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Abstract: Multi-channel noise reduction has been widely researched to reduce 
acoustic noise signals and to improve the performance of many speech 
applications in noisy environments. In this paper, we first introduce the state-of-
the-art multi-channel noise reduction methods, especially beamforming based 
methods, and discuss their performance limitations. Subsequently, we present a 
multi-channel noise reduction system we are developing that consists of 
localized noise suppression by microphone array and non-localized noise 
suppression by post-filtering. Experimental results are also presented to show 
the benefits of our developed noise reduction system with respect to the 
traditional algorithms in terms of speech recognition rate. Some suggestions are 
finally presented for the further research.  

Keywords: Multi-channel noise reduction, beamforming technique, localized 
noise, non-localized noise, speech recognition. 

1. Introduction 

Acoustic noise signals dramatically degrade the performance of many speech 
applications, such as speech communication system and automatic speech recognition 
system, in noisy environments [1]. For example, for speech communication system, 
acoustic noises degrade the quality and intelligibility of the received signals. For 
automatic speech recognition system, acoustic noises cause the mismatch between the 
training and testing conditions, further decreasing the recognition accuracy in real-
world adverse conditions. Therefore, noise reduction must be very useful to improve 
the performance and robustness of these applications in noisy environments [1].  

Though the problem of dealing with acoustic noises has been researched for 
several decades, it is currently still a challenging research topic. The challenges are 
mainly caused by the complex and time-varying characteristics of the signals (speech 
and noise signals) and acoustic environments [1], [2]. Desired speech signals have a 
broad-band and highly time-varying spectral components. In practical environments, 
noise signals have very complex and time-varying properties. Take the noise 
condition in a car environment as an example. Noises generated by winds around the 
car come from all directions and have slowly time-varying spectral components 
including coherent and incoherent noise components that are generally modeled as 
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diffuse noise. Noises generated by engine come from certain directions and have 
slowly time-varying spectral components. Undesired interfering noises (e.g., 
passenger’s voice and radio), however, have some determinable directions and highly 
non-stationary speech-like spectral components. Noises with different characteristics 
from various kinds of sources make it difficult to construct an effective noise 
reduction system. Furthermore, the characteristics of noises do vary with time and 
environments in an unpredictable fashion, further increasing the difficulty of 
designing a noise reduction system. Additionally, considering the practical 
implementation, real-time processing is generally a “must” for noise reduction 
systems in real conditions [1], [2].  

To suppress various kinds of noises, many noise reduction algorithms have been 
published in the literature [1], [2]. Generally speaking, all of these noise reduction 
algorithms can be classified into two categories: single-channel technique and multi-
channel technique, according to the number of microphones which are needed in the 
implementation.  

A variety of single-channel noise reduction techniques [3], [4], [5], which exploit 
spectral and temporal differences between the speech and noise signals to suppress 
acoustical noises, have been proposed for speech enhancement and speech recognition. 
In real conditions, however, the speech and noise signals are considerably overlapped 
in the time-frequency domain, which makes it extremely difficult for single-channel 
techniques to substantially eliminate most of noise components without introducing 
speech distortion and artifacts (e.g., musical noise). As a result, single-channel 
techniques achieve very limited improvements in suppressing noise and in enhancing 
the speech enhancement and recognition performance [2] 

In addition to the temporal and spectral characteristics, multi-channel techniques 
allow to exploit the spatial diversity of the speech and noise signals, resulting in the 
highly improved noise reduction performance [3]. In most scenarios, desired speech 
source and interfering noise source are physically located at different positions in the 
space. Exploiting the spatial diversity of the signals, multi-channel techniques can 
steer a main beam towards the desired speech source and/or nulls towards the 
interfering noise sources. Thus, compared to single-channel noise reduction 
techniques, multi-channel noise reduction techniques are substantially superior in 
suppressing the interfering signals arriving from the directions other than the specified 
“look” directions [2]. Additionally, among multi-channel noise reduction algorithms, 
post-filtering is normally needed to improve the entire performance in practical noisy 
environments. Therefore, multi-channel noise reduction systems with post-filtering 
have attracted increasing research interests [2].  

In this paper, we first give a review of the state-of-the-art multi-channel (i.e., 
beamforming based) noise reduction systems ranging from the simple delay-and-sum 
beamformer to the advanced adaptive beamformers, as well as post-filtering. We then 
introduce the multi-channel noise reduction system we are developing consisting of 
localized noise suppression by microphone array and non-localized noise suppression 
by post-filtering. Experimental results are also presented to illustrate the benefits of 
our proposed system in terms of speech recognition accuracy in realistic environments 
where interfering signal and ambient noise are present. We finally provide some 
suggestions for the further research.  



2. State-of-the-art multi-channel noise reduction  

In comparison of single-channel noise reduction algorithms, multi-channel noise 
reduction algorithms have demonstrated a substantial superiority in reducing noise 
due to their spatial filtering capability. So far, many beamforming based algorithms 
have been reported in the literature [6], [7], [8], [9], [10], [11], [12], [13], [14]. The 
beamforming algorithms include fixed beamformer and adaptive beamformer, which 
are briefly discussed in the following sub-sections. Additionally, the widely used 
post-filtering algorithms are also discussed. Special attention is paid to the 
disadvantages of these existing algorithms.  

2.1 Fixed beamforming 

The first class of beamforming techniques is fixed beamforming. In fixed 
beamforming techniques, the filter coefficients are normally optimized so that a beam 
is steered to the direction of the desired signal while suppressing the background 
noise coming from other directions as much as possible. These optimized filters are 
fixed, independent of the input signals, and then applied to the multi-channel 
microphone inputs [1], [2].  

The simplest beamformer, referred to as delay-and-sum (DS) beamformer [2], [6], 
enhances the desired speech signal by summing the in-phase microphone signals after 
compensating for the arrival time differences of the desired sound signal to each 
microphone by inserting delays after each microphone, that is, the array is first 
electronically steered to the look-direction. In other words, in the DS beamforer, the 
weights of filters are fixed to for all frequencies and all frames. The advantages of the 
DS beamformer are that it is very simple to implement and that it minimizes the noise 
sensitivity and hence provides a high robustness against errors in the assumed signal 
model. However, a large number of microphones are normally needed to obtain an 
acceptable performance in real-world environments [2]. The superdirective 
beamformer is another widely studied fixed beamformer [7]. The superdirective 
beamformer maximizes the directivity index in the direction of the speech source for a 
diffuse noise field. Actually, the superdirective beamformer minimize the noise power 
of the beamformer output subject to distortionless response for the “look” direction, 
hence, it is also a minimum variance distortionless response (MVDR) beamformer. 
The implementation simplicity of the superdirective beamformer leads to its widely 
use in some known noise field. However, its data-independent property results in that 
only limited noise reduction performance can be obtained in practical time-varying 
environments [2]. 

Fixed beamforming techniques are widely used in the conditions where the 
acoustical characteristics do not change with time. However, using the fixed 
beamforming techniques, it is generally not possible to design arbitrary spatial 
directivity patterns for arbitrary microphone array configuration and design spatial 
directivity patterns which can be optimized to the time-varying acoustic environments  
[2], [7].  



2.2 Adaptive beamforming 

The second class of beamforming techniques is adaptive beamforming. In contrast to 
fixed beamforming techniques, adaptive beamforming techniques make use of data-
dapendent filter coefficients that are adapted to respond to time-varying environments, 
yielding a better noise reduction performance than fixed beamforming techniques, 
particularly if the number of interference is small (i.e., smaller than the number of 
microphones) and in the acoustic environments with low reverberation [1], [2].  

Adaptive beamforming techniques (e.g., the Frost beamformer) typically solve a 
linearly constrained minimum variance (LCMV) optimization problem [9], keeping 
the signals arriving from the desired look-direction (i.e., ideally the direction of the 
desired speech source) distortionless while suppressing the signals from other 
directions by minimizing the output power. The MVDR beamformer was proven as a 
special case of the LCMV beamformer under the assumption of zero correlations 
between the speech signal and the noise signal [2]. A generalized sidelobe canceller 
(GSC) beamformer, first presented by Griffiths and Jim as an alternative 
implementation structure of the LCMV beamformer, has also been widely researched 
[9]. The GSC beamformer consists of: a fixed beamformer which electronically steers 
the microphone array to the direction of interest (i.e., the speech source) and generates 
the so-called speech reference signal; a block matrix which steers the spatial nulls to 
the direction of speech source and generates the so-called noise reference signals; and 
a multi-channel noise canceller which suppress the residual noise components in the 
speech reference signal by using a multi-channel adaptive filter [9]. In addition, a 
wide variety of noise reduction algorithms that are based on the GSC beamformer 
have so far been suggested, which are of interest to be mentioned. Bitzer et al. 
presented an alternative implementation algorithm with a GSC structure of the 
superdirective beamforme and its performance was also analyzed in a diffuse noise 
field [10]. Fischer et al. proposed to apply a Wiener filter in the upper path of the 
GSC beamformer to suppress the uncorrelated noise components and then the 
correlated noise components are then reduced by the adaptive noise canceller in the 
lower path [11]. Recently, the GSC beamformer was extended to a transfer function 
generalized sidelobe canceller (TF-GSC) beamformer by considering the transfer 
functions which relate the speech source and the microphones, which was shown to 
yield high noise reduction performance in real-world environments [12]. Moreover, 
the theoretical performance of the GSC and TF-GSC beamformers was examined in 
the diffuse noise field [16], [17].  

In all variants of the LCMV and GSC beamformers, adaptive signal processing 
(e.g., LMS) is normally used to avoid cancellation of the desired speech signal, which 
introduces low convergence rate in practical conditions and low ability in reducing 
non-stationary noise (e.g., sudden noise). Moreover, the adaptive beamformers only 
perform well and provide acceptable performance when the number of interfering 
noise sources is less than that of the microphones. Their performance will be greatly 
degraded by the reverberation effect and in the scenario where more noise sources 
exist (e.g., larger than the number of sensors) [2]. 



2.3 Post-filtering 

Multi-channel beamforming based algorithms provide high noise reduction 
performance especially for localized noise, however, only limited noise reduction 
performance is achieved in a diffuse noise field [2], [13], [14]. To further suppress 
residual noise at the beamformer output, post-filtering is normally needed to improve 
the noise reduction performance of the entire system in practical environments.  

A variety of post-filtering techniques have been presented in the literature [13], 
[14] [15]. One commonly used multi-channel post-filter, which is based on Wiener 
filter, was first introduced by Zelinski [15]. The basic assumption behind this post-
filter is that noises on different microphones are mutually uncorrelated, corresponding 
to a perfectly incoherent noise field. This assumption is, however, seldom satisfied in 
practical environments, especially for closely-spaced microphones and low 
frequencies, which are characteristics by the high-correlated noise [15].  

To suppress the high-correlated noise, Fischer et al. proposed a noise reduction 
system which is based on the GSC beamformer [11]. The GSC beamformer 
suppresses the spatially coherent noise components, whereas a Wiener filter in the 
look direction is designed to suppress the spatially incoherent noise components [11]. 
However, Bitzer et al. pointed out that neither the GSC nor the standard Wiener post-
filter performs well at low frequencies in a diffuse noise field [16], [17]. Therefore, 
they proposed to add a second post-filter at the output of a GSC beamformer with 
standard Wiener post-filter to reduce the spatially correlated noise components [18]. 
Recently, McCowan et al. developed a general expression of the Zelinski post-filter 
based on the a priori coherence function of the noise field [19]. Although this post-
filter was shown to achieve improved speech quality and speech recognition accuracy 
compared to the Zelinski post-filter using the office room recordings, its performance 
is expected to be significantly degraded when difference between the “actual” and 
assumed coherence function exists.  

3. Proposed multi-channel noise reduction  

3.1 Theoretical principle of proposed system --- multi-channel Wiener filter [2] 

The underlying theoretical principle of our proposed multi-channel noise reduction 
system is the multi-channel Wiener filter, which provides an optimal solution to the 
problem of multi-channel noise reduction for broadband inputs in minimum mean 
square error (MMSE) sense [2]. With the assumption that the desired signal and 
noise signals are mutually uncorrelated, Simmer et al. showed that the multi-channel 
Wiener filter can further be decomposed into a MVDR beamformer followed by a 
single-channel Wiener post-filter [2]. As an extension of this algorithm, we propose a 
multi-channel noise reduction system consisting of localized noise suppression by a 
microphone array and non-localized noise suppression by post-filtering. The detailed 
description is given in the following subsections.  



3.2 Signal model in the proposed system [14] 

Let us consider an array of M microphones in a noisy environment. In our research, 
the observed signal on each microphone consists of three components. The first one is 
the desired speech signal s(t) arriving from the direction such that the direction in 
arrival time between two microphones is ξ, The second is localized noise signals 

arriving from the directions such that the time differences are δ( )c
pn t m,p (p=1,2,…,P) 

and the third is non-localized signal nuc(t) which propagates in all directions 
simultaneously and is normally modeled as diffuse noise. Thus, the observed signal 
can further be represented as 
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Note that the localized noise signals  are generated by some point noise 
sources (e.g., fan, radio and competing speakers), which are fixed or movable in the 
space. Some localized noise sources are spectrally stationary or have slowly time-
varying spectral properties (e.g., fan), while others are spectrally highly non-
stationary (e.g., competing speech and sudden noise). The non-localized noise signals 

 are generally modeled as diffuse noise (e.g., wind noise in car environments) 
arriving from all directions in the space. In most situations, these kinds of noise 
sources are spectrally stationary or have slowly time-varying spectral properties. 
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Fig. 1.  Block diagram of the proposed noise reduction system. 



3.3 Proposed multi-channel noise reduction system 

The objective of this research is to reduce both localized and non-localized noises 
while keeping the desired signal distortionless. In the proposed system, spectra of 
localized noises are first estimated using a hybrid noise estimation technique which 
combines a multi-channel approach and a single-channel approach and then 
subtracted from the spectra of noisy signals in each channel; non-localized noise is 
then reduced using a hybrid post-filter which is a Wiener filter in theory. The block 
diagram of the proposed noise reduction algorithm is shown in Fig. 1, including 
localized noise reduction and non-localized noise reduction. 

3.3.1 Localized noise reduction [14], [20], [21]  
To deal with localized noise components, we presented a microphone-array noise 
reduction algorithm based on a beamforming technique. The basic idea of our 
algorithm is that the spectra of localized noises are first estimated and then subtracted 
from those of the observed noise signals.  

To accurately estimate the spectra of localized noise, we proposed a hybrid noise 
estimation technique in a parallel structure which combines a multi-channel 
estimation approach and a single-channel approach. The multi-channel estimation 
approach was implemented using the subtractive beamformer based method since it 
yields much more accurate spectral estimates for localized noises at most instances. 
The single-channel estimation approach was implemented using a soft-decision based 
noise estimation technique due to its ability in estimating the spectrum of non-
stationary signal. Thus, the spectrum of localized noise in the k-th frequency bin and 

-th frame, , calculated by this hybrid estimation technique, is given by 
[14], [20] 
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where  and  areˆ ( , )c
mN k ˆ ( , )c

sN k  the spectral estimates determined by the 
multi-channel approach [20] and the single-channel approach [22], respectively. The 
hybrid noise estimation technique is further enhanced by integrating a robust and 
accurate speech absence probability (RA-SAP) estimator [14]. Considering the 
strong correlation of speech presence uncertainty between adjacent frequency bins 
and consecutive frames, a RA-SAP estimator is developed. This RA-SAP estimator 
makes full use of the high estimation accuracy of the multi-channel estimation 
approach. Therefore, the final estimation accuracy for localized noises is greatly 
enhanced by the suggested RA-SAP estimator [14], [20]. The estimated spectra of 
localized noises are subsequently reduced from those of the noisy observations by 
using the non-linear spectral subtraction. More theoretically important, note that the 
subtractive beamformer based multi-channel localized noise suppression algorithm is 
in principle a MVDR beaformer [23].  



3.3.2 Non-localized noise reduction [24] 
At the output of localized noise reduction, the output signal ( , )mZ k  on -th 
channel, consisting of desired signal and beamformer-processed non-localized noise 

m

( , )mD k , is re-formulated the time-frequency domain as 

( , ) ( , ) ( , ).m m mZ k S k D k= +                   (3) 

Note that the non-localized noise component ( , )mD k  is different from the non-

localized component at the system input, since the localized noise reduction 
influences the non-localized components.  

( )uc
mN t

To further deal with the residual non-localized noise, we propose a Wiener post-
filter with a hybrid structure under the assumption of a diffuse noise field. In the high 
frequency region, we present a modified Zelinski post-filter which considers and 
utilizes the correlation of noises on different microphones to improve the noise 
reduction with minimum speech distortion. The implementation of the modified 
Zelinski post-filter consists of four steps: determine the transient frequencies (i.e., the 
first minimum frequency of coherence function of diffuse noise field) according to the 
microphone array geometry; determine the microphone pairs on which noise is 
mutually uncorrelated for each frequency; compute the spectral densities of the 
desired and noisy signals; compute the gain function of the modified Zelinski post-
filter. Finally, the gain function of the modified Zelinski post-filter is derived as [24] 
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where is the microphone pair sets for m-th sub-band on which noises are 

presumably low correlated,  is the real part operation, 

mΩ

ℜ ˆ
i jZ Zφ and ˆ

i iZ Zφ  are the 

cross- and auto- spectral densities. Note that the first two steps can be done 
beforehand since they are only dependent on the microphone array geometry and 
independent of the input signals. Thus, the computational cost will greatly be reduced.  

In the low frequency region, a single-channel technique is used to estimate the 
Wiener filter, given by [24] 
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where  is the a priori SNR which is updated in a decision-directed 
scheme, significantly reducing the residual “musical noise” as detailed in [5]. More 
theoretically important, note that the proposed hybrid post-filter is in principle a 
Wiener filter [24].  

priori ( , )SNR k



4. Experiments and results 

We investigated the performance of the proposed noise reduction system using the 
speech enhancement experiments and the comprehensive speech recognition 
experiments. The noise reduction system was first performed on the multi-channel 
noisy signals, enhancing the desired speech signals. For the recognition experiments, 
these enhanced speech signals were further fed into the speech recognizer for 
recognizing the utterance. The performance improvements caused by the proposed 
noise reduction system (PRO-MAPF) were finally compared to those obtained by the 
traditional delay-and-sum beamformer followed by Wiener post-filter (DSWF) [11]. 

4.1 Speech enhancement experiments 

To assess the performance of the proposed noise reduction algorithm, an equally-
spaced linear array consisting of three microphones with the inter-element spacing of 
10 cm was mounted in a car. The noise recordings were performed across all channels 
simultaneously at the sampling frequency of 12 kHz. The target signals and the 
interfering signals were the Chinese province/city names, uttered by one male and one 
female. The target speaker was placed in the front of the microphone array and the 
interfering speaker was placed with DOA of 60 degrees to the right. The integrated 
noise signals were first generated by mixing the car noise signals and the interfering 
signals at the same energy level. The observed noisy signals were created by adding 
the integrated noise signals into the target speech signals at 5 dB.  

The speech enhancement results are plotted in Fig. 2. Fig. 2 (b) shows that the 
speech signals (北京，上海，广东，天津，重庆，内蒙古，宁夏，河南) were corrupted by 
both the interfering signals (广西，海南，四川，贵州，云南，西藏，香港) and the car 
noises. Fig. 2 (c) illustrates that the output of the DSWF is characterized by the high-
level noise components (both the low-frequency car noises and the interfering signals). 
In contrast, the PRO-MAPF suppress almost all interfering signals and the car noises 
even in the regions where the speech and interfering signals are overlapped in the 
time-frequency domain, as shown in Fig. 2 (d). These results show that the PRO-
MAPF is powerful in suppressing both localized and non-localized noise components.  

4.2 Speech recognition experiments  

For speech recognition, the non-localized noises were the car noises same as used in 
speech enhancement experiments. The speech data were selected from AURORA-2J 
database for training and testing. For training, 8440 sentences uttered by 55 persons 
were used. For testing, two sets of noise-corrupted data were generated. The first data 
set (Set A) involved the addition of the car noise recordings and 1001 test sentences at 
different SNRs from 0 to 20dB with 5dB step. The second data set (Set B) involved 
the addition of the multi-channel car noises and a passenger’s voice which was 
Japanese digit /iti/ with DOA of 60 degrees to the right, across 1001 test sentences at 
the different SNRs same as in Set A. Note that Set B corresponds to a realistic context 
for a typical car condition where a passenger is speaking. 



 
 
 
 

Fig. 2.  Speech spectrograms. (a) Clean speech signal (北京，上海，广东，天津，重庆，

内蒙古，宁夏，河南); (b) Noisy signal at the first microphone (SNR = 5 dB);  
(c) DSWF output; (d) PRO-MAPF output. 
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Fig. 3.  Speech recognition results for the testing data Set A (left) and for the testing data 
set B (right).. 



4.2 Experimental results 

The recognition results for the noise reduction systems (DSWF and PRO-MAPF) in 
two noise conditions (Set A and Set B) are presented in Fig. 3.  

As Fig. 3 (left) shows, for data Set A, all tested noise reduction algorithms provide 
some degree of performance improvement in speech recognition rate compared with 
noisy inputs. The average recognition rate improvement achieved by DSWF 
algorithm amounts to 6.0% with respect to noisy inputs. Whereas, the highest 
recognition rate improvement of about 18.6% was achieved by our PRO-MAPF. The 
recognition rate improvements drastically increase as the noise level increase. 
Moreover, in very high SNR conditions, all the tested algorithms provide just slight 
performance improvement compared with the noisy inputs, which is reasonable since 
the inputs are “clean” enough and a relatively high recognition rate is obtained in 
these conditions.  

Concerning the recognition results for data Set B shown in Fig. 3 (right), we can 
observe that PRO-MAPF also demonstrates highest recognition rate at all SNRs. In 
this noise condition, the recognition rate goes down greatly for unprocessed noisy 
testing data. Recognition rate improvements of 11.5% and 23.2% were demonstrated 
by the DSWF and PRO-MAPF algorithms. The highest recognition rate of PRO-
MAPF can be attributed to the fact that it is successful in dealing with both 
passenger’s interfering speech and diffuse car noise simultaneously with minimum 
speech distortion, resulting in the higher speech recognition rate.  

5. Suggestions for further research 

In this research, we have so far developed a noise reduction algorithm that is designed 
using microphone array and post-filtering in noisy environments. Its performance was 
evaluated in various car noise conditions and was further shown to outperform many 
traditional noise reduction algorithms in terms of speech recognition rate. However, 
the proposed noise reduction algorithm should be further improved in the following 
ways. (1) So far, the input microphone signals were assumed to be perfectly time-
aligned in advance, that is, the desired speech signals were assumed to come from the 
front of the microphone array. In the practical implementation, it is necessary to take 
into account of the transfer function between the desired speech source and 
microphones. (2) Because of the small-size microphone array, improving the 
robustness of the noise reduction system against imperfections, such as the 
imperfection of microphone positions, is necessary for the real-world implementation, 
which is suggested as well for further research. (3) Moreover, in the real-world 
environments, the performance degradation of hands-free speech recognition systems 
is caused by not only acoustic background noise, but also reverberation and acoustic 
echoes. To further improve the performance of many speech applications in practical 
conditions, it is necessary to further deal with reverberation and acoustic echoes by 
combining the proposed noise reduction algorithm with other advanced 
dereverberation and echo cancellation techniques.  
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