.

Key words: back-propagation learning, time-delay, recurrent neural

network, retarded functional differential equations, infinite-dimensional

dynamical system



1. Introduction

In biological neural networks, various types of time delays such as axonal

propagation delays and synaptic transmission delays are experimentally ob-

served. Natural direction of the neural network studies is to consider func-

tions of such time delays in neural systems. So far, many neural network

models with time delays have been introduced and possible functions of the

delays have been discussed. For instance, delayed synaptic connections were

introduced to neural networks to solve time-sequence recognition problem

(Tank & Hopfield, 1987; Hopfield & Tank, 1989; Anderson & van Essen, 1987;

Mozer, 1989; Lapedes & Farber, 1987). In the network, the delayed synapses

function for concentrating input information in time and for recognizing in-

put time-sequence patterns. Such time-delay neural networks (TDNNs) have

been widely applied to practical engineering problems such as speech recogni-

tion (Tank & Hopfield, 1987; Hopfield & Tank, 1989; Anderson & van Essen,

1987; Mozer, 1989) and nonlinear predictions (Lapedes & Farber, 1987).

Delayed feedback connections have been considered also in a Hebbian-type

associative memory neural network (Sompolinsky & Kanter, 1986; Kleinfeld,

1986; Herz et al., 1989). In this network, time delays destabilize memory

states of the Hebbian-type neural network and enable the network to se-

quentially recall a set of the memories. Stability of time-delayed neural net-

works has been also analyzed extensively (Marcus & Westervelt, 1989; Baldi

& Atiya, 1994; Cao & Wu, 1996; Pakdaman & Malta, 1998; Joy, 2000; Lu,

2000; Liao, Chen, & Sanchez, 2002; Peng, Qiao, & Xu, 2002).

Although the neural network models with time delays have been mainly



studied in the above contexts, the focus of the present paper is rather different

from these studies. Our interest here is in supervised learning of a delayed

recurrent neural network (DRNN). The DRNN stands for a continuous-time

recurrent neural network that has time delayed feedbacks. The supervised

learning is to teach spatio-temporal dynamics to the DRNN by applying the

back-propagation algorithm (Rumelhart, Hinton, & Williams, 1986). Since

the dynamics of the DRNN is described by retarded functional differential

equations (RFDEs) (Hale, 1977), whose dynamical class is different from

that of an ordinary differential equation model of recurrent neural network

(ORNN), the learning algorithm and the learning capability of the DRNN

are different from those of the conventional ORNN (Pineda, 1987; Doya &

Yoshizawa, 1989; Pearlmuter, 1989; Sato, 1990; Gouhara et al., 1992).

To our knowledge, the supervised learning of the DRNN has not yet been

thoroughly investigated. So far, back-propagation learning has been intro-

duced to DRNN and the network capability of learning complex dynamics

such as chaos and speech has been examined (Tokuda, Hirai, & Tokunaga,

1993; Baldi & Atiya, 1994; Tokuda, Tokunaga, & Aihara, 1996; Tokuda &

Aihara, 1997). Adaptive simulated annealing algorithm has been examined

for efficient training of DRNN (Cohen, Saad, & Marom, 1997). A class of dy-

namical systems approximated by DRNNs has been also discussed (Tokuda,

1998).

The aim of the present paper is to consider possible functions of time

delays in neural networks in the light of the supervised learning in DRNN.

On the basis of the comparative studies with ORNN and TDNN, advantages



as well as disadvantages of the DRNN are investigated. Robustness of the

DRNN against noise is also studied.

This paper is organized as follows. In Section 2, using a standard mathe-

matical model for DRNN, learning algorithms are introduced. The computa-

tional costs of the learning algorithms of DRNN are compared with those of

ORNN. In Section 3, several numerical experiments are carried out to study

learning capability of the DRNN. Based on comparative experiments with

ORNN and TDNN, advantages and disadvantages of the DRNN are inves-

tigated. The final section is devoted for conclusions and discussions of the

present work.

2. Learning Algorithms

2. 1 Recurrent Neural Network with Time Delays

As a standard model for DRNN, let us consider the Kleinfeld model (1986):

d

dt
xi(t) = − 1

R
·xi(t) +

N∑
j=1

Wij ·Vj(t) +
N∑

j=1

Dij ·VDj
(t) +

m∑
j=1

Iij ·zj(t),

Vj(t) = G(xj(t)), VDj
(t) =

∫ 0

−τ
Vj(t + s)·Dj(s) ds, (1)

which has been introduced as a network to generate a set of memory pat-

terns sequentially in time. As is shown in Fig. 1, the network is composed of

N -neurons, whose internal states, outputs, and delayed outputs are respec-

tively denoted as xi(t), Vi(t), and VDi
(t) (i = 1, . . ., N). The network also

receives m-external time-dependent inputs zi(t) (i = 1, 2, . . ., m). Synaptic

connections from the j-th neuron, the j-th delayed neuron, and the j-th ex-

ternal input to the i-th neuron are described by the connection weights Wij ,



Dij, and Iij, respectively. The delay function Dj(s) represents a response

characteristic of the delayed synapse, which is integrated over a cut-off du-

ration of τ . The delay function usually takes the form of delta function,

Dj(s) = δ(s − τj), step function, Dj(s) = Θ(τj − s)/τj , or exponential decay

function, Dj(s) = exp(−s/τj)/τj. The input-output function G(x) is repre-

sented by a monotonously-increasing function such as the sigmoidal function

G(x) = 2/{1+exp(−x)}−1. In case when there is no time-delay, i.e., τ = 0,

the network of Eq. (1) becomes an ORNN widely used for associative mem-

ory neural networks (Hopfield & Tank, 1985) and recurrent back-propagation

neural networks (Pineda, 1987; Doya & Yoshizawa, 1989; Pearlmuter, 1989;

Sato, 1990; Gouhara et al., 1992).

Equation (1) belongs to a class of RFDEs (Hale, 1977) described as:

d

dt
x = f (xt, z(t), Ω), (2)

where x = {x1, . . ., xN}, z = {z1, . . ., zm}, f = {f1, . . ., fN}, Ω = {Wij , Dij, Iij} ∈

RK , and f : C([−τ, 0], RN) × Rm × RK → RN . The dynamical system

is infinite dimensional, since the state space xt ∈ C([−τ, 0], RN) is repre-

sented by a continuous mapping of the interval [−τ, 0] into RN according to

xt(θ) = x(t + θ) for θ ∈ [−τ, 0].

In the followings, learning algorithms for adjusting the weight parameters

Ω are developed for a class of DRNNs described by Eq. (2).

2. 2 Problem Formulation

Let us consider a supervised learning to teach spatio-temporal dynamics to

the DRNN of Eq. (2). The inverse problem for learning spatio-temporal



dynamics can be stated as follows:

“Classify the units of the DRNN into visible units {xi|i ∈ V} and hidden

units {xi|i /∈ V}. Given an initial condition x0 and external inputs

z(t), the DRNN of Eq. (2) gives rise to a unique solution x(t) satisfying

ẋ(t) = f (xt, z(t), Ω) for t ∈ [0, T ]. Then, find the weight parameters

Ω that give rise to a solution x(t) approximately following a teacher

signal ξ(t) = {ξi(t)|i ∈ V} as xi(t)≈ξi(t) for i ∈ V and t ∈ [−τ, T ].”

The back-propagation learning algorithm for the inverse problem can be

formulated as follows. First, the cost function is defined for the weight pa-

rameters Ω as

E(Ω) =
∫ T

0

1

2
·∑
i∈V

{xi(t) − ξi(t)}2 dt. (3)

Then, the cost function (3) is minimized by the steepest descent method

ωnew = ωold − η·∂E

∂ω
(Ωold), (4)

where ω (∈ Ω) stands for an element of the weight parameters and η is a

learning speed.

The main part of the back-propagation learning is the computation of

the first derivatives ∂E/∂ω in Eq. (4). To compute the first derivatives for

recurrent neural networks, there are mainly two algorithms: (1) the real time

recurrent learning (RTRL) algorithm and (2) the time-dependent recurrent

learning (TDRL) algorithm. In the following subsections, the two algorithms

are introduced to DRNN.



2. 3 Real Time Recurrent Learning

In the RTRL algorithm, the first derivatives ∂E/∂ω are computed as

∂E

∂ω
=

∫ T

0

∑
i∈V

{xi(t) − ξi(t)}·∂xi

∂ω
(t) dt, (5)

where the partial derivatives ∂xi/∂ω in the right hand side are calculated by

solving the first variational equations of Eq. (2) as

d

dt
(
∂xi

∂ω
)(t) =

N∑
j=1

[
∫ 0

−τ

∂fi

∂xj
t (s)

(xt, z(t), Ω)·∂xj

∂ω
(t + s) ds ]

+
∂fi

∂ω
(xt, z(t), Ω) (i = 1, 2, . . ., N) (6)

with an initial condition ∂xi/∂ω = 0 for t ∈ [−τ, 0]. In Appendix B, explicit

forms of the variational equations (6) are provided for the Kleinfeld model

(1).

In the study of training temporal pattern generator networks, generalized

learning algorithm has been derived for recurrent networks with arbitrary

dynamic operators that can be applied to both continuous-time and discrete-

time networks (Doya, 1991; Doya & Yoshizawa, 1991; Doya, 1993). We note

that straightforward application of the generalized algorithm gives the same

variational equations (6). We also note that, in case when there is no time

delay, i.e., τ = 0, the present algorithm is equivalent to the RTRL algorithm

for ORNN (Doya & Yoshizawa, 1989; Williams & Zipser, 1989).

2. 4 Time-Dependent Recurrent Learning

In the TDRL algorithm, the first derivatives ∂E/∂ω are computed by using

the Lagrange multipliers λ = {λ1, λ2, . . ., λN} as follows (see Appendix A for

detailed derivation of the algorithm).



[TDRL Algorithm]

(i) For a given initial condition x0 and external inputs z(t), solve Eq. (2)

forward in time. The solution curve x(t) is stored in the computer

memory for a time interval of t ∈ [0, T ].

(ii) For a boundary condition λ(T ) = 0 and for a teacher signal ξ(t), La-

grange multipliers λ(t) are calculated for t ∈ [0, T ] by solving the fol-

lowing equations backward in time:

d

dt
λi(t) = δi∈V ·{ξi(t) − xi(t)} −

N∑
j=1

∫ 0

−τ
δt∈[0,T+s]·λj(t − s)·

∂fj

∂xi
t−s(s)

(xt−s, z(t − s), Ω) ds. (7)

(iii) Using the Lagrange multipliers λ(t), the first derivatives are integrated

as

∂L

∂ω
=

∫ T

0

N∑
i=1

λi(t)·∂fi

∂ω
(xt, z(t), Ω) dt. (8)

In case when there is no time delay, i.e., τ = 0, the above algorithm is

equivalent to the TDRL algorithm for ORNN (Pearlmuter, 1989; Sato, 1990).

In Appendix B, explicit forms of the TDRL algorithm are provided for the

Kleinfeld model (1).

2. 5 Computational Costs

Let us compare the computational costs of the learning algorithms of the

DRNN with those of the ORNN.



(A) In the RTRL algorithm, the main computational part is the numerical

integration of the variational equations (6). In case of DRNN, the variational

equations (6) are N ·K sets of RFDEs, whereas the variational equations (6)

are N ·K sets of ordinary differential equations in case of ORNN. The RTRL

algorithm for the DRNN is computationally costly compared to that of the

ORNN, since the RFDEs (6) are numerically treated as follows.

In the numerical integration of RFDEs of the form ẏ = g(yt) (y =

{∂xi/∂ω} ∈ RN×K), its state space is represented as

{yt(θ) | θ = 0,
τ

J1 − 1
,

2·τ
J1 − 1

, . . ., τ} (9)

using J1 sets of dynamical variables yt(θ) divided with a time interval of

τ/(J1 − 1). In the numerical integration of the N ·K sets of RFDEs, the

memory size in the order of N ·K·J1 is required. This memory requirement

is much larger than that of the ORNN, which needs a memory size in the

order of only N ·K.

(B) In the TDRL algorithm, the main computational part is the compu-

tation of the Lagrange multipliers by numerical integration of the backward

equations (7). This is computationally less expensive than the RTRL algo-

rithm because the backward equations are merely N sets of RFDEs.

In the forward integration of the system equations (2), the solution curve

x(t) (t ∈ [0, T ]) is stored in the computer memory. Supposing that J2 time

steps between 0 and T of the dynamical states x(t) are stored, the mem-

ory size in the order of N ·J2 is required. The memory requirement for the

DRNN is comparable with that for the ORNN, since the ORNN needs the

same amount of computer memory for storing its trajectory. As the time



interval T is set to be very long, this memory requirement may become huge.

However, if we set the interval T short enough as described in subsection

3. 2, the memory can be set to be within a practical computational size.

Taking into account the fact that the TDRL algorithm is computationally

much less expensive than the RTRL algorithm, the TDRL algorithm is more

practical than the RTRL algorithm, except for the case when on-line learning

is required.

In Table 1, learning algorithms and their computational costs are sum-

marized for DRNN and ORNN.

2. 6 Training of Hidden Units

In the previous subsections, learning algorithms for DRNN have been dis-

cussed mainly for the optimization of the weight parameters. It is in principle

possible to include other parameters to be optimized by the learning algo-

rithms such as an initial condition of the hidden units. In fact, it has been

reported that optimization of the initial condition of the hidden units is cru-

cial especially to learn complex nonlinear dynamics such as chaos by ORNN.

Since the chaotic property of sensitive dependence on initial conditions im-

plies that a slight error in the initial condition of the hidden units diverges

in time and strongly perturbs the trajectory of the visible units, the initial

condition of the hidden units should be carefully determined. In the numer-

ical studies (Sato, Murakami, & Joe, 1990; Sato, Joe, & Hirahara, 1990),

the initial condition of the hidden units has been adjusted as the learning

parameters. This adjustment seems to complicate the learning algorithm as



well as the learning process of the ORNN. The situation becomes much more

difficult in case of optimizing DRNN, because the initial condition of the hid-

den units of the DRNN is represented by {xi
t(θ)|i /∈ V}, which is continuous

mapping on a time interval θ ∈ [−τ, 0]. Optimization of such continuous

mapping is quite difficult. Hence, we should avoid using hidden units in the

learning of the DRNN.

For an ORNN to learn complex high-dimensional dynamics, it is indis-

pensable to use hidden units, because increasing a number of the hidden units

is the only way to increase the dimension of the ORNN. In contrast, in order

to enhance a capability of DRNN to learn complex high-dimensional dynam-

ics, we can increase a number of the delay units, because the delays make the

system infinite dimensional. It is therefore advised that, for the learning of

the DRNN, using the time delays is much more efficient and practical than

using the hidden units.

3. Numerical Experiments

This section presents experimental studies of applying the learning algorithm

developed in Section 2 for the learning of complex nonlinear dynamics. As

teacher signals, chaotic signals generated from the Rössler equations and the

Mackey-Glass equation are exploited. By comparing the learning capability

of the DRNN with those of other neural networks, advantages as well as

disadvantages of the DRNN are studied.



3. 1 Network Model

In the learning of complex nonlinear dynamics, the following form of DRNN

is utilized:

d

dt
x(t) = F (Ω, x(t), x(t − τ1), . . ., x(t − τd))

=
h∑

k=1

ω
(1)
k ·G(ω

(2)
k ·x(t) +

d∑
j=1

ω
(3)
kj ·x(t − τj) + ω

(4)
k ). (10)

This network has a single dynamical unit x(t), multiple delta function-type

delays x(t−τ1),. . .,x(t−τd), and weight parameters Ω = {ω(1)
k , ω

(2)
k , ω

(3)
kj , ω

(4)
k } ∈

RK . For the single visible unit x(t), a teacher signal {ξ(t)|t ∈ [−τ, T ]}

(τ = maxj=1,...,dτj) is given. As discussed in the previous section, no hidden

units are used for the DRNN. Note that the function F : RK × Rd → R1 is

based on a multi-layer-perceptron (MLP) that has d units in the input layer,

h units in the middle layer, and one unit in the output layer. This type of

neural network is used in the present study because:

(a) As is show in Appendix C, DRNN of Eq. (10) can be transformed to

the Kleinfeld model (1). Hence, the learning capability of this network

can be discussed as that of a standard DRNN.

(b) There is a variety of nonlinear dynamics described by the following

form of a delay-differential equation:

d

dt
ξ(t) = F̃ (ξ(t), ξ(t − τ1), . . ., ξ(t − τd)) (11)

such as lasers (Ikeda & Matsumoto, 1987; Aida & Davis, 1992), a blood

pressure model (Mackey & Glass, 1977), a growth model of a single

species (Hale, 1977), and delay coordinate embedding of nonlinear dy-

namics (Takens, 1981). Such dynamics F̃ can be well approximated



by MLP F , because the MLP has a universal approximation capability

(Funahashi, 1989; Hornik, 1989; Cybenko, 1989).

3. 2 Practical Setting of Algorithm

In the studies of ORNN, learning algorithms often become unstable when

numerical integration of the network equation gives rise to a divergence so-

lution, i.e., x→∞ as t→∞ (Doya, 1991). Similar problems may also happen

in the learning of the DRNN. In order to avoid such numerical instability

problems, which are typically caused by integration of the network dynamics

for a long time interval T , the cost function of Eq. (3) is redefined for a

teacher signal ξ(t) divided into S-windows as

E(Ω) =
S∑

n=1

∫ n·T/S

(n−1)·T/S

1

2
·{x(t) − ξ(t)}2 dt. (12)

At every starting point of the windowed interval, t = 0, T/S, 2·T/S, . . ., (S −

1)·T/S, the initial condition of the DRNN (10) is reset by using the teacher

signal as xt(θ) = ξ(t − θ) (θ ∈ [−τ, 0]). The modified cost function (12) is

then minimized by the quasi-Newton method

Ωnew = Ωold − H(Ωold)·∇E(Ωold), (13)

where ∇E and H stand for a gradient vector and an approximate ∗ of the

inverse Hessian of E, respectively. The first derivatives ∂E/∂ω are computed

by using the TDRL algorithm of subsection 2. 4 and every differential equa-

tion is integrated by the Euler method with a small enough integration step.
∗ There is a variety of update formulas for approximating a series of H using E and

∇E. In our numerical experiments, the Broyden-Fletcher-Goldfarb-Shanno formula with

Luenberger’s self-scaling formula (Luenberger, 1973) is exploited.



The Euler’s integration algorithm for the RFDE has been described in detail

by Farmer (1982). The termination condition of the learning process is set

as maxω|∂E/∂ω| < 10−4.

3. 3 Delay Constant Parameters

In the learning of the DRNN of Eq. (10), we should carefully choose the delay

parameters τ1,. . .,τd, because the learning capability strongly depends upon

the delay parameters. In principle, it is possible to consider the delay pa-

rameters as learning parameters and adjust them by the learning algorithm.

To our experience, however, the learning process of the delay parameters is

quite sensitive to initial setting of the delay parameters. In order not to

complicate the learning process of the DRNN, in this study, we fix the delay

parameters prior to the learning. The delay parameters are chosen according

to the following criteria.

(a) In case of learning a teacher signal ξ(t) generated from the delay-

differential equation of the form ξ̇(t) = F̃ (ξ(t), ξ(t− τ1), . . ., ξ(t − τd)),

it is best to utilize the corresponding delay parameters τ1,. . .,τd for the

DRNN of Eq. (10). In chaotic data analysis, methods have been devel-

oped for identifying the time delays hidden behind the data signal ξ(t).

A maximal correlation function technique (Voss & Kurths, 1997) pro-

vides a reliable way to detect multiple time delays in the data. Using

this technique, optimal delay parameters are determined (see Appendix

D for details of the technique).

(b) In case that the signal ξ(t) is not generated from a delay-differential



equation as (a), the maximal correlation function technique fails to

detect optimal time delays. Then, we use a delay-coordinate embed-

ding technique (Takens, 1981; Sauer, York, & Casdagli, 1991). In this

technique, the signal ξ(t) is transformed to a (d + 1)-dimensional de-

lay coordinate space {ξ(t), ξ(t − τ1), . . ., ξ(t − τd)}. It has been proven

that qualitative dynamics of the original system that generates the sig-

nal can be reconstructed in the delay coordinate space if the dimension

d+1 is large enough. This implies that there exits an implicit dynamics

of the form ξ̇(t) = F̃ (ξ(t), ξ(t − τ1), . . ., ξ(t − τd)). We try to approxi-

mate this dynamics F̃ by using the MLP F . The embedding dimension

d + 1 can be determined by using a false nearest neighbor algorithm

(Abarbanel, 1996). About the delay parameters, it is mathematically

guaranteed that for a generic choice of delay parameters the delay co-

ordinate transformation provides an embedding (Takens, 1981; Sauer,

York, & Casdagli, 1991). There are, however, empirical methods for

choosing good delay parameters that work efficiently for analyzing real

data (Abarbanel, 1996; Kantz & Schreiber, 1997). Among such tech-

niques, we use an auto-correlation function technique that is to choose

such delay τ that first intersects the zero line of the auto-correlation

function of the signal ξ(t).



3. 4 Mackey-Glass Equation

As a first learning example, a chaotic signal generated from the following

Mackey-Glass equation (Mackey & Glass, 1977) is utilized:

d

dt
ξ(t) = 0.2· ξ(t − 17)

1 + ξ10(t − 17)
− 0.1·ξ(t). (14)

According to the Lyapunov spectrum analysis (Farmer, 1982), this system

has a first positive Lyapunov exponent of λ1 = 0.0052 with the Lyapunov

dimension (Kaplan & York, 1987) of DL = 2.14.

Using the Mackey-Glass data {ξ(t)|0 < t < 200} as a teacher signal,

let us apply the learning algorithm to the DRNN (10). First, we identify

the delay parameter τ by the maximal correlation function technique (see

Appendix D for details). Figure 2 shows the maximal correlation function

Rmax(τ) computed for the teacher signal {ξ(t)} with a time delay varied

as τ∈[4, 20]. We see that the maximal correlation of Rmax≈1 is realized at

τ = 17. The value of Rmax≈1 gives the strongest evidence for an existence

of time delayed feedback in the teacher signal. We therefore use this time

delay for the learning of the teacher signal. Namely, for DRNN of Eq. (10)

that has one delayed feedback (d = 1) with τ = 17, the TDRL algorithm is

applied. The number of the middle units is set as h = 5 and the time interval

T = 200 is divided by S = 100 in the cost function (12).

Figure 3 shows a change in the cost function E with increasing the learn-

ing steps. After 1068-iterative learning, the DRNN achieved qualitatively

similar chaotic dynamics as the original (see Figs. 4 (a) and (b)). According

to the Lyapunov spectrum analysis, the network has a first positive Lya-

punov exponent of λ1 = 0.0057 with the Lyapunov dimension of DL = 2.15.



These values are quite similar to those of the original Mackey-Glass equation.

Hence, not only visually but also quantitatively similar dynamics has been

achieved by the DRNN.

Let us consider the case when learning the Mackey-Glass equation by

ORNN. In order to learn the Mackey-Glass equation that has the Lyapunov

dimension of DL = 2.14, one visible unit and at least two hidden units are

required for the ORNN. More hidden units are required as the time delay

of the Mackey-Glass equation is increased, since larger time delay gives rise

to much higher-dimensional complex dynamics in the Mackey-Glass system.

The present experiment therefore demonstrates that the DRNN can avoid

introducing such a large number of hidden units by making good use of

time-delayed feedback.

3. 5 Rössler Equation

As a second example, a chaotic signal generated from the following Rössler

equations (Rössler, 1979) is studied:

dξ1

dt
= ξ2 − ξ3,

dξ2

dt
= ξ1 + 0.4·ξ2, (15)

dξ3

dt
= 2 − (4 − ξ1)·ξ3.

Among the three dynamical variables, the first variable ξ1(t) is used as the

teacher signal. According to the Lyapunov spectrum analysis (Shimada &

Nagashima, 1979), this Rössler system has a first positive Lyapunov exponent

of λ1 = 0.089 with the Lyapunov dimension of DL = 2.022.



Using the Rössler data {ξ1(t)|0 < t < 80} as a teacher signal, the learning

algorithm is applied to the DRNN (10). Since the data are not generated from

a delay-differential equation, the maximal correlation function technique fails

to identify an optimal time delay parameter for the teacher signal. In stead

of the maximal correlation function technique, by using the auto-correlation

function technique with the false nearest neighbor algorithm, two time delays

(d = 2) are set as (τ1, τ2) = (0.8, 1.6) for the DRNN (10) † . The number of

the middle units is set as h = 8 and the time interval T = 80 is divided by

S = 100 in the cost function (12).

After 2250-iterative learning, the DRNN achieved qualitatively similar

chaotic dynamics as the original (see Figs. 5 (a) and (b)). According to

the Lyapunov spectrum analysis, the network has a first positive Lyapunov

exponent of λ1 = 0.072 with the Lyapunov dimension of DL = 2.035. These

values are again quite similar to those of the original Rössler equations.

3. 6 Robustness Against Noise

Let us study robustness of the learning of the DRNN against observational

noise. By adding Gaussian noise {νi} (E[νi] = 0, E[ν2
i ] = σ2) to the teacher

signal as {ξ(i·Δt) + νi} (Δt: sampling time), we investigate influence of the

noise on the accuracy of learning the original signal {ξ(i·Δt)} by DRNN.

The learning accuracy is measured by a nonlinear prediction error as follows.

† By the false nearest neighbor algorithm (Abarbanel, 1996), the minimum embedding

dimension required for the teacher signal was found to be three. Two time delayed feed-

backs are utilized in order to realize 3-dimensional delay coordinate reconstruction of the

teacher signal.



First, the teacher signal {ξ(t)} is divided into the first and the second halves.

From the first half data with additive Gaussian noise, DRNN is optimized

by the learning algorithm. Then, for the second half data with no noise

added, nonlinear prediction is carried out by using the optimized DRNN.

In the nonlinear prediction, for a given initial state xt(θ) = ξ(t + θ) with

θ∈[−τ, 0], the κ-time interval future state ξ(t + κ) is predicted as x(t + κ)

= Φκ(xt), where Φκ : C([−τ, 0], R1) → R1 stands for a time evolution of the

DRNN with κ-time interval. The nonlinear prediction error NPE is finally

computed as the following normalized root-mean-square error

NPE =
E[{ξ(t + κ) − x(t + κ)}2]

1
2

E[{ξ(t) − E[ξ(t)]}2]
1
2

, (16)

where E[·] stands for an averaging over time series.

As the teacher signals, chaotic solutions of the Rössler equations and the

Mackey-Glass equation introduced in subsections 3. 4 and 3. 5 are utilized,

where conditions of the learning algorithm are set to be the same as those

of the previous subsections. In order to compare with the DRNN, nonlinear

prediction errors are also computed for two types of other neural networks:

(1) ORNNs and (2) TDNNs (see Appendix E for detailed description of the

neural models).

Figures 6 show dependence of the nonlinear prediction errors of DRNN

(solid line with squares), ORNN (dotted line with crosses), and TDNN

(dashed line with circles) on the noise level σ. While the Mackey-Glass

data are predicted with a prediction interval of κ = 4.1 in Fig. 6 (a), the

Rössler data are predicted with a prediction interval of κ = 5.2 in Fig. 6

(b). Each prediction error is drawn by averaging the NPE over 10 realiza-



tions of the neural networks obtained by the learning algorithm started from

different initial conditions of the weight parameters. As the noise level σ is

increased, the prediction error also increases for all three neural networks.

Compared to ORNN and TDNN, DRNN shows better prediction accuracy

especially for the learning of the Mackey-Glass equation. This might be due

to the following reasons.

(a) For the learning of a signal ξ(t) generated from the Mackey-Glass delay-

differential equation, DRNN that belong to the same equational class

should provide better prediction models than other neural networks.

(b) TDNN can be considered as the Euler’s discretization of the continuous-

time DRNN. As the Euler’s discretization step Δt is increased, nonlin-

earity of the time evolution of the teacher signal, that is, ξ(t)→ξ(t+Δt),

gets much stronger. Learning the time evolution with such stronger

nonlinearity by TDNN should get worse for a large discretization step

Δt.

(c) For the learning of the Rössler dynamics, DRNN and ORNN give rise

to similar prediction curves especially in a small noise regime. This

implies that both networks are capable of learning dynamics generated

from ordinary differential equations with good accuracy. DRNN is

slightly better than ORNN, because more dynamical information with

continuous mapping ξt([−τ, 0]) is given as an initial condition to DRNN.

(d) Increase in prediction errors of TDNN with increasing the noise inten-

sity is not so significant as that of ORNN. This might be due to the fact



that, in the learning of the ORNN, influence of noise is amplified by

a time discretization procedure of ξ̇(t)≈ ξ(t+Δt)−ξ(t)
Δt

+ ν(t+Δt)−ν(t)
Δt

. This

noise amplification makes the learning of the ORNN much more sen-

sitive to noise. The DRNN, on the other hand, is robust against such

amplified noise.

3. 7 Effect of Noise on Initial Condition

One of the drawbacks of utilizing DRNN for learning complex signals is the

continuum of data required to set the initial condition x0([−τ, 0]). If noisy

signals are input to the initial condition, dynamical behavior of the DRNN

may become very unstable. In this subsection, we examine an effect of noise

in the initial condition of the DRNN by computing the nonlinear prediction

error as follows.

First, teacher signal {ξ(t)} is divided into the first and the second halves.

From the first half data with no noise added, DRNN (10) is optimized by the

learning algorithm. Then, for the second half data, nonlinear prediction is

carried out by using the optimized DRNN. As discussed in subsection 2. 5, in

numerical experiments, the initial condition of the DRNN is represented by J1

sets of dynamical variables {xt(−i·Δt)|i = 0, 1, . . ., J1−1} divided with a time

interval of Δt = τ/(J1−1). In the nonlinear prediction, the initial condition is

set using a noisy signal as xt(−i·Δt) = ξ(t− i·Δt) + νi (i = 0, 1, . . ., J1 − 1),

where {νi} is Gaussian noise with E[νi] = 0 and E[ν2
i ] = σ2. From the

noisy initial condition, the κ-time interval future state of the noise-free signal

ξ(t + κ) is predicted as ξ̃(t + κ) = Φκ(ξt). The nonlinear prediction error is



finally computed by Eq. (16).

Except for the noisy initial condition explained above, experimental con-

ditions are set to be the same as those of subsection 3. 6. Namely, chaotic

solutions of the Rössler equations and the Mackey-Glass equation are used as

the teacher signals and the prediction accuracy of DRNN is compared with

those of ORNN and TDNN.

Figures 7 show dependence of the nonlinear prediction errors of DRNN

(solid line with squares), ORNN (dotted line with crosses), and TDNN

(dashed line with circles) on the noise level σ. As the noise level σ is in-

creased, the prediction error also increases for all three neural networks.

Compared to ORNN and TDNN, DRNN gives the lowest prediction errors

for both chaotic signals. In particular, excellence of the DRNN is clearly

shown in the nonlinear prediction of the Mackey-Glass data. This experi-

ment therefore implies that the effect of noise on the initial condition of the

DRNN is not at all in a level of destabilizing the network behavior.

4. Conclusions and Discussions

In this paper, the learning algorithms and the learning capability of the

DRNN have been investigated based on the comparative studies with ORNN

and TDNN. Advantages ((A1)-(A4)) as well as disadvantages ((D1)-(D3)) of

the DRNN are summarized as follows.

(A1) When the TDRL algorithm is utilized for DRNN, the computational

cost can be largely reduced from the RTRL algorithm. In the TDRL



algorithm, the memory requirement for the DRNN is the same as that

for the ORNN.

(A2) For learning chaotic signals, DRNN was better than both ORNN and

TDNN especially when learning a teacher signal generated from a delay-

differential equation.

(A3) The learning process of the DRNN was robust against observational

noise in the same level as that of the TDNN. DRNN was also robust

against additive noise on the initial condition.

(A4) Instead of using hidden units that require a delicate optimization pro-

cess of the initial condition, the learning capability of the DRNN can

be controlled by using time delays.

(D1) The state space of the DRNN is represented by a continuous mapping

of finite time interval to all dynamical variables. This makes numerical

integration of the dynamical equations and the learning equations very

costly.

(D2) In the RTRL algorithm, much more computational cost with larger

memory is required for DRNN than ORNN.

(D3) It is not always easy to utilize DRNN, because a continuum of data are

required to set the initial condition.

According to the summary above, we may conclude that, to learn complex

chaotic signals that might be contaminated with observational noise, DRNN

provides a good network model when the teacher signal is generated from



a delay-differential equation. This conclusion might sound as a matter of

course, because it should be easier to learn a delay-differential equation by

using a DRNN that belongs to the same equational class. There is, however,

a variety of high-dimensional complex signals in nature that are generated

from delay-differential equations (Hale, 1977). Modelling such signals by

ORNN or TDNN does not always provide a bright strategy to deal with

the problem, because some of the important dynamical information such as

the time delayed feedback structure are lost by such network models. The

DRNN that gives a more precise model should be utilized for learning the

high-dimensional complex signals.

In the present experiments, learning capability of recurrent neural net-

works with only delta-function type delays has been investigated. As is

described in Section 2, various types of delays can be considered for neural

network models. It is an interesting future problem to investigate learning

capability of DRNN with other types of time delays.

Finally, delayed feedback systems can be found also in many engineering

systems such as the passive optical resonator (Ikeda & Matsumoto, 1987).

This laser system is known to exhibit rich dynamical phenomena such as

higher-harmonic bifurcations that give rise to multi-stability of infinitely

many periodic attractors. This multi-stability has been actually used as a

memory device for complex information coding (Aida & Davis, 1992). This

implies that the neural network with time-delays may also give rise to this

type of multi-stability and might be capable of learning and embedding many

attractors in the network. Learning multiple dynamics may also provide us



with an interesting new application of the DRNN.
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ABBREBATIONS

DRNN: Delayed Recurrent Neural Network

ORNN: Ordinary differential equation model of Recurrent Neural Network

ODE: Ordinary Differential Equation

RFDE: Retarded Functional Differential Equation

RTRL: Real Time Recurrent Learning

TDNN: Time-Delay Neural Network

TDRL: Time Dependent Recurrent Learning

MLP: Multi-Layer Perceptron



Appendix A

In this appendix, we show how the first derivatives ∂E/∂ω are computed by

the TDRL algorithm using the Lagrange multipliers λ = {λ1, λ2, . . ., λN}.

First, we rewrite the cost function of Eq. (3) as

L(Ω) =
∫ T

0

[ N∑
i=1

{ 1

2
·δi∈V ·{xi(t) − ξi(t)}2

− λi(t)·{ẋi(t) − fi(xt, z(t), Ω)}
} ]

dt. (a1)

Then, the first derivatives ∂L/∂ω are calculated as

∂L

∂ω
=

∫ T

0

[ N∑
i=1

{
δi∈V ·{xi(t) − ξi(t)}·∂xi

∂ω
(t)

+ λi(t)·
N∑

j=1

∫ 0

−τ
ds

∂fi

∂xj
t (s)

(xt, z(t), Ω)·∂xj

∂ω
(t + s)

− λi(t)· d

dt
(
∂xi

∂ω
) + λi(t)·∂fi

∂ω
(xt, z(t), Ω)

− λi

∂ω
·{ẋi(t) − fi(xt, z(t), Ω)}

} ]
dt. (a2)

By the network dynamics of Eq. (2), the final term of Eq. (a2) vanishes.

Since the second term of the Eq. (a2) can be written by the transformation

t′ = t + s as

∫ T

0

[ N∑
i=1

{
λi(t)·

N∑
j=1

∫ 0

−τ
ds

∂fi

∂xj
t (s)

(xt, z(t), Ω)·∂xj

∂ω
(t + s)

} ]
dt

=
∫ T

0

[ N∑
i=1

{ ∂xi

∂ω
(t′)·

N∑
j=1

∫ 0

−τ
ds δt′∈[0,T+s]·λj(t

′ − s)·

∂fj

∂xi
t′−s(s)

(xt′−s, z(t′ − s), Ω)
} ]

dt′, (a3)

the first derivatives ∂L/∂ω become



∂L

∂ω
=

∫ T

0

[ N∑
i=1

{ ∂xi

∂ω
(t)·{ δi∈V ·(xi(t) − ξi(t))

+
N∑

j=1

∫ 0

−τ
ds δt∈[0,T+s]·λj(t − s)· ∂fj

∂xi
t−s(s)

(xt−s, z(t − s), Ω) }

− λi(t)· d

dt
(
∂xi

∂ω
) + λi(t)·∂fi

∂ω
(xt, z(t), Ω)

} ]
dt. (a4)

Suppose that the Lagrange multipliers λ(t) satisfy Eqs. (7) (see subsection

2. 4) with a boundary condition λ(T ) = 0. Then, the first, the second, and

the third terms of Eq. (a4) become

−
∫ T

0

N∑
i=1

{ d

dt
λi(t)·∂xi

∂ω
(t) + λi(t)· d

dt

∂xi

∂ω
(t) } dt

= −
N∑

i=1

{ λi(0)·∂xi

∂ω
(0) + λi(T )·∂xi

∂ω
(T ) }. (a5)

Since ∂xi/∂ω(0) = 0 and λ(T ) = 0, the above terms also vanish. Therefore,

the first derivatives ∂E/∂ω can be calculated by integrating the final term

of Eq. (a4) (see Eq. (8)).



Appendix B

In subsections 2. 3 and 2. 4, learning algorithms have been introduced

for DRNN using a general form of RFDE (2). To be more practical, this

appendix provides explicit equational forms for (I) the RTRL algorithm and

(II) the TDRL algorithm for the Kleinfeld model (1).

(I) The main part of the RTRL algorithm is the computation of the

first variational equations (6). For the Kleinfeld model (1), the variational

equations can be written in explicit mathematical forms as

d

dt
(

∂xi

∂Wkl
)(t) = δi=k·Vl(t) − 1

R
· ∂xi

∂Wkl
(t) +

N∑
j=1

Wij ·G′(xj(t))· ∂xj

∂Wkl
(t)

+
N∑

j=1

Dij·
∫ 0

−τ
G′(xj(t + s))· ∂xj

∂Wkl
(t + s)·Dj(s) ds, (b1)

d

dt
(

∂xi

∂Dkl

)(t) = δi=k·VDl
(t) − 1

R
· ∂xi

∂Dkl

(t) +
N∑

j=1

Wij ·G′(xj(t))· ∂xj

∂Dkl

(t)

+
N∑

j=1

Dij·
∫ 0

−τ
G′(xj(t + s))· ∂xj

∂Dkl
(t + s)·Dj(s) ds, (b2)

d

dt
(

∂xi

∂Ikn
)(t) = δi=k·zl(t) − 1

R
· ∂xi

∂Ikn
(t) +

N∑
j=1

Wij ·G′(xj(t))· ∂xj

∂Ikn
(t)

+
N∑

j=1

Dij·
∫ 0

−τ
G′(xj(t + s))· ∂xj

∂Ikn

(t + s)·Dj(s) ds, (b3)

for weight matrices {(Wkl, DklIkn) : k, l = 1, . . ., N, n = 1, . . ., m}.

(II) In the TDRL algorithm, Lagrange multipliers λ(t) are calculated

by the backward equations (7). For the Kleinfeld model (1), the backward

equations can be written as

d

dt
λi(t) = δi∈V ·{ξi(t) − xi(t)} +

1

R
·λi(t) − G′(xi(t))·

N∑
j=1

{Wji·λj(t) +

Dji·
∫ 0

−τ
δt∈[0,T+s]·λj(t − s)·Di(s) ds}. (b4)



Then, the first derivatives are integrated as

∂L

∂Wkl
=

∫ T

0
λk(t)·Vl(t) dt, (b5)

∂L

∂Dkl

=
∫ T

0
λk(t)·VDl

(t) dt, (b6)

∂L

∂Ikn
=

∫ T

0
dt λk(t)·zn(t). (b7)



Appendix C

This appendix shows how the neural network model of Eq. (10) is trans-

formed to the Kleinfeld model (1). First, using a time constant R, a new

term −x/R is added to Eq. (10) as

d

dt
x(t) = − 1

R
·x(t) +

h∑
k=1

ω
(1)
k ·G(ω

(2)
k ·x(t) +

d∑
j=1

ω
(3)
kj ·x(t − τj) + ω

(4)
k ). (c1)

The parameter R is chosen large enough so that the neural network (c1)

exhibits qualitatively the same dynamics as the original equation (10). If we

set

yk(t) = ω
(2)
k ·x(t) +

d∑
j=1

ω
(3)
kj ·x(t − τj) + ω

(4)
k (c2)

for k = 1, 2, . . ., h, then, the network (c1) becomes

d

dt
x(t) = − 1

R
·x(t) +

h∑
j=1

ω
(1)
j ·G(yj(t)), (c3)

d

dt
yk(t) = ω

(2)
k ·dx

dt
(t) +

d∑
j=1

ω
(3)
kj ·

dx

dt
(t − τj)

= − 1

R
·yk(t) +

1

R
·ω(4)

k +
h∑

j=1

ω
(2)
k ·ω(1)

j ·G(yj(t))

+
d∑

l=1

h∑
j=1

ω
(3)
kl ·ω(1)

j ·G(yj(t − τl)). (c4)

Since R is chosen large enough, we may drop the (ω
(4)
k /R) term in Eq. (c4).

By setting

z1 = x, z2 = y1, z3 = y2, · · ·, zh+1 = yh, (c5)

W1 j = ω
(1)
j , Wi 1 = 0, Wi+1 j+1 = ω

(2)
i ·ω(1)

j , (c6)

D1 k j = 0, Di k 1 = 0, Di+1 k j+1 = ω
(3)
ki ·ω(1)

j , (c7)

for i, j = 1, 2, . . ., h, k = 1, 2, . . ., d, we obtain the following DRNN

d

dt
zi(t) = − 1

R
·zi(t) +

h+1∑
j=1

Wij·G(zj(t)) +
d∑

k=1

h+1∑
j=1

Dikj·G(zj(t − τk)), (c8)



which is in the form of the Kleinfeld network (1) with (h+1) neurons, multiple

delta function-type delays, and no external input.



Appendix D

This appendix briefly explains a maximal correlation function technique

(Voss & Kurths, 1997) for detecting time delays τ1, . . ., τd in time series {ξ(t)}

generated from the following delay-differential equation:

h(
dξ

dt
(t)) = f0(ξ(t)) +

d∑
i=1

fi(ξ(t − τi)). (d1)

The functions h and f0,. . .,fd are assumed to be continuous.

The main point of this approach is to maximize the correlation coefficient

R(X, Y ) =
E[X·Y ] − E[X]·E[Y ]√

E[X2]·E[Y 2]
(d2)

between two variables

X = Φ(
dξ

dt
(t)) (d3)

Y = φ0(ξ(t)) +
d∑

i=1

φi(ξ(t − τ̂i)) (d4)

with respect to transformations Φ, φ0,. . ., φd, which are all one-to-one con-

tinuous nonlinear functions.

The alternating conditional expectation (ACE) algorithm provides an it-

erative technique (see Voss & Kurths, 1997 for technical details) to maximize

the correlation R(X, Y ) by seeking for a set of optimal transformations Φ∗,

φ∗
0,. . ., φ∗

d. Based on the ACE algorithm, the maximal correlation function

Rmax(τ̂1, . . ., τ̂d) = maxΦ,φ0,...,φd
R(X, Y ) (d5)

can be obtained for a time series {ξ(t)}. If the time delays τ̂1, . . ., τ̂d are set

to be the same as those of the original equation (d1), the optimal trans-

formations are expected to coincide with the original functions as Φ∗ =



h, φ∗
i = fi (i = 0, . . ., d) and the maximal correlation becomes one, ı.e.,

Rmax(τ1, . . ., τd) = 1.

Since the time delays are supposed to be unknown in experimental situa-

tions, for various settings of time delays {τ̂1, . . ., τ̂d}, we compute the maximal

correlation function Rmax(τ̂1, . . ., τ̂d) and seek for a set of delays {τ ∗
1 , . . ., τ ∗

d}

that give rise to the maximal correlation of Rmax(τ
∗
1 , . . ., τ ∗

d )≈1. In Fig. 2,

the result of applying the maximal correlation function technique to a time

series generated from the Mackey-Glass equation is shown.



Appendix E

In subsections 3. 6 and 3. 7, (A) ORNN and (B) TDNN are compared

with DRNN. This appendix provides details of the two neural networks.

(A) The ORNN is described as follows

d

dt
xi(t) = F (Ω, x1(t), x2(t), . . ., xN (t)) (e1)

=
h∑

k=1

ω
(1)
ik ·G(

N∑
j=1

ω
(2)
kj ·xj(t) + ω

(3)
k ). (e2)

This network has N dynamical variables x1(t),. . .,xN (t) and K weight pa-

rameters Ω = {ω(1)
ik , ω

(2)
kj , ω

(3)
k } (∈ RK). The function F : RK × RN → RN

is based on the MLP that has N units in the input layer, h units in the

middle layer, and N units in the output layer. Because of the universal

approximation capability of the MLP, this neural network has been widely

used to study learning capability of ORNN (Sato, Murakami, & Joe, 1990).

In particular, Funahashi and Nakamura (1993) proved that the ORNN of

Eq. (e2) is capable of approximating any dynamics generated from ordinary

differential equations.

For the learning of a single time series {ξ(t)} in subsections 3. 6 and 3.

7, delay-coordinate embedding technique was exploited. Namely, the time

series was reconstructed in a delay coordinate space {(ξ(t), ξ(t− τ), . . ., ξ(t−

(N − 1)·τ)}, which were used as teacher signals for the dynamical variables

{x1(t),x2(t),. . ., xN(t)}, respectively. Since each unit has a corresponding

teacher signal, there were no hidden units. To choose the time lag τ , auto-

correlation function technique was used. For the learning of the Mackey-Glass

equation (14) and the Rössler equations (15), the number of the dynamical



units, the number of the middle units, and the time lag were set as (N, h, τ)

= (3, 10, 0.8) and (3, 10, 7.5), respectively. Other learning conditions were set

to be the same as those of the DRNN.

(B) The TDNN used in subsections 3. 6 and 3. 7 is described as

x((i + 1)·Δt) = F (Ω, x(i·Δt), x((i − 1)·Δt), . . ., x((i − N + 1)·Δt))(e3)

=
h∑

k=1

ω
(1)
k ·G(

N∑
j=1

ω
(2)
kj ·x((i − j + 1)·Δt) + ω

(3)
k ). (e4)

This network has K weight parameters Ω = {ω(1)
k , ω

(2)
kj , ω

(3)
k } (∈ RK) and

N dynamical variables x(i·Δt), x((i − 1)·Δt),. . ., x((i − N + 1)·Δt) that

change discretely in time with a discretization step of Δt. The function

F : RK × RN → RN is again based the MLP that has N units in the input

layer, h units in the middle layer, and N units in the output layer. Due to the

universal approximation capability of the MLP, this neural network has been

widely used to model complex dynamics such as speech (Tank & Hopfield,

1987; Anderson & van Essen, 1987; Mozer, 1989) and chaos (Lapedes &

Farber, 1987). For the learning of the Mackey-Glass equation (14) and the

Rössler equations (15), the number of the dynamical units, the number of the

middle units, and the discretization step were set as (N, h, Δt) = (5, 5, 4.1)

and (4, 10, 0.52), respectively. Other learning conditions were set to be the

same as those of the DRNN.



Figure 1: Schematic illustration of the Kleinfeld network of Eq. (1). Dynamical states

of the N -neurons {x1, . . ., xN} are driven by the feedback connections from their outputs

{V1, . . ., VN} and the delayed outputs {VD1 , . . ., VDN }. The network also receive m-external

inputs {z1, . . ., zm}.
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Figure 2: Maximal correlation function Rmax(τ) computed for the Mackey-Glass data

with various time delay τ∈[4, 20]. The time delay of the original Mackey-Glass equation

is identified at τ∗ = 17 with Rmax(τ∗)≈1.
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Figure 3: Cost function E(Ω) v.s. iterative steps of the learning algorithm.
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Figure 4: (a) Mackey-Glass dynamics of Eq. (14) in the (ξ(t), ξ(t − 17))-space. (b)

Dynamics of the DRNN (10) in the (x(t), x(t−17))-space after 1068-iterative learning. The

network has one dynamical unit, one delayed feedback, and 5 middle units. 2-dimensional

and 3-dimensional dynamics



(a)

-4

-2

0

2

4

6

-4 -2 0 2 4 6

ξ 1 (t-0.8)

ξ 1 (t)

(b)

-4

-2

0

2

4

6

-4 -2 0 2 4 6

x(t-0.8)

x(t)

Figure 5: (a) Rössler dynamics of Eq. (15) in the (ξ1(t), ξ1(t−0.8))-space. (b) Dynamics

of the DRNN (10) in the (x(t), x(t−0.8))-space after 2250-iterative learning. The network

has one dynamical unit, two delayed feedbacks, and 8 middle units.
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Figure 6: Nonlinear prediction errors of DRNN (solid line with squares), ORNN (dotted

line with crosses), and TDNN (dashed line with circles) with an increasing noise level σ.

As teacher signals, time series {ξ(t)} generated from the Mackey-Glass equation (14) and

the Rössler equations (15) are used for (a) and (b), respectively. The prediction intervals

are fixed as K = 4.1 and 5.2 for (a) and (b), respectively.
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Figure 7: Nonlinear prediction errors of DRNN (solid line with squares), ORNN (dotted

line with crosses), and TDNN (dashed line with circles) with an increasing noise σ on the

initial condition. As teacher signals, time series {ξ(t)} generated from the Mackey-Glass

equation (14) and the Rössler equations (15) are used for (a) and (b), respectively.



Table 1: Comparison of the memory size and the computational cost required

for learning algorithms of DRNN and ORNN (N : the number of neurons, K:

the number of weight parameters, J1: the division number of time interval

τ , J2: the division number of time interval T ).

DRNN ORNN

RTRL

Algorithm

Memory Size

Computation

N ·K·J1

N ·K Sets of RFDEs

N ·K

N ·K Sets of ODEs

TDRL

Algorithm

Memory Size

Computation

N ·J2

N Sets of RFDEs

N ·J2

N Sets of ODEs


