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Abstract

This paper presents a distributed algorithm whereby a group of mobile robots self-
organize and position themselves into forming a circle in a loosely synchronized
environment. In spite of its apparent simplicity, the difficulty of the problem comes
from the weak assumptions made on the system. In particular, robots are anony-
mous, oblivious (i.e., stateless), unable to communicate directly, and disoriented
in the sense that they share no knowledge of a common coordinate system. Fur-
thermore, robots’ activations are not synchronized. More specifically, the proposed
algorithm ensures that robots deterministically form a non uniform circle in a finite
number of steps and converges to a situation in which all robots are located evenly
on the boundary of the circle.
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1 Introduction

Mobile computing systems, devices, and applications are gradually becoming
more and more pervasive, while the theoretical foundations still remain to
be established. Current research on principles of mobile computing mostly
aims at systems in which mobility occurs as an external factor, such as in
mobile ad hoc networks, mobile information systems, ubiquitous computing,
or sensor networks. In contrast, we focus on systems for which the mobility
must be controlled, such as groups of mobile robots. In particular, we look at
basic algorithms for coordinating the movements of such robots.

This paper presents a distributed algorithm whereby a group of weak mobile
robots, sharing no common coordinate system, can self-organize into forming
a circle when starting from any arbitrary configuration. Among other things,
the ability to form a circle means that the robots are spontaneously able to
reach an agreement on an origin and unit distance, albeit not on a complete
coordinate system. Besides, the proposed algorithm has the useful property
that it allows robots to be added, removed, or relocated during its execution.
A circle is guaranteed to be reformed and remain stable after external changes
have come to an end.

Model and problem. The robots considered in this paper are modelled
as points that move on the plane. The robots have no identity, no memory
of past actions, no common sense of direction and distance. Besides, robots
execute the same deterministic algorithm, are unable to communicate directly,
and can only interact by observing each others position.

In this model, we address the problem of forming a circle by a group of mobile
robots, for which we give an oblivious algorithm. This problem in particular
has interesting applications. For instance, consider the context of space explo-
ration and the initial preparation of a zone. A group of robots could be sent
and after landing at random locations, would self-organize to form the initial
infrastructure for later expeditions. Besides, pattern formation problems in
general provide a first step toward flocking, i.e., allowing a group of robots
to move in formation [10]. Also, the formation of geometrical patterns and
flocking are both useful in themselves, for instance, for the self-positioning
of mobile base stations in a mobile ad hoc network, e.g., as considered by
Chatziagiannakis et al. [4], and for the self-deployment of sensors on a net-
work ring [31].

Contribution. The paper decomposes the question of circle formation into
two parts: (1) forming a circle (possibly an irregular one), and (2) positioning
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the robots evenly along the boundary of the circle i.e., the robots form a
regular n-gon, where n is the number of robots.

Défago and Konagaya [6], in a preliminary version of this paper, proposed in
the Suzuki and Yamashita model [15] an algorithm, which is a composition of
two independent algorithms whereby oblivious robots deterministically form a
circle, and converge to a situation in which all robots are arranged uniformly
on its boundary. Unfortunately, that algorithm was unnecessarily complex and
the proofs were only sketched in the original paper. In the meantime, we have
developed a simpler and more elegant algorithm that should supersede the
earlier one, together with complete and rigorous proofs of correctness, rather
than the proof sketches of the previous version. Consequently, the main con-
tribution of this paper is to propose an oblivious algorithm by which robots
deterministically form a circle (part 1) in a finite number of steps, and asymp-
totically converge toward a situation in which they are positioned at regular
intervals on the boundary of this circle (part 2). Our algorithm, elegantly
solves both problems (part 1 and part 2) using a single algorithm. In addition,
considering oblivious robots makes the proposed algorithm very robust in that
it can tolerate additions, removals and relocations of any of the robots.

Structure of the paper. The rest of the paper is structured as follows. In
Section 2, we survey the relevant literature on circle formation. In Section 3,
we introduce the system model and the terminology used in the paper. In
Section 4, we describe our algorithm, and in Section 5, we prove its correctness.
In Section 6, we give a discussion on an earlier instance of the algorithm.
Finally, in Section 7, we conclude the paper.

2 Related work

A vast amount of researches exists in the context of cooperative mobile robotics
(see [23] for a slightly outdated survey but nevertheless insightful), but much
research focuses on the study of diverse heuristics, for instance by studying
how a complex global behavior can emerge from the interactions of many
robots exhibiting a simple local behavior, such as free market optimization
(e.g., [7]) or swarm intelligence (e.g., [2,12,25,32]). However, only few studies
take the problem from a computational standpoint [15,22,24]. This can be
partly explained by the difficulty of the task, and the fact that heuristics are
perceived as a way to circumvent that difficulty.

Suzuki and Yamashita [15] first proposed a computational model in which mo-
bile robots algorithms could be expressed and studied rigorously. This model
is called semi-synchronous, and this is the model assumed in this paper.
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Prencipe [28] proposed a fully asynchronous (hence weaker) variant of the
model, called the asynchronous or Corda. Prencipe [27] compared the two
models with respect to the possibility of solving certain basic tasks for robots.
Typical problems that have been studied in this perspective are the arbitrary
pattern formation problem, where robots are asked to form a pattern given
in input in finite time [15,22]; the gathering problem, where robots are asked
to gather at some point, not determined in advance [26,29,30,33]; the flocking
problem, where robots are required to keep a formation while moving [10]; and
the circle formation problem which has also attracted considerable attention.

Flocchini et al. [22] studied the problem of arbitrary pattern formation under
several assumptions in the asynchronous model in an oblivious setting. In
particular, they showed that when robots share the knowledge of the direction
and orientation of both x and y axes, the pattern formation problem can be
solved. In contrast, if no axis direction is known by the robots, the general
problem cannot be solved in that model. They also studied the case when
robots know the direction and orientation of one single axis, and they showed
that the pattern formation can be formed whenever the number of robots
is odd. In later work [24], they have considered the case of even number of
robots, and have shown that there exists no pattern formation algorithm that
lets the robots form a symmetric pattern that has all its axes of symmetry
passing through a vertex. Among other things, this means that the uniform
circle formation is achievable, provided that robots share the direction and
orientation of one axis.

Debest [5] briefly discussed the formation of a circle by a group of mobile robots
as an illustration of self-stabilizing distributed algorithms. He discussed the
problem, but did not provide an algorithm.

Sugihara and Suzuki [14] proposed several algorithms for the formation of
geometrical patterns. In particular, they proposed a simple heuristic algorithm
for the formation of an approximation of a circle in the limited visibility setting
(i.e., a robot can see only part of the robots on the system). Their solution
does not always reach a desirable configuration, and sometimes may bring
the robots to form a Reuleaux triangle 2 instead of a circle. Later, Suzuki
and Yamashita [15] proposed a non-oblivious algorithm for the formation of
a regular polygon. To achieve this, robots must be able to remember all past
actions and observations. The existence of an oblivious solution was however
left as an open question.

Défago and Konagaya [6], in an earlier instance of this paper, proposed an
algorithm by which a group of oblivious robots eventually form a circle in the
Suzuki and Yamashita model [15]. The algorithm is a composition of two

2 A Reuleaux triangle is a curve of constant width constructed by drawing arcs from
each polygon vertex of an equilateral triangle between the other two vertices [16].
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algorithms. The first one allows the robots to form a circle in finite time, and
the second algorithm converges the robots toward a situation wherein all of
them are arranged evenly on its boundary.

Later on, Chatzigiannakis et al. [3] proposed a partial solution to the circle
formation problem in the semi-synchronous model that tried to simplify the
algorithm of Défago and Konagaya [6]. Unfortunately, their solution relies on a
simplifying assumption that completely removes the difficulty of the problem
(in particular robots must not be located on the same radius).

Katreniak [11] proposed in the asynchronous model Corda [28] a determinis-
tic algorithm that solves a slightly different problem, called biangular circle. 3

In other words, their algorithm allows the robots to rearrange the circle to a
symmetric configuration; biangular circle in finite time when the number of
robots is even. Also, when the number of robots is odd, the robots achieve the
uniform circle.

Dieudonné et al. [18] build upon the work of Katreniak [11], and extend it
for the case with an even number of robots. In particular, they proposed an
oblivious algorithm that solves the uniform circle formation problem in the
semi-synchronous model combined with the solution of Katreniak [11]. More
specifically, their algorithm solves the problem in finite time for any number
n of robots, except when n = 4, 6 and 8. Besides, robots are assumed to
teleport precisely to their computed destination without stopping on the way.
This assumption was lifted in later work [20] by proposing a deterministic
algorithm that works for any number of robots, except if n = 4, and no robot
is required to reach its computed destination in one cycle.

The combined results of Katreniak [11] and Dieudonné and Petit [20] are very
significant in that it provides an almost complete deterministic solution to the
uniform circle formation, where ours only provides an asymptotic solution.
However, our solution does not exclude any case (such as n 6= 4) and as
discussed later, has a lower complexity.

In a different study, Dieudonné and Petit [19] proposed an oblivious algorithm
to solve the uniform circle formation problem for a prime number of robots
in the semi-synchronous model.

3 In a biangular circle, there is a center and two nonzero angles α and β such
that the center between each two adjacent points is either α or β, and these angles
alternate.
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3 System Model and Definitions

3.1 System Model

In this paper, we consider the system model of Suzuki and Yamashita [15],
which is defined as follows. The system consists of a set of autonomous mobile
robots R = {r1, · · · , rn} roaming on the two-dimensional plane devoid of any
landmark. Each robot is modelled and viewed as a point in the plane and
equipped with sensors to observe the positions of the other robots. In particu-
lar, each robot proceeds by repeatedly observing the environment, performing
computations based on the observed positions of robots, and moving toward
the computed destination.

Each robot uses its own local x-y coordinate system which includes an origin,
a unit distance, and the directions of the two x and y axes, together with their
orientations. The robots share neither knowledge of the coordinate systems of
the other robots nor of a global one. However, robots agree on the chirality of
the system (i.e., clockwise/counterclockwise orientation).

During its observation, a robot obtains the position of all robots according to
its own local coordinate system. We assume that the robots have full visibility
of each other and also do not obstruct the view from each other.

In the model, it is assumed that two robots can possibly occupy the same
location. This assumption is undesirable for the formation of a circle because
the robots may become impossible to separate later. 4 Thus, we assume that
all robots occupy distinct locations initially, and let the algorithm ensure that
it remains so.

The time is represented in the model as an infinite sequence of discrete time
instants t0, t1, . . . , tn, during which each robot can be either active or inactive.
When a robot becomes active, it observes the environment, computes a new
location, and moves toward it. This behavior constitutes its cycle of observing,
computing, moving and being inactive. The sequence look–compute–move is
called the cycle of a robot. The model assumes that activations (look, compute,
move) occur instantaneously, resulting in a form of implicit synchronization.
The model is called semi-synchronous model for this reason.

The activation of robots is determined by an activation schedule, unpredictable

4 Consider two robots that happen to have the same coordinate system and that
are always activated together. It is impossible to separate them deterministically. In
contrast, it would be trivial to scatter them at distinct positions using randomization
(e.g., [21]), but this is ruled out in our model.
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and unknown to the robots. At each time instant a subset of the robots become
active, with the guarantees that: (1) every robot becomes active at infinitely
many time instants, (2) at least one robot is active during each time instant, 5

and (3) the time between two consecutive activations is not infinite.

In every single activation, a robot ri can travel at most by a distance δri
> 0.

This distance may be different between two robots. We sometimes say that
ri moves toward a point p. This means that ri moves to location p if p is
within δri

from ri, or as close as possible to p otherwise.

Robots are anonymous in the sense that they are unable to uniquely identify
themselves, neither with a unique identification number nor with some exter-
nal distinctive mark (e.g., color, flag). Besides, all robots execute the same
deterministic algorithm, 6 and thus have no way to generate a unique identity
for themselves. Moreover, there is no explicit direct means of communication
between robots. The communication occurs in a totally implicit manner; the
only way for robots to acquire information is by observing each other’s posi-
tions.

In this model, the algorithm consists of a deterministic function ϕ that is
executed by every robot ri each time it becomes active. The arguments of ϕ
consist of the current position of the robot, and a set of points containing the
observed position of all robots at the corresponding time instant. All positions
are expressed in terms of the local coordinate system of ri. The value returned
by ϕ is the new destination for ri.

3.2 Problem Definition

The problem addressed in this paper is the formation of a circle by a set of
autonomous mobile robots. More rigorously, the problem is defined as follows.

Problem 3.1 (Uniform Circle Formation) Given a group of n robots
r1, r2, . . . , rn with distinct positions and located arbitrarily on the plane, even-
tually arrange them at regular intervals on the boundary of some non-degenerate
circle (i.e., with finite radius greater than zero).

We also consider a weaker problem that requires the robots to form a circle,
but not necessarily be at regular intervals. This weaker problem is expressed

5 As the duration of the interval between two time instants is by no means fixed,
the second condition incurs no loss of generality. It is in fact only required for
convenience.
6 By deterministic, we mean that any two independent executions of the algorithm
with identical input values always yield the same output.
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more rigorously as follows.

Problem 3.2 (Circle Formation) Given a group of n robots r1, r2, . . . , rn

with distinct positions and located arbitrarily on the plane, arrange them to
eventually form a non-degenerate circle.

In terms of reaching agreement, it must be obvious that the weaker problem
also provides an origin and a unit distance. At the same time, while it is
conjectured that Problem 3.1 cannot be solved deterministically with oblivious
robots, we show that Problem 3.2 can. In fact, we show that our algorithm
solves Problem 3.2 within a finite number of steps, and converges toward a
uniform solution (Prob. 3.1).

3.3 Notations

Smallest enclosing circle The smallest enclosing circle of a set of points
P is denoted by C, and its center is called o. It can be defined by either two
opposite points, or by at least three points. The smallest enclosing circle is
unique, and can be computed in O(n) time [17]. We shall denote by R, the
radius of C.

Position Given a robot ri, ri(t) denotes its position at time t, according to
some global x-y coordinate system, and ri(0) is its initial position. P (t) =
{ri(t)|1 ≤ i ≤ n} denotes the multiset of the positions of all robots at time t.
When no ambiguity arises, we will omit the temporal indication.

We sometimes express positions according to a polar coordinate system, with
the center of the smallest enclosing circle as origin. Given a point p, we denote
its polar coordinates by ρp and θp, where ρp is the length of the segment op,
and θp is the angle that the segment op makes with the x positive axis (in
trigonometric orientation).

Alignment with the origin Two robots are said to be aligned with the
origin if they both have the same angular position (according to the polar
coordinates). In other words, two robots are considered to be aligned with the
origin only if they are located on the same radius (i.e, between the center
and the boundary of the circle). In particular, two robots that lie on the same
diameter, but on opposite sides with respect to the center, are not together
aligned with the origin. This is because their respective angular position differ
by π.
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Virtual ring The robots form a virtual ring according to their respective
positions. The ring is defined by looking at the angular part of the polar
coordinates of the robots. Given a robot ri, robot prev ri

is its direct neighbor
clockwise, and robot nextri

is its direct neighbor anticlockwise. In the case
when robots are aligned with the origin, the distance from the origin is used to
define the sequence. In other words, when the angle of two robots is the same, a
shorter distance is regarded as being a null angle clockwise (and anticlockwise
for a longer distance).

4 Circle Formation for Oblivious Robots

4.1 Algorithm Intuition

Given the Suzuki and Yamashita [15] model (see Section 3.1) with oblivious
robots, and an initial configuration in which a collection of robots are located
arbitrarily on the plane, the algorithm ensures that the system (1) solves
the Circle Formation problem (Prob. 3.2) deterministically, and (2) converges
toward a solution to the Uniform Circle Formation problem (Prob. 3.1).

Informally, the algorithm relies on the fact that the smallest circle enclosing all
robots is unique and depends only on the relative positions of the robots. So,
the algorithm makes sure that the smallest enclosing circle remains invariant
and uses it as a common reference. The invariance is ensured by self-imposing
some constraints on the movements of the robots (Section 4.2). Then, robots
that are in the interior of the circle are made to move toward its boundary,
while the robots that are already on the boundary are made to move along
the circumference.

In order to prevent the situation of inseparable robots discussed earlier, the
algorithm must guarantee that no two robots move to the same location. To
do so, the algorithm defines an exclusive zone for each robot and for each
activation step, within which the robot must make its movement. Doing so
ensures that no two robots can be at the same place at the same time. Our
algorithm must rely on the fact that activations are atomic, and thus two
robots activated simultaneously observe the exact same configuration (albeit
according to their respective coordinate system). 7

7 It is not difficult to extend the algorithm to work in a more loosely synchronized
model in which some ”fast” robots may be activated up to k-times during a single
activation of the ”slowest” robot, where k is a known bound.
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4.2 Restrictions on Movement

We first present two restrictions imposed on the movement of robots that are
located on the boundary of the smallest enclosing circle. The aim of these
restrictions is to preserve the invariance of the smallest enclosing circle, that
is, to prevent the robots from making movements that may lead to breaking
this circle. For the sake of clarity, these restrictions do not appear explicitly
in the algorithm, but must be enforced nevertheless.

Restriction 4.1 Robots located on the circumference of the smallest enclosing
circle do not move unless there are at least three such robots with distinct
positions.

If the smallest enclosing circle is defined by only two points, these points define
a diameter of the circle. Thus, if one of them moves, the circle is broken.

Restriction 4.2 Let Pc(t) be the set of robots on the boundary of C at time t,
and ri one such robot. Let prev ri

(t) (resp., nextri
(t)) denote the direct clock-

wise (resp., counter-clockwise) neighbor of ri on Pc(t). Let also αprevri
(t) and

αnextri
(t) be the angular distance from ri to prev ri

(t) and nextri
(t), respec-

tively. Then, the angular movement of ri at time t+ 1, denoted by αm(t+ 1)
is restricted as follows:

αprevri
(t) − π

2
≤ αm(t+ 1) ≤

π − αnextri
(t)

2

The above restriction ensures that the movement of robots located on the
smallest enclosing circle does not leave an empty angle greater than π, or else
C would no longer the smallest circle enclosing all robots.

4.3 Algorithm Description

We now describe the algorithm in more details, and give a pseudo-code de-
scription (see Algorithm 1). 8 As already mentioned, the robots use the small-
est circle enclosing all robots C as the target circle for solving the problem.
Starting from any configuration in which the robots are located arbitrarily
on the plane (but with distinct locations), the algorithm ensures that robots
located in the interior of C reach its boundary in a finite number of activa-
tions (Prob. 3.2), and that the robots located on the boundary converge to a

8 The problem is trivially solved by doing nothing for cases where there are only
one or two robots. Therefore, in the rest of the section we consider the cases with
three or more robots.
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situation where they are evenly spread on this boundary (Prob. 3.1). In fact,
the algorithm can be seen as a combination of two algorithms that solve the
two problems simultaneously.

Algorithm 1 Circle Formation for Oblivious Robots (code executed by
robot ri)

function ϕcircle uniform(P, ri)

1: C:= smallest circle enclosing all points in P ;
2: if (ri = center of C(P )) then

3: ri moves to an arbitrary location by some radius ρri
less than the minimum

radius of all other robots;
4: else

5: Compute prev ri
and nextri

(see Sect. 3.3)
6: if (prev ri

, ri,nextri
) are aligned with the origin then

7: stay still;
8: else

9: αprevri
:= angular distance between ri and prev ri

in clockwise orientation;
10: αnextri

:= angular distance between ri and nextri
in anticlockwise orienta-

tion;
11: Ψ−

ri
:= bisector of the angle αprevri

;

12: Ψ+
ri

:= bisector of the angle αnextri
;

13: Γri
:= bisector of the angle formed by Ψ−

ri
and Ψ+

ri
;

14: target ri
:= Γri

∩ C;
15: Compute path Pri

from ri to target ri
(Eq. (2));

16: if dist(ri, C) ≤ δri
then

17: Move to C;
18: else

19: Move along Pri
toward target ri

by δri
;

20: end if

21: end if

22: end if

The algorithm works as follows: when a robot ri becomes active, it executes
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the following steps.

(1) ri computes the smallest enclosing circle C, based on the observed position
of the robots (Alg. 1, line 1), and changes its coordinate system to a polar
one, with the origin located at point o; the center of C.

(2) If ri happens to be located at o, then ri moves out of the center (in
any arbitrary direction) by a distance smaller than the minimal radial
position of all other robots (Alg. 1, line 3). End.

(3) Otherwise, ri locates two robots prev ri
and nextri

, according to the de-
scription of the virtual ring in Sect. 3.3 (Alg. 1, line 5).

(4) If prev ri
, ri, and nextri

are together aligned with the origin, then ri does
nothing (Alg. 1, line 7). End.

(5) If not, then ri computes three rays starting from o, called Ψ−
ri
, Ψ+

ri
, and Γri

(see Fig. 1). Ψ−
ri

is defined as the bisector of the angle αprevri
= ∠rioprev ri

,

and Ψ+
ri

is defined similarly with next ri
. Γri

is the bisector of the angle
formed by Ψ−

ri
and Ψ+

ri
(Alg. 1, line 13).

The algorithm must prevent two robots activated simultaneously from moving
to the same location because, otherwise, it may become impossible to separate
them (i.e., there exist some activation schedule whereby the robots always
move together). To prevent this situation from occurring, we define a zone in
which ri alone is allowed to move during that activation. We call such a zone
the exclusive zone of robot ri for activation time t, denoted Zri

(t), and defined
as follows:

Zri
(t) = {ri(t)}∪

{

p ∈ R
2 | (ρri(t) ≤ ρp ≤ R) ∧ (αΨ−

ri
(t) < αp < αΨ+

ri
(t))

}

(1)

The zone is depicted as a gray area on Figure 1. It is important to stress that
the bisectors Ψ−

ri
and Ψ+

ri
do not belong to the exclusive zone of ri. In fact,

when the three robots prev ri
, ri, and next ri

are aligned with the origin, Ψ+
ri

and Ψ−
ri

are coincident, and thus Zri
includes only the current position of ri.

We now resume the description of the algorithm.

(6) Based on Γri
, ri computes a target location target ri

, as the intersection
of Γri

with C. Notice that, by definition, target ri
is always located in Zri

(Alg. 1, line 14).
(7) If ri can reach target ri

directly, then it moves there. End.
(8) If ri cannot reach targetri

directly, but can reach C, then it moves 9 to
the reachable point on C that is nearest to target ri

(see Fig. 3). Note that
this point must be within Zri

of ri. (Alg. 1, line 17) End.

9 The movement of step 8 may seem surprising at first. This movement is used to
compute an upper bound on the number of activations necessary for robot ri to reach
the boundary of C (see Lemma 5.13). Without this movement, some situation may
occur when, targetri

remains out of reach at every activation (because it rotates),
robot ri is unable to reach C in finite time due to the Zeno paradox.
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(9) Otherwise, ri computes a parametric path Pri
from ri to target ri

, as a
linear motion in the polar space (see definition of Pri

below). ri moves as
far as possible (i.e, maximum is δri

) along this path (see Fig. 2). End.

The parametric path Pri
computed by a robot ri at time t is defined by the

following equations:

Pri
(t) =



























θ(u) = θri(t) + u(θtargetri
(t) − θri(t))

ρ(u) = ρri(t) + u(R− ρri(t))

0 ≤ u ≤ 1

(2)

5 Correctness

In this section, we prove the correctness of our algorithm by first showing
that no two robots ever move to the same location (Theorem 5.5). Second,
we prove that the smallest enclosing circle remains invariant (Theorem 5.6).
Then, we show that all robots reach the boundary of the circle in finite time
(Theorem 5.15). Finally, we prove that the algorithm converges toward a con-
figuration wherein all robots are located at regular intervals on the circle
(Theorem 5.22).

We first state two lemmas that derive trivially from Algorithm 1.

Lemma 5.1 No robot ever moves beyond the boundary of the smallest circle
enclosing all robots.

Lemma 5.2 All robots located on the boundary of the smallest enclosing circle
remain on that boundary.

5.1 Non-overlapping Zones

We begin by establishing the common context in which we prove several lem-
mas.

Let us consider some arbitrary time t, and an arbitrary pair of robots ra and
rb, such that rb = next ra

at time t (i.e., ra and rb are consecutive at t) and no
two robots are located at the same position. The rest of the argument can be
repeated for any time and any pair of consecutive robots.

We consider the four robots prev ra
, ra, rb, and nextrb

and their relative angles
at time t. We set the reference angle of our polar coordinate system to be the
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Fig. 4. Invariance of virtual ring: consecutive robots ra and rb.

angular position of robot prev ra
(see Fig. 4). Let θ1, θ2, and θ3 denote the

angles of robots ra, rb, and nextrb
, respectively. We also consider the bisectors

Ψ−
ra

, Ψ+
ra

, Ψ+
rb

, used in the definition of the movement. Notice that Ψ−
rb
≡ Ψ+

ra

because ra = prev rb
. Let ψ1, ψ2, and ψ3 denote the angles of Ψ−

ra
, Ψ+

ra
, and Ψ+

rb
,

respectively. Finally, we consider the two second-order bisectors Γra
and Γrb

,
and let γa and γb denote their respective angles. Remind that the respective
targets of ra and rb are located on Γra

and Γrb
.

From this, we obtain the following relations between those angles.

0 ≤ ψ1 ≤ θ1 ≤ ψ2 ≤ θ2 ≤ ψ3 ≤ θ3

= = =

ψ1 ≤ γa ≤ ψ2 ≤ γb ≤ ψ3

(3)

Lemma 5.3 There is no overlap between the exclusive zones of any two con-
secutive robots.

Proof. We consider the situation above and reason on the angles. The
exclusive zone of robot ra consists of the position of ra and a zone included in
the open angular interval (ψ1;ψ2). Note that, because it is open, the interval
can possibly be empty (when ψ1 = ψ2). Similarly, the zone of rb consists of
the position of rb and a zone included in the interval (ψ2;ψ3).

(1) The locations of ra and rb are distinct by hypothesis.
(2) The intervals do not intersect. The intervals are open, which means that

the points on the rays do not belong to the zones. We simply need to
show that ψ1 < ψ3, but this is already obvious from Relation (3).

(3) The location of one of the two robots (say ra) does not belong to the
interval of the other robot (say rb). Consider the angular position of ra,
θ1, and the interval of rb, (ψ2;ψ3). By Relation (3), we have that θ1 ≤
ψ2 ≤ ψ3. Since the rays do not belong to the interval, ra is not in the
interval of rb, even when θ1 = ψ2.

14



2Lemma 5.3

Lemma 5.4 There is no overlap between the exclusive zones of any two robots.

Proof. The proof is a generalization of Lemma 5.3, by a simple induction
on a string of consecutive robots.

A special case occurs when a robot is located on the center of the smallest
enclosing circle. This is treated separately. Let ro be that robot. It must be
unique by hypothesis. The zone of ro is defined by the circle centered at o
and with radius r, such that r < min

r∈R\{ro}
ρr. Since the points in the zone of

any other robot r must have a radial position of at least ρr, there can be no
intersection with the zone of ro. 2Lemma 5.4

Theorem 5.5 Under Algorithm 1, no two robots ever move to the same lo-
cation.

Proof. We show that a robot ri always move to a location within its own
exclusive zone Zri

, and the rest follows from the fact that the zones of two
robots do not intersect (Lemma 5.4). Let us consider a robot ri and its new
location r′i. There are two cases.

First, prev ri
, ri, and nextri

are aligned together with the origin. The location
of ri belongs to the zone (Zri

is equal to the location of ri), and ri does not
move.

Second, prev ri
and nextri

are not aligned. Then, Γri
is located between Ψ−

ri

and Ψ+
ri
, and all three are distinct. It follows that target ri

is strictly between
Ψ−

ri
and Ψ+

ri
(and thus lies in Zri

). ri is also between Ψ−
ri

and Ψ+
ri
, but not

strictly (i.e., ri can be on either one of the two axes). Because ri belongs to
its zone, and because the angle of points in the path are defined linearly, all
points between ri and target ri

must be in Zri
. 2Theorem 5.5

5.2 Invariance of the Smallest Enclosing Circle

Theorem 5.6 The smallest enclosing circle C is invariant.

Proof. Let C(t) and C(t + 1) denote the smallest enclosing circle at time
instants t and t + 1 respectively. We prove that, regardless of the activation
schedule, C(t) and C(t+1) must be identical, and the rest follows by induction.
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Assume, by contradiction, that there is a time instant t for which C(t) and
C(t + 1) are different. First, we observe that this cannot be caused by the
movement of a robot located at the interior of C(t). Indeed, such a robot
could change the smallest enclosing circle only by moving outside of it, (a
contradiction with Lemma 5.1). Therefore C(t + 1) must be defined by the
movement of robots located at the boundary of C(t). There are four cases left
to consider, depending on the number of robots at the boundary of C(t) and
their respective position:

(1) (2 robots) The smallest enclosing circle C(t) is defined by only two robots.
Those robots cannot move by Restriction 4.1 and hence C(t+ 1) = C(t).

(2) (3 robots; one quits the circle) The smallest enclosing circle C(t) is defined
by three robots, one of which moves outside the boundary of C(t). This
is a contradiction with Lemma 5.1.

(3) (3 robots; two distinct points) The smallest enclosing circle C(t) is defined
by three robots, two of which move to the same location. This is in
contradiction with Theorem 5.5.

(4) (3 robots; angular distance greater than diameter) If the angular distance
between two of the three robots is larger than the diameter, then the
circle defined by the three robots and the smallest enclosing circle for
the two robots are different. Since C(t) is the smallest enclosing circle at
time t, the angular distance between any two of the three robots must
be not greater than the diameter. By Restriction 4.2, the movement of
two consecutive robots cannot lead them further away from each other
than π, regardless of their activation schedule.

When there are more than three robots on the boundary of C(t), the situation
can always be reduced to one of the four cases mentioned above. It follows
that C(t) and C(t+ 1) cannot be different; a contradiction. 2Theorem 5.6

The following lemma is obtained easily from the algorithm.

Lemma 5.7 For any robot ri, its radial position ρri
(t) is nondecreasing.

Lemma 5.8 There is a time since which no robot is on the center of C.

Proof. Let ro be a robot located at the center of C. By the fairness of the ac-
tivation, there is a time t when it becomes active. From line 3 of Algorithm 1,
ro is no longer at the center at time t+1. From Lemma 5.7, the radial position
is nondecreasing, and thus no robot can be located at the center of C after
time t. 2Lemma 5.8
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5.3 Invariance of the Virtual Ring

Theorem 5.9 From the time when no robot is located at the center of C, the
virtual ring remains invariant.

Proof. We consider again the situation of Section 5.1, and we must show
that, at time t+ 1, ra must be before rb, and the rest follows by applying the
same argument to all pairs of consecutive robots.

The position of ra at time t+1 must be between the axes of ra and Γra
(i.e., the

hatched zone in Fig. 4). This means that the angular position must be in the
angular interval Ia = [min(θ1, γa); max(θ1, γa)]. Similarly, the new position of
rb must be in the interval Ib = [min(θ2, γb); max(θ2, γb)].

By definition, the position that ra will take at time t+ 1 must also be located
within the zone of ra at time t.

Then, we need to distinguish two cases.

(1) θ1 < θ2. From this and the fact that most angles are defined as bisectors,
we can refine Relation (3) as follows.

0 ≤ ψ1 ≤ θ1 < ψ2 < θ2 ≤ ψ3 ≤ θ3

= = =

ψ1 < γa < ψ2 < γb < ψ3

From the above relation, we can directly derive.

max(θ1, γa) < min(θ2, γb)

Thus, the order between ra and rb is preserved.
(2) θ1 = θ2. The two robots ra and rb are aligned together with the origin.

The only points of that ray that belongs to their zone is their respective
location. In this case, the order is defined by the distance from the origin,
which cannot change at time t+1 because of the invariance of the smallest
enclosing circle (Theorem 5.6). Since all other points in the zone of ra,
if they exist, have an angle strictly smaller than θ1 = θ2, and strictly
greater for rb, the order between ra and rb is preserved.

2Theorem 5.9
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5.4 Circle Formation

In the following, we will show that all robots located in the interior of C reach
its boundary after a finite number of activation steps.

We have observed that, at each time instant a robot ri becomes active, it
computes a new target (the target is dynamic). Depending on the activation
of the neighbors of ri, its target at time t+ 1 can be closer or farther than at
time t. However, we also observed that the maximum angle that can separate a
robot from its target is π

4
. Then, before proceeding, we establish the following

lemma.

Lemma 5.10 The angle that separates a robot ri from its target targetri
is at

most π
4
.

Proof. By Restriction 4.2, the maximum angular distance that can separate
any two consecutive robots is π. Consider some robot ri, the extreme case
occurs where ri forms a minimal angle with one of its neighbors, say prev ri

,
and a maximal angle with its other neighbor, say next ri

. Let us thus consider
the situation where ri and prev ri

are aligned with the origin at angle 0, and
where the angular distance between ri and nextri

is π.

It follows that Ψ−
ri

is at a null angle with respect to ri, while Ψ+
ri

is at angle π
2
.

Being the bisector of Ψ−
ri

and Ψ+
ri
, Γri

is at angle π
4
. Since target ri

is located
on Γri

, this proves the lemma. 2Lemma 5.10

Lemma 5.11 For any robot ri that is not aligned with the origin and with its
previous and next neighbors, there exists a minimum distance dmin,ri

> 0 that
ri can progress toward the boundary of the circle.

Proof. To prove the lemma, we consider the situation where ri can progress
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the least. It is easy to see that this situation occurs when the angular distance
with the target is maximal (i.e., π

4
by Lemma 5.10) and ri is as close as possible

to C without being able to reach it (see Figure 5).

Observe that ri can progress away from the center of C by at least dmin,ri

when moving toward target ri
. In this situation, the range of ri (δri

) is just too
short for reaching C. Thus, ri will move to location r′i. dmin,ri

is equal to the
difference between ρr′

i
and ρri

, and it is positive. Thus, dmin,ri
> 0 represents

the minimum distance that ri can move away from the center of C and the
lemma holds. 2Lemma 5.11

Lemma 5.12 Starting from any configuration in which some robots are aligned
with the origin, there is a time after which no two robots are aligned together
with the origin.

Proof. We consider an arbitrary string of x robots σx = r1, · · · , rx with
increasing distance from the origin, and aligned together with the origin (see
Fig. 6). First, it is easy to see that no new robot joins σx (see proof of Theo-
rem 5.5), and then the rest of the proof is by induction on x, the number of
robots at σx.

Basis: (x = 1). The lemma holds trivially.

Induction Step: Assume that the lemma holds for any string σy shorter than
x (y < x), and let us prove that the lemma holds for a string σx of length x.
Let us consider one of the two robots at the extremity of the string, say r1
(the argument is the same for rx).

By assumption, the scheduler is fair, hence eventually r1 becomes active. Since
r1 is at the extremity of the string, r1 and prev r1

cannot be aligned together
with the origin, and thus the test on line 6 in the algorithm evaluates to false.
So, r1 computes a path Pr1

at line 15.

r1 and prev r1
not being aligned with the origin, means that Ψ−

r1
and Ψ+

r1
are
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distinct, and so is Γr1
. It follows that target r1

has an angular position different
from that of r1. Thus, except for the initial location of robot r1, no other point
on Pr1

is aligned with Ψ+
r1

and the other robots of the string. Because δr1
is

greater than zero, the destination r′1 of r1 cannot be aligned with the robots
of σ, regardless of the test in line 16. Thus, after its move, r1 no longer belongs
to the string σ, thus decreasing its length by one. This proves the induction
step. 2Lemma 5.12

Lemma 5.13 All robots located in the interior of C reach its circumference
in finite time.

Proof. By Lemma 5.12, if there exists a configuration wherein some robots
are aligned with the origin, there is a finite number of steps, where this config-
uration is reduced to the general case. From Lemma 5.11, at each activation
step, a robot ri, not located on the boundary of C, can progress by at least a
radial distance dmin,ri

> 0 toward the periphery of the circle. It follows that,
regardless of the initial position of some robot ri, the number of activation
steps it takes for ri to reach the boundary of C is bounded above by R

dmin,ri

.

Thus, due to the fairness of the activation schedule, the boundary of C is
reached in finite time and the lemma holds. 2Lemma 5.13

Lemma 5.14 The global predicate that all robots are located on the boundary
of C is stable.

Proof. Let us denote by Ccircle , the set of all configurations in which all
robots are located on the boundary of C. Then, we show that, for any config-
uration c in Ccircle , the algorithm always leads to a configuration c′ in Ccircle .

Consider some robot ri that becomes active. By the algorithm, ri computes
a new targetri

, located on C. Because ri is also on C, the entire path Pri
is

located on C. Thus, ri can only move to a location on the boundary of C. It
follows that configuration c′ is in Ccircle . 2Lemma 5.14

Theorem 5.15 The algorithm solves the circle formation problem determin-
istically.

Proof. There is a time after which all robots are located on the boundary of
a circle (Lemma 5.13), and this situation is stable (Lemma 5.14). 2Theorem 5.15
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5.5 Uniform Transformation

We now show that our algorithm converges toward a uniform distribution of
robots along the boundary. Before we proceed, we give few additional defini-
tions:

Definition 5.16 For any robot ri, let αri
(t) denote the angular distance be-

tween ri and nextri
. Thus, αri

(t) = θnextri
(t) − θri

(t).

Definition 5.17 Let αmax (t) (resp., αmin(t)) be the maximal (resp., mini-
mal) angular distance between any two consecutive robots, at time t. Thus,
αmax (t) = maxri

αri
(t) and αmin(t) = minri

αri
(t).

Lemma 5.18 The function αmax (t) is nonincreasing, and the function αmin(t)
is nondecreasing.

Proof. We only prove the lemma for αmax (t), as the proof for αmin(t) is
then easily derived by symmetry.

Let t be some time, and ri some robot. Obviously, αri
(t+ 1) is maximized

when (1) both robots ri and nextri
are active at time t, (2) they are moving

away from each other, and (3) can reach their respective target point.

Thus, assuming that both robots ri and nextri
are active at time t, we obtain:

αri
(t+ 1) =

αri
(t)/2 + αnextri

(t)/2

2
+
αri

(t)/2 + αprevri
(t)/2

2

=
2αri

(t) + αnextri
(t) + αprevri

(t)

4
≤αmax (t) (4)

The inequality is obtained by replacing αri
(t) , αprevri

(t) and αnextri
(t) by

αmax (t). It follows that, for any time t, αmax (t+ 1) ≤ αmax (t). 2Lemma 5.18

Corollary 5.19 ∀t, ∀ri : αmin(t) ≤ αri
(t+1) ≤ αmax (t)

Lemma 5.20 Every configuration in which all robots are uniformly distributed
over the circle is stable.

Proof. Assume that, at some time t, the robots are uniformly distributed.
In such a configuration, the angular distance between any two consecutive
robots must be the same: 2π

n
. It follows that, αmin(t) = αmax (t) = 2π

n
, from
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which we derive,

∀t, ∀ri :
2π

n
= αmin(t) ≤ αri

(t+1) ≤ αmax (t) =
2π

n

and this completes the proof. 2Lemma 5.20

Lemma 5.21 The function ∆(t) = αmax (t) − αmin(t) is monotonically de-
creasing and converges to zero.

Proof. First of all, from Lemma 5.18, we can deduce that ∆(t) is non-
increasing. We must show that, for any time t, if αmin(t) < αmax (t), then,
eventually, either αmin(t′) increases or αmax (t

′) decreases. In other words,

∀t : αmin(t) < αmax (t) ⇒ (∃t′ > t : (αmax (t
′) < αmax (t)) ∨ (αmin(t) < αmin(t′)))

First, let us show that an angle αri
(t) strictly smaller than αmax (t) at time t,

must always be smaller than αmax (t) after time t (although αri
(t) can possibly

increase). In other words,

∀t∀ri : αri
(t) < αmax (t) ⇒ (∀t′ > t : αri

(t′) < αmax (t))

This is done easily by induction. Consider that, at time t, αri
(t) < αmax (t).

From Equation (4) in the proof of Lemma 5.18, we have:

αri
(t+ 1) =

2αri
(t) + αprevri

(t) + αnextri
(t)

4

From which we deduce that αri
(t+ 1) < αmax (t). Since, by Lemma 5.18,

αmax (t+ 1) ≤ αmax (t), we indeed have that, for any time t′ after t, αri
(t′) <

αmax (t).

To complete the proof of the lemma, we must now show that, if an angle αri
(t)

is maximal at time t (αri
(t) = αmax (t)), then there must be a time t′ in the

future when it becomes smaller. In other words,

∀t∀ri : αri
(t) = αmax (t) ⇒ (∃t′ > t : αri

(t′) < αmax (t))

Observe that if αri
(t) is equal to αmax (t), then αri

(t) decreases only when
αprevri

(t) is less than αmax (t).

Assume that αri
(t) = αprevri

(t) = αmax (t). Since, αmin(t) < αmax (t) by hy-
pothesis, and there is a finite number of robots. Thus, there must be some
robot rj such that αrj

(t) ≤ αmax (t) and αprevrj
(t) < αmax (t).
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By the fairness of the scheduler, there must be a time t′′ for rj when αrj
(t′′) <

αmax (t). By applying induction repeatedly on the robots, we obtain that from
some time t′′′, and for all robots rk, αrk

(t′′′) < αmax (t).

The same proof can be adapted for the minimum, and we have that, for any
time t when αmin(t) < αmax (t), there will be a time t′ in the future when
αmax (t

′) < αmax (t) and αmin(t′) > αmin(t). Thus, ∆(t) = αmax (t) − αmin(t)
converges toward zero. 2Lemma 5.21

Theorem 5.22 Algorithm 1 converges toward a configuration wherein all robots
are arranged at regular intervals on the boundary of the circle.

The theorem comes as a direct consequence of Lemma 5.20 and Lemma 5.21.

6 Discussion on the Earlier Version of the Algorithm

In an earlier instance of this paper, Défago and Konagaya [6] used a different
algorithm. In short, the earlier algorithm was a composition of two indepen-
dent algorithms. The first one, solving the circle formation problem, relied
also on the definition of exclusive movement zones. However, the zones were
defined using the Voronoi cell 10 of each robot, and was executed by all robots
until they all reached the boundary of C. The second algorithm, converging
toward Problem 3.1, took as input the solution of the first algorithm and sim-
ply had each robot move along the boundary, halfway toward the midpoint
between each neighbors.

Algorithm 1 has several important advantages over the previous algorithm.
Most importantly, it is simpler in many different ways. Firstly, it elegantly
combines the solution of the two problems into a single algorithm. Secondly,
the only somewhat complex geometric computation on which it relies is the
smallest enclosing circle. Finally, the computation complexity is smaller. In-
deed, finding the smallest enclosing circle can be achieved in O(n) [17], whereas
computing the Voronoi diagram is normally done in O(n logn) [9].

10 The Voronoi diagram Voronoi(P ) of a set of points P = {p1, p2, . . . , pn} is a
subdivision of the plane into n cells, one for each point in P . The cells have the
property that a point q belongs to the Voronoi cell of point pi, denoted Vcellpi

(P ),
if and only if, for any other point pj ∈ P , dist(q, pi) < dist(q, pj), where dist(p, q) is
the Euclidean distance between p and q. In particular, the strict inequality means
that points located on the boundary of the Voronoi diagram do not belong to any
Voronoi cell. Significantly more details about Voronoi diagrams and their principal
applications are surveyed by Aurenhammer [1].
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One main difference between the algorithm of Défago and Konagaya [6] and
Algorithm 1 is that the former does not require that robots agree on the chi-
rality since the sense of direction is not essential to compute Voronoi diagrams
and halfway toward mid point. However, in the later algorithm the agreement
between robots on the chirality is important when robots are aligned with the
origin.

7 Conclusion

In this paper, we have presented a distributed algorithm whereby a team of
oblivious mobile robots self-organize to form a circle in the semi-synchronous
model [15]. Our algorithm allows robots to deterministically form an irregular
circle within a finite number of activation steps, and asymptotically converges
toward a uniform distribution of the robots along the circumference of the
circle.

Our algorithm is self-stabilizing 11 with respect to the weakest problem (non
uniform circle formation) provided that no two robots have both the same
initial position and the same local coordinate system. Without this restriction,
the problem is indeed trivially impossible. In addition, it solves the problem
linearly at each activation step since it only relies on the computation of the
smallest enclosing circle, which can be computed in O(n) [17], and finding the
pair of previous and next robots, can be also done linearly; the computation
of the whole virtual ring is not necessary by the algorithm.

In the meantime, Dieudonné and Petit [20] provided in the same model as-
sumed in this paper (semi-synchronous model) a deterministic solution to the
uniform circle formation problem combined with the work of Katreniak [11]
for almost every case, leaving unsolvable only the case of four robots. In par-
ticular, their algorithm relies on the computation of the convex hull of robots
at each activation step, which takes at least O(n logn) [9].

Although the result of Dieudonné and Petit [20] is very significant, the problem
is not yet completely solved. Our proposed algorithm solves a weaker problem
(namely, convergence rather than formation). However, it does not exclude
any special case (e.g., n = 4), and has a smaller complexity (linear instead of
lin-log).

The results of this paper leaves open several interesting research questions.
For instance, it is interesting to see whether the problem can still be solved

11 Self-stabilization is the property of a system which, started in an arbitrary state,
always converges toward a desired behavior. We consider a weaker definition that
allows to remove trivially impossible cases [8]
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deterministically with limited visibility or inaccurate sensors. Indeed, the pro-
posed algorithm must rely on unlimited (or ”sufficiently wide”) visibility in
order to compute the smallest enclosing circle. With limited visibility, this is
no longer possible for the robots to compute this circle. This actually raises
the question of the existence of a deterministic solution in that model. The
question remains open for future studies.
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