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Abstract

This paper proposes a novel algorithm for temporal decomposition (TD) of speech,
called ‘Limited Error Based Event Localizing Temporal Decomposition’ (LEBEL-
TD), and its application to variable-rate speech coding. In previous work with TD,
TD analysis was usually performed on each speech segment of about 200-300 ms
or more, making it impractical for online applications. In this present work, the
event localization is determined based on a limited error criterion and a local op-
timization strategy, which results in an average algorithmic delay of 65 ms. Sim-
ulation results show that an average log spectral distortion of about 1.5 dB can
be achievable at an event rate of 20 events/sec. Also, LEBEL-TD uses neither the
computationally costly singular value decomposition routine nor the event refine-
ment process, thus reducing significantly the computational cost of TD. Further, a
method for variable-rate speech coding an average rate of around 1.8 kbps based
on STRAIGHT (Speech Transformation and Representation using Adaptive Inter-
polation of weiGHTed spectrum), which is a high-quality speech analysis-synthesis
framework, using LEBEL-TD is also realized. Subjective test results indicate that
the performance of the proposed speech coding method is comparable to that of the
4.8 kbps FS-1016 CELP coder.
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1 Introduction

Most existing low rate speech coders analyze speech in frames according to
a model of speech production. Such a model is the linear predictive coding
(LPC) model. However, speech production can be considered as a sequence
of overlapping articulatory gestures, each producing an acoustic event that
should approximate an articulatory target (Fallside and Woods, 1985). Due
to co-articulation and reduction in fluent speech, a target may not be reached
before articulation towards the next phonetic target begins. The non-uniform
distribution of these speech events is not exploited in frame-based systems.

The so-called temporal decomposition (TD) method (Atal, 1983) for analyzing
the speech signals achieves the objective of decomposing speech into targets
and their temporal evolutionary patterns without any recourse to any explicit
phonetic knowledge. This model of speech takes into account the above ar-
ticulatory considerations and results in a description of speech in terms of a
sequence of overlapping event functions and corresponding event vectors as
given in Equation (1).

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (1)

where ak, the kth event vector, is the speech parameters corresponding to the
kth target. The temporal evolution of this target is described by the kth event
function, φk(n). ŷ(n) is the approximation of y(n), the nth spectral parameter
vector, produced by the TD model. N and K are the number of frames and
number of events in the block of spectral parameters under consideration,
respectively.

Despite the fact that TD has the potential to become a versatile tool in speech
analysis, its high-computational complexity and long-algorithmic delay make
it impractical for online applications. In the original TD method by Atal
(1983), TD analysis is performed on each speech segment of about 200-300
ms, thus resulting in an algorithmic delay of more than 200 ms. In addi-
tion, Atal’s method is very computationally costly, which has been mainly
attributed to the use of the singular value decomposition (SVD) routine and
the iterative refinement process (Van Dijk-Kappers and Marcus, 1989). These
prevent Atal’s method from online applications.

Most of modified algorithms for TD have been mainly proposed to overcome
the drawback of high computational cost incurred by the original TD method.
The algorithm for TD proposed in (Nandasena et al., 2001), S2BEL-TD, re-
duces the computational cost of TD by avoiding the use of SVD, but the
long algorithmic delay has more or less remained the same. S2BEL-TD uses
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a spectral stability criterion to determine the initial event locations. Mean-
while, the event localization in the optimized TD (OTD) method (Athaudage
et al., 1999) is performed using an optimized approach (dynamic program-
ming). Although the OTD method can achieve very good results in terms of
reconstruction accuracy, but its long algorithmic delay (more than 450 ms)
makes it suitable for speech storage related applications only. Also, both the
OTD and S2BEL-TD methods use the line spectral frequency (LSF) param-
eters (Itakura, 1975) as input, which might cause the corresponding LPC
synthesis filter to be unstable. This is because there is no guarantee that the
selected LSF parameters are valid after the spectral transformation performed
by these two TD methods. The restricted TD (RTD) (Kim and Oh, 1999) and
the modified RTD (MRTD) (Nguyen and Akagi, 2002a) methods, on the other
hand, consider the ordering property of LSFs to make LSF parameters possi-
ble for TD. These methods require an average algorithmic delay of about 95
ms, while can achieve relatively good results.

In this paper, we propose a novel algorithm for temporal decomposition of
speech called ‘Limited Error Based Event Localizing Temporal Decomposi-
tion’ (LEBEL-TD). This method employs the restricted second order model
and a novel approach to event localization. Here, the event localization is ini-
tially performed based on a limited error criterion, and then further refined by
a local optimization strategy. In the following, the event vectors are set as the
original spectral parameter vectors at the event locations and thus, it can be
applied to decomposing the LSF parameters without considering the ordering
property of LSFs. This algorithm for TD requires only 65 ms average algo-
rithmic delay 1 , while can achieve results comparable to the S2BEL-TD, RTD
and MRTD methods. Moreover, LEBEL-TD uses neither the computationally
costly SVD routine nor the iterative refinement process, thus resulting in a
very low computational cost required for TD analysis.

We have also investigated the usefulness of LEBEL-TD in speech coding. In
this paper, a method for variable-rate speech coding based on STRAIGHT
(Speech Transformation and Representation using Adaptive Interpolation of
weiGHTed spectrum) (Kawahara et al., 1999), which is a high-quality speech
analysis-synthesis framework, using LEBEL-TD is presented. For encoding
spectral information of speech, LEBEL-TD based vector quantization (VQ)
is utilized, whilst other speech parameters are quantized using scalar quanti-
zation (SQ). Subjective results indicate that the performance of the proposed
speech coding method at an average rate of around 1.8 kbps can be comparable
to that of the 4.8 kbps US Federal Standard FS-1016 CELP coder (Campbell
et al., 1991).

1 the frame period is 10 ms long, as considered in S2BEL-TD, MRTD, and OTD.
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2 LEBEL-TD of speech spectral parameters

2.1 Restricted second order TD model

Assume that the co-articulation in speech production described by the TD
model in terms of overlapping event functions is limited to adjacent events,
the second order TD model (Niranjan and Fallside, 1989; Shiraki and Honda,
1991; Athaudage et al., 1999), where only two adjacent event functions can
overlap as depicted in Fig. 1, is given by Equation (2).

ŷ(n) = akφk(n) + ak+1φk+1(n), nk ≤ n < nk+1 (2)

where nk and nk+1 are the locations of event k and event (k +1), respectively.

(Fig. 1 is around here)

The so-called restricted second order TD model was utilized in (Dix and
Bloothooft, 1994; Kim and Oh, 1999; Nguyen and Akagi, 2002a,b) and this
work with an additional restriction to the event functions in the second order
TD model that all event functions at any time sum up to one. The argument
for imposing this constraint on the event functions can be found in (Dix and
Bloothooft, 1994). Equation (2) can be rewritten as follows.

ŷ(n) = akφk(n) + ak+1 (1− φk(n)) , nk ≤ n < nk+1 (3)

2.2 Determination of event functions

Assume that the locations nk and nk+1 of two consecutive events are known.
Then, the right half of the kth event function and the left half of the (k + 1)th

event function can be optimally evaluated by using ak = y(nk) and ak+1 =
y(nk+1). The reconstruction error, E(n), for the nth spectral parameter vector
is

E(n) = ‖ y(n)− ŷ(n) ‖2

= ‖ (y(n)− ak+1)− (ak − ak+1)φk(n) ‖2 (4)

where, nk ≤ n < nk+1. Therefore, φk(n) should be determined so that E(n) is
minimized.
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2.2.1 Geometric interpretation of TD

TD yields an approximation of a sequence of spectral parameters by a lin-
ear combination of event vectors. Since TD’s underlying distance metric is
Euclidean, a natural requirement is to have this approximation be invariant
with respect to a translation or rotation of the spectral parameters. Dix and
Bloothooft (1994) considered the geometric interpretation of TD results and
found that TD is rotation and scale invariant, but it is not translation invari-
ant.

In order to overcome this shortcoming and describe TD as a breakpoint anal-
ysis procedure in a multidimensional vector space, where breakpoints are con-
nected by straight line segments, Dix and Bloothooft (1994) enforced two
constraints on the event functions: (i) at any moment of time only two event
functions, which are adjacent in time, are non-zero; and (ii) all event func-
tions at any time sum up to one. In other words, the restricted second order
TD model was utilized in (Dix and Bloothooft, 1994). These constraints are
needed to approximate the path in parameter space by means of straight line
segments between breakpoints (see Fig. 2).

(Fig. 2 is around here)

Geometrically speaking, the two event vectors ak and ak+1 define a plane in
P-dimensional vector space. The determination of event functions φk(n) and
φk+1(n) in the interval [nk, nk+1] is now depicted in Fig. 3(a) as the projec-
tion of vector y(n) onto this plane. Clearly the following holds: φk(nk) = 1,
φk(nk+1) = 0, and 0 ≤ φk(n) ≤ 1 for nk ≤ n ≤ nk+1.

(Fig. 3 is around here)

While n ranges from nk to nk+1, the movement of vector y(n) is described by
the transition of ŷ(n) along the straight line segment connecting two break-
points ak and ak+1. As time is moving forward, the transition of ŷ(n) should
be monotonic.

2.2.2 New determination of event functions

The TD model is based on the hypothesis of articulatory movements towards
and away from targets. An appealing result of the above properties of event
functions is that one can interpret the values φk(n) as a kind of activation
values of the corresponding event. During the transition from one event to-
wards the next the activation value of the left event decreases from one to zero,
whilst the right event increases its activation value from zero to the value of
one. As mentioned earlier, to model the temporal structure of speech more
effectively no backwards transitions are allowed. Therefore, each event func-
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tion should have a growth cycle; during which the event function grows from
zero to one and a decay cycle; during which the event function decays from
one to zero. In other words, each event function should have only one peak,
which is called the well-shapedness property. On the contrary, an ill-shaped
event function can be viewed as an event function which has several growth
and decay cycles, i.e. having more than one peak.

Fig. 4 shows examples of well-shaped and ill-shaped event functions. It can be
seen that well-shaped event functions are desirable from speech coding point
of view because the well-shapedness property helps reduce the quantization
error of event functions when vector quantized.

(Fig. 4 is around here)

However, the determination of event functions in (Dix and Bloothooft, 1994)
has not guaranteed the well-shapedness property for them since their changes
during the transition from one event towards the next may not be monotonic,
which results in ill-shaped event functions. In particular, one may wonder that
if an event function has some values of one interlaced by other values, causing
the next event function to have more than one lobe, which is not acceptable in
the conventional TD method. Ill-shaped event functions are also undesirable
from speech coding point of view. They increase the quantization error when
vector quantized because the uncharacteristic valleys and secondary peaks are
not normally captured by the codebook functions. This is because an event
function is quantized by its length and shape in the interval between its and the
next event function’s locations. In that interval, a well-shaped event function
is always a decreasing function while an ill-shaped event function is always
non-monotonic.

Taking into account the above considerations, we have modified the determina-
tion of event functions corresponding to the point of the line segment between
ŷ(n− 1) and ak+1 (see Fig. 3(b)) instead of ak and ak+1 as considered in (Dix
and Bloothooft, 1994), with minimum distance from y(n). In mathematical
form, the above determination of event functions can be written as

φk(n) =





1− φk−1(n), if nk−1 < n < nk

1, if n = nk

min(φk(n− 1), max(0, φ̂k(n))), if nk < n < nk+1

0, otherwise

(5)

where

φ̂k(n) =
〈(y(n)− ak+1) , (ak − ak+1)〉

‖ ak − ak+1 ‖2 (6)
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Here, < ., . > and ‖ . ‖ denote the inner product of two vectors and the norm
of a vector, respectively.

This modification ensures that the value of event function φk at n is always not
greater than the value of event function φk at n− 1 in the interval [nk; nk+1]
(see the third line of Equation (5)), and thereby the well-shapedness property
is guaranteed. It should be noted that in (Dix and Bloothooft, 1994), φk(n) is
determined as min(1, max(0, φ̂k(n)), if nk < n < nk+1.

2.3 LEBEL-TD algorithm

The section of spectral parameters, y(n), where nk ≤ n < nk+1, is termed a
segment. The total accumulated error, Eseg(nk, nk+1), for the segment is

Eseg(nk, nk+1) =
nk+1−1∑
n=nk

E(n) (7)

where, E(n) can be calculated for every nk ≤ n < nk+1 using Equation (4)
once nk and nk+1 are known. The buffering technique for LEBEL-TD is de-
picted in Fig. 5, and the whole algorithm is described as follows.

Step 0. Set k ← 1, n1 ← 1, a1 ← y(1); set n2 as the last location from n1 on
so that the reconstruction error for every frame in the interval (n1, n2) is less
than a predetermined number ε.

Step 1. Similarly, set n3 as the last location from n2 on so that the reconstruc-
tion error for every frame in the interval (n2, n3) is less than ε.

Step 2. Local optimize the location of n2 in the interval (n1, n3).

n∗2 = arg min
n1<n2<n3

{Eseg(n1, n2) + Eseg(n2, n3)}

where, only n2 that makes E(n) < ε for every n1 < n < n3 is taken into
account. If n3 is the last frame, set k ← k +1, ak ← y(n∗2), ak+1 ← y(n3); and
exit.

Step 3. Set k ← k + 1, ak ← y(n∗2); then set n1 ← n∗2, n2 ← n3; and go back
to step 1.

(Fig. 5 is around here)

The predetermined number ε is called the reconstruction error threshold, and
it is the only parameter that effects the number and locations of the events.
The reconstruction error threshold controls the event rate, i.e. the number of
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events per second, and can be appropriately selected to achieve the optimal
performance of TD analysis for different applications. This is the reason why
the above TD algorithm is named ‘Limited Error Based Event Localizing
Temporal Decomposition’ (LEBEL-TD).

ε = 0.045 was empirically chosen as a suitable value for the reconstruction
error threshold to produce the event rate of about 20 events/sec. It should
be noted that the spectral parameter here is LSF with the frame period is
set as 10 ms. This event rate results in an average buffering delay of about
50 ms, i.e. 5 frames, along with a 10 ms, i.e. one frame, look-ahead. On the
other hand, the LPC analysis window is 30 ms long, which implies a 15 ms
look-ahead. The calculation of algorithmic delay for LEBEL-TD is depicted
in Fig. 6. Note that this calculation is applied to analyzing the first segment.
From the second segment on, the look-ahead frame in the last segment can be
employed. Therefore, the average algorithmic delay for LEBEL-TD is about
65 ms and has been known to be the lowest algorithmic delay for TD so
far. Moreover, LEBEL-TD has significantly reduced the computational cost
of TD because it uses neither the computationally costly SVD routine nor
the iterative refinement process. These make LEBEL-TD suitable for online
applications.

(Fig. 6 is around here)

In the LEBEL-TD method, the event vectors are set as the spectral parameter
vectors corresponding to the event locations. Obviously, the event vectors are
valid spectral parameter vectors and the stability of the corresponding LPC
synthesis filter can be thus ensured after spectral transformation performed by
LEBEL-TD. Consequently, LEBEL-TD can be applied to analyzing any cur-
rent types of parametric representations of speech. Meanwhile, most conven-
tional TD methods use an iterative refinement of event vectors, which might
cause the reconstructed spectral parameter vectors to be invalid, for example
when TD is applied to decomposing LSF parameters, and thus resulting in an
unstable LPC synthesis filter.

Fig. 7 shows the plot of event functions obtained from LEBEL-TD analysis
of LSF parameters for an example of a female/Japanese sentence utterance
‘shimekiri ha geNshu desu ka.’ As can be seen from the figure, all event func-
tions are well-shaped. In Fig. 8, the plots of original and reconstructed LSF
parameters after LEBEL-TD analysis are shown for the same utterance as
utilized in Fig. 7.

(Fig. 7 is around here)

(Fig. 8 is around here)
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3 Performance evaluation

The ATR Japanese speech database was used for the speech data. Line spectral
frequency (LSF) parameters introduced by Itakura (1975) have been selected
as the spectral parameter for the LEBEL-TD. This is because it is well-known
that LSF parameters have the best interpolation (Paliwal, 1995) and quanti-
zation (Paliwal and Atal, 1993) properties over the other LPC related spectral
parameters.

Log spectral distortion (LSD) is a commonly used measure in evaluating the
performance of LPC quantization (Paliwal and Atal, 1993) and interpolation
(Paliwal, 1995). LSD measure is also used for evaluating the interpolation
performance of TD algorithms (Shiraki and Honda, 1991; Athaudage et al.,
1999; Nandasena et al., 2001). This criterion is a function of the distortion
introduced in the spectral density of speech in each particular frame. Log
spectral distortion, Dn, for the nth frame is defined (in dB) as follows.

Dn =

√√√√√ 1

Fs

Fs∫

0

[10log10(Pn(f))− 10log10(P̂n(f))]2df

where Fs is the sampling frequency, and Pn(f) and P̂n(f) are the LPC power
spectra corresponding to the nth frame of the original spectral parameters,
y(n), and the reconstructed spectral parameters, ŷ(n), respectively. The re-
sults are provided in terms of log spectral distortion histograms, average
log spectral distortion and percentage outliers having log spectral distortion
greater than 2 dB. The outliers are divided into the following two types. Type
1: consists of outliers in the range 2-4 dB, and Type 2: consists of outliers
having spectral distortion greater than 4 dB.

A set of 250 sentence utterances of the ATR Japanese speech database were
selected as the speech data. This speech dataset consists of about 20 minutes
of speech spoken by 10 speakers (5 male & 5 female) re-sampled at 8 kHz
sampling frequency. 10th order LSF parameters were calculated using a LPC
analysis window of 30 ms at 10 ms frame intervals, and LEBEL-TD analyzed.
Additionally, log spectral distortion was also evaluated over the same speech
dataset for three other methods of TD: S2BEL-TD (Nandasena et al., 2001),
RTD (Kim and Oh, 1999), and MRTD (Nguyen and Akagi, 2002a) with LSF
as the spectral parameter. The event rate was set as around 20 events/sec for
all the four methods.

Table 1 gives a comparison of the log spectral distortion results for the LEBEL-
TD, S2BEL-TD, RTD, and MRTD algorithms. The distribution of the log
spectral distortion in the form of histograms is shown in Fig. 9. Results indicate
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slightly better performance in the case of S2BEL-TD over the others, followed
by LEBEL-TD and then RTD. However, it has been shown in (Nguyen and
Akagi, 2002a) that the S2BEL-TD and RTD methods, in the current forms,
cannot always be applied to analyzing LSF parameters due to the stability
problems in the LPC synthesis filter. Also, LEBEL-TD requires a lower com-
putational cost for TD analysis than MRTD, which is mainly attributed to
the fact that LEBEL-TD does not employ the iterative refinement process. In
addition, LEBEL-TD also needs a shorter algorithmic delay than MRTD. For
these reasons, LEBEL-TD hereafter is used for analyzing the LSF parameters.

(Table 1 and Fig. 9 are around here)

We have also evaluated the performance of LEBEL-TD on the above speech
dataset for some ε. Table 2 gives the summary of LSD and the event rate
obtained from LEBEL-TD analysis for some different values of ε. As can be
seen from the table, the event rate decreases and the average LSD increases
as ε increases. Fig. 10 illustrates the average log spectral distortion versus the
event rate.

(Table 2 and Fig. 10 are around here)

It is clear that the event rate controls the delay. The event rate also controls
the coding quality and the bit-rate. Fig. 11 shows an example of average log
spectral distortion versus average algorithmic delay obtained from LEBEL-
TD analysis of the above speech dataset. It is demonstrated that the longer
the algorithmic delay, the larger the log spectral distortion.

(Fig. 11 is around here)

4 Variable-rate speech coding based on STRAIGHT using LEBEL-
TD

As shown earlier, in the temporal decomposition (TD) framework, the speech
is no longer represented by a vector updated frame by frame, but instead by
the continuous trajectory of a vector. The trajectory is decomposed into a set
of phoneme-like events, i.e. a series of temporally overlapping event functions
and a corresponding series of event vectors. Since the event rate varies in
time, TD can be considered as a technique to be used for variable-rate speech
coding.

The linear predictive coding (LPC) model of speech has been widely adopted
in many speech coding systems (Campbell and Tremain, 1991; Campbell et
al., 1991; Paliwal and Atal, 1993; Paliwal, 1995). However, since the line
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spectral frequency (LSF) parameters derived from LPC analysis are inde-
pendently extracted on a frame-by-frame basis, the corresponding LSF pa-
rameter vector trajectory is not so smooth. In the other case, STRAIGHT
(Speech Transformation and Representation using Adaptive Interpolation of
weiGHTed spectrum), invented by Kawahara et al. (1999), can extract very
smooth spectrogram by employing a time-frequency interpolation procedure.
As a consequence, LSF parameters extracted from the spectrogram are corre-
lated among frames, and the corresponding LSF parameter vector trajectory is
thus smooth, which is desirable for TD algorithms. In addition, STRAIGHT
is known as a high-quality speech analysis-synthesis framework with many
promising applications in speech synthesis and modification (Kawahara et al.,
1999). This versatile speech manipulation toolkit can roughly decompose in-
put speech signals into spectral envelopes, i.e. spectrogram, F0 (fundamental
frequency) information, and noise ratios. Those parameters and the maximum
value of amplitude are required for resynthesizing high-quality speech. To make
STRAIGHT applicable for low-bit-rate speech coding, the bit rate required to
represent the spectral envelope must be minimized. Since the spectral en-
velopes can be further analyzed into LSF parameters and gain information,
the LEBEL-TD algorithm can be incorporated with STRAIGHT to construct
high-quality speech coders working at low-bit rates.

In this section, we introduce a new method for variable-rate speech coding
based on STRAIGHT using LEBEL-TD. The proposed speech encoder and
decoder block diagrams are shown in Fig. 12, and a detailed description of the
proposed speech coding method is shown in the subsections followed. Experi-
mental results show that this speech coding method can produce good quality
speech at an average rate below 2 kbps.

(Fig. 12 is around here)

4.1 Derivation of LSF Parameters

The amplitude spectrum X[m], where 0 ≤ m ≤ M
2

with M is the number
of samples in the frequency domain, obtained from STRAIGHT analysis is
transformed to the power spectrum using Equation (8).

S[m] = | X[m] |2, 0 ≤ m ≤ M

2
(8)

11



The ith autocorrelation coefficient, R[i], is then calculated using the inverse
Fourier transform of the power spectrum as follows.

R[i] =
1

M

M−1∑

m=0

S[m] exp{j 2πmi

M
}, 0 ≤ i ≤ M − 1 (9)

where S[m] = S[M −m]. Assume that the speech samples can be estimated
by a P-th order all-pole model, where 0 < P < M , the reconstruction error is
calculated as given in Equation (10).

PL = R[0]−
P∑

l=1

aP
l R[l] (10)

where {aP
l }, l = 1, 2 · · ·P , are the corresponding linear predictive coding

(LPC) coefficients. PL hereafter is referred to as gain. By minimizing PL with
respect to aP

l , where l = 1, 2 · · ·P , aP
l s could be evaluated. They are then

transformed to the LSF parameters.

4.2 LEBEL-TD based vector quantization of LSF Parameters

4.2.1 Vector quantization of event vectors

Since the event vectors obtained from LEBEL-TD method are valid LSF pa-
rameter vectors, they can be quantized by usual quantization methods for
LSF parameters. Here, the split vector quantization introduced in (Paliwal
and Atal, 1993) was adopted. In this work, the order of LSFs was empirically
selected as 32 to increase the quality of reconstructed speech. Every event
vector was divided into four subvectors of dimensions 7, 8, 8, 9 due to the
distribution of LSFs, and each subvector was quantized independently. We
assigned 8 bits to each subvector, which resulted in 32 bits allocated to one
event vector.

4.2.2 Vector quantization of event functions

In the case of event functions, normalization of the event functions is neces-
sary to fix the dimension of the event function vector space. Notice that only
quantizing φk(n) in the interval [nk; nk+1] is enough to reconstruct the whole
event function φk(n). Moreover, φk(n) always starts from one and goes down
to zero in that interval, and the type of decrease (after normalizing the length
of φk(n)) can be vector quantized. Therefore, an event function φk(n) can be
quantized by its length L(k) = nk+1 − nk and shape in [nk + 1; nk+1 − 1].
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In this work, 15 equidistant samples were taken from each event function for
length-normalization and then vector quantized by a 7-bit codebook.

Considering that all intervals between two consecutive event locations are less
than 256 frames long (note that the frame period used in STRAIGHT analysis
is 1 ms long), we used 8 bits for quantizing the length of each event function.
Shortly speaking, each φk(n) was quantized by its length and the type of
decrease.

4.3 Coding speech excitation parameters

4.3.1 Coding noise ratio parameters

The speech production mechanism is assumed to be a synchronously con-
trolled process with respect to the movement of different articulators, i.e. jaws,
tongue, larynx, glottis etc., and the temporal evolutionary patterns of different
properties of speech, e.g. spectrum, F0, and noise ratio, can be thus described
by a common set of event functions (Nandasena et al., 2001). Therefore, the
same event functions obtained from LEBEL-TD analysis of LSF parameters
are also used to describe the temporal evolution of the noise ratio parameters.
Let i(n) be a noise ratio parameter. We have 0 ≤ i(n) ≤ 1, where i(n) = 1 for
white noise and i(n) = 0 for pure pulse. Then i(n) is approximated by î(n),
the reconstructed noise ratio parameter for the nth frame, as follows in terms
of noise ratio targets, iks, and the event functions, φk(n)s. Since the event
functions are quantized and transmitted, this description also helps reduce
the bit rate required for encoding noise ratio information.

î(n) =
K∑

k=1

ikφk(n), 1 ≤ n ≤ N

The noise ratio targets are determined by minimizing the sum squared error,
Ei, between the original and the interpolated noise ratio parameters with
respect to iks.

Ei =
N∑

n=1

(
i(n)− î(n)

)2
=

N∑

n=1

(
i(n)−

K∑

k=1

ikφk(n)
)2

where, i(n) is the original noise ratio parameter for the nth frame. Finally, the
noise ratio targets are quantized by using scalar quantization. In this work,
we used 6 bits for quantizing each noise ratio target.

Fig. 13 shows the plots of original and reconstructed noise ratio parameters
and the plot of frame-wise noise ratio error, ei(n), where ei(n) = î(n)− i(n),
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for a male/Japanese sentence utterance. The root mean squared (RMS) noise
ratio error,

√
Ei, where Ei = 1

N

∑N
n=1 ei

2(n), was found to be about 0.1166.

(Fig. 13 is around here)

4.3.2 Coding F0 parameters

For encoding F0 information, the lengths of voiced and unvoiced segments
were quantized by scalar quantization first, with an average bit rate of 36 bps.
Next, linear interpolation was used within the unvoiced segments to form a
continuous F0 contour. Similar to the method presented in subsection 4.3.1,
the continuous F0 contour was then described by the event functions obtained
from LEBEL-TD analysis of LSF parameters and the so-called F0 targets. As
mentioned earlier, this description also helps reduce the bit rate required for
encoding F0 information since we can make use of the encoded event functions.
The F0 targets were then quantized by a 6-bit logarithmic quantizer. In the
decoder, F0 values were reconstructed from the quantized event functions and
F0 targets using the TD synthesis. Meanwhile, F0 values of unvoiced intervals
were set to zero.

Fig. 14 shows the plots of original and reconstructed F0 parameters and the
plot of frame-wise F0 error, ep(n), where ep(n) = p̂(n) − p(n) with p(n) and
p̂(n) are the original and reconstructed F0 parameters, respectively, for the

same sentence utterance as in Fig. 10. The RMS F0 error,
√

Ep, where Ep =
1
N

∑N
n=1 ep

2(n), was found to be about 3.6183 Hz.

(Fig. 14 is around here)

4.3.3 Coding gain parameters

The gain contour was re-sampled at 20 ms intervals. Logarithmic quantization
was performed using 6 bits for each sampled value. The quantized samples and
the spline interpolation were used in the decoder to form the reconstructed
gain contour. It should be noted that we did not describe the gain information
of speech using the event functions obtained from LEBEL-TD analysis of LSF
parameters as in subsections 4.3.1 and 4.3.2. This is due to the fact that the
gain parameters are quickly and frequently changed, which results in a low
reconstruction accuracy if the same method described in the two previous
subsections is applied.
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4.4 Bit allocation

Table 3 shows the bit allocation for the proposed speech coding method. An
example of bit-rate contour for a male/Japanese utterance is shown in Fig.
15. Note that the average number of events per second, i.e. the event rate,
was set as 25 events/sec, resulting in the average algorithmic delay of 55 ms.
The larger the event rate, the better the speech quality, however at the cost of
increasing the bit rate required for encoding speech. We can control the peak
bit rate by, for example, setting the minimum length between the locations of
two consecutive events.

(Table 3 is around here)

(Fig. 15 is around here)

4.5 Subjective test

In order to evaluate the performance of the proposed speech coding method,
the quality of the reconstructed speech was compared to that of other low bit
rate speech coders such as the 4.8 kbps FS-1016 CELP (Campbell et al., 1991)
and 2.4 kbps FS-1015 LPC-10E coders (Campbell and Tremain, 1991). By this
we show that the proposed speech coding method can achieve good-quality
speech with less than 2 kbps.

A subjective test was carried out using the Scheffe’s method of paired com-
parison (Scheffe, 1952). Six graduate students known to have normal hearing
ability were recruited for the listening experiment. Each listener was asked
to grade from -2 to 2 the degradation perceived in speech quality when com-
paring the second stimulus to the first, in each pair. The Japanese speech
dataset used in Section 3 and an English speech dataset collected from the
TIMIT speech corpus (Garofolo et al., 1993), which consists of 192 sentence
utterances spoken by 24 speakers (18 male & 6 female), were selected as the
training data for the proposed speech coder. They were re-sampled at 8 kHz
sampling frequency and STRAIGHT analyzed using the frame shift of 1 ms.
LSF transformation was then performed and the resulting 32nd order LSF pa-
rameters were TD analyzed by using the LEBEL-TD method. It should be
noted that the higher order of LSFs, the better quality of encoded speech.
However, it was empirically perceived that a considerable improvement of
speech quality is not achieved when the order of LSFs exceeds 32.

Eight phoneme balanced sentences, which are out of the training set, uttered
by 4 English (2 male & 2 female) and 4 Japanese (2 male & 2 female) speakers
were used as the test data. Namely, the test data comprises 4 male and 4
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female utterances. Stimuli were synthesized by using the following coders:
4.8 kbps FS-1016 CELP, 2.4 kbps FS-1015 LPC-10E, and the proposed 1.8
kbps speech coder. Also, 16 other stimuli were STRAIGHT synthesized using
the unquantized speech parameters obtained from STRAIGHT analysis &
LSF transformation (STRAIGHT-LSF) as well as STRAIGHT analysis, LSF
transformation & LEBEL-TD analysis (STRAIGHT-LSF & LEBEL-TD) of
the above 8 utterances.

(Fig. 16 is around here)

Results of the listening experiment are shown in Fig. 16. It can be seen from
this figure that the quality of the reconstructed speech obtained from the
proposed speech coder is comparable to that of the 4.8 kbps FS-1016 CELP
coder and is much better than that of the 2.4 kbps FS-1015 LPC-10E coder.
This justifies the usefulness of the proposed LEBEL-TD algorithm when being
applied to coding speech at low-bit rates.

5 Conclusion

In this paper we have presented a new algorithm for temporal decomposition of
speech. The proposed LEBEL-TD method uses the limited error criterion for
initially estimating the event locations, and then further refines them using the
local optimization strategy. This method achieves results comparable to other
TD methods such as S2BEL-TD and MRTD while requiring less algorithmic
delay and less computational cost. Moreover, the buffering technique used for
continuous speech analysis has been well developed and the stability of the
corresponding LPC synthesis filter after spectral transformation performed
by LEBEL-TD has been completely ensured. It is shown that the temporal
pattern of the speech excitation parameters can also be well described using
the LEBEL-TD technique.

We have also described a method for variable-rate speech coding based on
STRAIGHT using LEBEL-TD. For encoding spectral information of speech,
LEBEL-TD based vector quantization was used. Other speech parameters
were quantized by scalar quantization. As a result, a variable-rate speech coder
operating at rates around 1.8 kbps was produced. The quality of the recon-
structed speech is comparable to that of the 4.8 kbps FS-1016 CELP coder
according to the listening experiment. It was shown that the proposed speech
coding method can produce good quality speech with less than 2 kbps.
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speech representations using a pitch-adaptive time-frequency smoothing and
an instantaneous-frequency-based F0 extraction: Possible role of a repetitive
structure in sounds. Speech Communication, Vol. 27, No. 3-4, pp. 187-207.

Kim, S.J., Oh, Y.H., 1999. Efficient quantization method for LSF parameters
based on restricted temporal decomposition. Electronics Letters, Vol. 35,
No. 12, pp. 962-964.

17



Linde,Y., Buzo, A., Gray, R.M., 1980. An algorithm for vector quantiser de-
sign. IEEE Trans. on Communication, Vol. 28, pp. 84-95.

Nandasena, A.C.R., Nguyen, P.C., Akagi, M., 2001. Spectral stability based
event localizing temporal decomposition. Computer Speech and Language,
Vol. 15, No. 4, pp. 381-401.

Nguyen, P.C., Akagi, M., 2002. Improvement of the restricted temporal decom-
position method for line spectral frequency parameters. In: Proc. ICASSP,
pp. 265-268.

Nguyen, P.C., Akagi, M., 2002. Limited error based event localizing temporal
decomposition. In: Proc. EUSIPCO, pp. 239-242.

Nguyen, P.C., Ochi, T., Akagi, M., 2002. Coding speech at very low rates using
STRAIGHT and temporal decomposition. In: Proc. ICSLP, pp. 1849-1852.

Nguyen, P.C., Akagi, M., 2002. Variable rate speech coding using STRAIGHT
and temporal decomposition. In: Proc. IEEE Speech Coding Workshop, pp.
26-28.

Niranjan, M., Fallside, F., 1989. Temporal decomposition: a framework for
enhanced speech recognition. In: Proc. ICASSP, pp. 655-658.

Paliwal, K.K., 1995. Interpolation properties of linear prediction parametric
representations. In: Proc. Eurospeech, pp. 1029-1032.

Paliwal, K.K., Atal, B.S., 1993. Efficient vector quantization of LPC parame-
ters at 24 bits/frame. IEEE Transactions on Speech and Audio Processing,
Vol. 1, No. 1, pp. 3-14.

Scheffe, H., 1952. An analysis of variance for paired comparisons. Journal of
the American Statistical Association, Vol. 47, pp. 381-400.

Shiraki, Y., Honda, M., 1991. Extraction of temporal pattern of spectral se-
quence based on minimum distortion criterion. In: Proc. Autumn Meeting
of the Acoustical Society of Japan, pp. 233-234 (in Japanese).

Van Dijk-Kappers, A.M.L., Marcus, S.M., 1989. Temporal decomposition of
speech. Speech Communication, Vol. 8, pp. 125-135.

18



Table 1
Event rate, average LSD, and percentage number of outlier frames obtained from
the LEBEL-TD, S2BEL-TD, RTD and MRTD methods. The spectral parameter is
LSF. Speech dataset consists of 250 sentence utterances spoken by 10 speakers (5
male & 5 female) of the ATR Japanese speech database.

Method Event rate Avg. LSD 2-4 dB > 4 dB

LEBEL-TD 19.996 1.5125 dB 32.52% 0.07%

S2BEL-TD 19.455 1.4643 dB 18.48% 0.94%

RTD 20.163 1.5629 dB 22.97% 0.96%

MRTD 20.163 1.5681 dB 23.15% 0.98%
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Table 2
Event rate, average LSD, and percentage number of outlier frames obtained from
the LEBEL-TD method for some ε. The spectral parameter is LSF. Speech dataset
consists of 250 sentence utterances spoken by 10 speakers (5 male & 5 female) of
the ATR Japanese speech database.

ε Event rate Avg. LSD 2-4 dB > 4 dB

0.072 15.059 1.9220 dB 48.52% 1.60%

0.065 16.051 1.8255 dB 45.54% 0.89%

0.058 17.156 1.7270 dB 41.91% 0.46%

0.053 18.107 1.6491 dB 38.69% 0.23%

0.049 18.999 1.5802 dB 35.64% 0.13%

0.045 19.996 1.5125 dB 32.52% 0.07%

0.041 21.124 1.4400 dB 29.02% 0.04%

0.038 22.117 1.3833 dB 26.21% 0.02%

0.0355 23.050 1.3331 dB 23.75% 0.014%

0.033 24.106 1.2795 dB 20.96% 0.01%

0.031 25.028 1.2336 dB 18.69% 0.00%

Table 3
Bit allocation for the proposed speech coder.

Parameter Proposed Speech Coder

Event vector 32 bits (8+8+8+8)

Event function 7 bits

Event location 8 bits

F0 target 6 bits

Noise ratio target 6 bits

Subtotal A (sum × event rate) 1475 bps

Gain 300 bps

Lengths of voiced and unvoiced segments 36 bps

Maximum amplitude of input speech 5 bps

Subtotal B 341 bps

Total (A+B) 1816 bps
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φk+1(n)

φk (n)

nnk k+1n

Fig. 1. Example of two adjacent event functions in the second order TD model.

ak

ak −1

ak +1

y(n)
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Fig. 2. The path in parameter space described by the sequence of spectral parameters
y(n) is approximated by means of straight line segments between breakpoints.
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Fig. 3. Determination of the event functions in the transition interval [nk, nk+1].
The point of the line segment between ak and ak+1 (a), between ŷ(n− 1) and ak+1

(b) with minimum distance from y(n) is taken as the best approximation.
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Fig. 4. Examples of a well-shaped event function (a) and an ill-shaped event function
(b).
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Fig. 6. Algorithmic delay for LEBEL-TD
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Fig. 7. Plot of the event functions obtained from the LEBEL-TD method for the
female/Japanese sentence utterance ‘shimekiri ha geNshu desu ka.’ The speech wave-
form is also shown together with the phonetic transcription for reference. The nu-
merals indicate the frame numbers.
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Fig. 8. Plots of the original and reconstructed LSF parameters obtained from the
LEBEL-TD method for the female/Japanese speech utterance “shimekiri ha geNshu
desu ka.” The solid line indicates the original LSF parameter vector trajectory and
the dashed line indicates the reconstructed LSF parameter vector trajectory. The
average log spectral distortion was found to be 1.6276 dB.
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Fig. 9. Distribution of the Log Spectral Distortion (LSD) between the original and
reconstructed LSF parameters in the form of histograms. Top left: LSD histogram
for LEBEL-TD. Top right: LSD histogram for S2BEL-TD. Bottom left: LSD his-
togram for RTD. Bottom right: LSD histogram for MRTD. Speech dataset consists
of 250 sentence utterances spoken by 10 speakers (5 male & 5 female) of the ATR
Japanese speech database.
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Fig. 13. Original noise ratio parameters, i(n), reconstructed noise ratio parameters,
î(n), and frame-wise noise ratio error, ei(n) = î(n)−i(n), for the sentence utterance
‘kaigi ni happyou surunodeha nakute choukou surudake dato, hiyou ha ikura kakari
masu ka,’ of the ATR Japanese speech database. The RMS noise ratio error is
0.1166. The speech waveform is also shown together for reference.
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Fig. 14. Original F0 parameters, p(n), reconstructed F0 parameters, p̂(n), and
frame-wise F0 error, ep(n) = p̂(n) − p(n), for the sentence utterance ‘kaigi ni hap-
pyou surunodeha nakute choukou surudake dato, hiyou ha ikura kakari masu ka,’ of
the ATR Japanese speech database. F0 error is shown only for the voiced segments
of the utterance. The RMS F0 error is 3.6183 Hz. The speech waveform is also
shown together for reference.
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Fig. 15. Bit-rate contour for a male/Japanese sentence utterance ‘konkai no koku-
saikaigi ha tuuyaku denwa ni kansuru naiyou wo subete fukunde imasu.’
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