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Abstract

Motivated by a digital halftoning application to convert a continuous-tone image into a

binary image, we discusses how to round a [0; 1]-valued matrix into a f0; 1g binary matrix

achieving low discrepancy with respect to the family of all 2 � 2 square submatrices (or

regions). A trivial upper bound of the discrepancy is 2 and the known lower bound is 1. In

this paper we shall show how to achieve a new upper bound 5=3 using a new proof technique

based on modi�ed graph matching.

1 Introduction

Rounding real numbers into discrete values frequently occur in practice. In this paper we are

interested in rounding a two-dimensional matrix of real entries in the interval [0; 1] into a binary

(i.e., f0; 1g-valued) matrix. To measure the discrepancy between an input real matrix and the

resulting binary matrix, we introduce a family F of regions (submatrices) over the matrix and

de�ne the discrepancy by the maximum di�erence between the sums of entries in all regions in

the family. It is known [5] that we can bound the discrepancy by 1 when the family consists of

all rows and all columns.

Little is known for a family consisting of small-sized two-dimensional regions. The authors

proved that the problem to �nd an optimal binary matrix minimizing the discrepancy with an

input real matrix is NP-hard even for a family of all 2� 2 regions [2, 3]. On the other hand, if

we have two di�erent partitions of a matrix into 2 � 2 square regions, we can �nd an optimal

rounding into a binary matrix and also we can show that the discrepancy is always strictly less

than 1 for the family of 2� 2 regions in these two partitions.

For the family F2 of all 2� 2 regions, based on an odd cycle argument, we can show that

there is a [0; 1]-valued matrix such that the discrepancy of an optimal rounding is exactly 1

for the family of all 2 � 2 regions. On the other hand, it is quite easy to give a rounding

with discrepancy 2 by rounding each entry independently to its nearer integer. Since the error

generated from each entry is at most 1=2, the error amounts to 2 for a 2�2 region. However, it

is nontrivial to improve these upper bound and lower bound. Previously, the authors claimed
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Figure 1: A rounding and its corresponding (generalized) checkerboard

a 7=4 upper bound in a conference paper [2]; Unfortunately, the proof has not been published

yet formally, since it is based on complicated case analysis.

In this paper, we give an improved upper bound 5=3 for the family F2 of all 2� 2 regions.

We give a systematic argument as well as the improved bound. A key idea is to apply a

recursive rounding procedure after discretizing input real values into several distinct values.

Also, we apply a variation of matching in a graph to give the construction.

If each entry of the original matrix has a value 0:5, it is obvious that the parity-rounding

(rounding an entry into 1 if and only if the sum of its row index and its column index is even

) gives a perfect (zero-error) rounding. If we consider the rounded matrix as a square n � n

array on a playing board, and color a cell black (resp. white) if it corresponds to a 1-valued

(resp. 0-valued) entry, the parity rounding gives the checkerboard pattern. Thus, what we

are aiming at is a combinatorial problem to design a checkerboard pattern approximating a

given general [0; 1]-valued distribution instead of the special uniform distribution. We remind

that the discrepancy theory (with respect to a wider class of region families) on a uniform

distribution is a major topic in combinatorics and Monte-Carlo simulation [6]. Fig. 1 gives

an example of rounding (its rounding error for F2 is 0.5) and its corresponding checkerboard

pattern.

Besides its combinatorial charm, this work is motivated by an application to digital halfton-

ing, which is an important technique to generate a binary image that looks similar to an input

continuous-tone image. This kind of technique is indispensable to print an image on an out-

put device that produces black dots only, such as facsimiles and laser printers. Up to now, a

large number of methods and algorithms for digital halftoning have been proposed (see, e.g.,

[9, 8, 4, 10, 11, 12]). A common criterion for the quality of output binary image is FWMSE

(Frequency Weighted Mean Square Error). Simply speaking, it is to minimize the sum of all

squared errors for a family of all k � k regions where error in a region is given by di�erence of

the weighted sums in the input and output images. This criterion corresponds to L2 distance.

Our criterion based on the discrepancy is the L1 distance version of the problem for k = 2.

We omit proofs of several lemmas in this version because of space limitation.

2 Matrix Rounding Problem with Related Works

Given a real number �, its rounding is either b�c or d�e. Given an n�n matrix A = (aij)1�i;j�n
of real numbers, its rounding is an integral matrix B = (bij)1�i;j�n such that each entry bij is

a rounding of aij. There are 2
n2 possible roundings of a given A, and we would like to �nd an

optimal rounding with respect to a given criterion. This is called the matrix rounding problem.

In this paper we are interested in the case in which each entry of A is in the closed interval
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[0; 1] and each entry is rounded to either 0 or 1. It is a special case of discrepancy problems [7].

In order to give a criterion to determine the quality of roundings, we de�ne a distance in

the space A of all [0; 1]-valued matrices. We introduce a family F of regions over the n � n

integer grid. Let R be a region in F . For an element A 2 A, let A(R) be the sum of entries of

A located in the region R. The l1 distance between two elements A and A
0 in A with respect

to F is de�ned by

Dist
F

1(A;A0) = max
R2F

jA(R)�A
0(R)j:

Although analogously de�ned l1 and l2 distances are also popular, we are concerned with the

l1 distance in this paper.

Once we de�ne a distance in A, the optimal rounding B of a given [0; 1]-valued matrix A

is a binary matrix in A that is closest to A in the sense of the above-de�ned distance. Such

a binary matrix B is called the optimal rounding of A, and the distance between A and B is

referred to as the optimal rounding error.

The supremum of the optimal rounding error supA2AminB2f0;1gd Dist
F
1(A;B) is called the

inhomogeneous discrepancy of A with respect to the family F [7]. We consider the following

problem:

Discrepancy Problem: For a given region family F , give combinatorial upper and
lower bounds of the inhomogeneous discrepancy with respect to F .

The di�culty of the above problem depends on geometric property of the family F of

regions. We could consider the one-dimensional version of the problem, which is referred to as

the sequence rounding problem. The inhomogeneous discrepancy with respect to Dist
F
1 is less

than 1 for any family F of intervals. On the other hand, it can be in�nitesimally near to 1

even if we consider the family of all intervals of length 2. Therefore, the discrepancy problem

is easily settled. Moreover, the authors showed in [2] that the optimal rounding of a sequence

can be computed in O(
p
njFj log2 n) time with respect to any given family F of intervals. A

basic idea was a procedure to detect a negative cycle in a network.

For the matrix rounding problem, the inhomogeneous discrepancy depends on the choice

of the family F of regions: If F is the set of all orthogonal regions, an O(log3 n) upper bound

and 
(logn) lower bound are known [7]. On the other hand, Baranyai [5] showed that the

inhomogeneous discrepancy is less than 1 if F consists of 2n + 1 regions corresponding to all

rows, columns and the whole matrix. Baranyai's result is applied to problems in operations

research ([1] pp.171{172).

Motivated from an application in digital halftoning, we would like to consider the family Fk

consisting of all k� k square regions for a small k. An O(log3 k) upper bound and an 
(log k)

lower bound of the inhomogeneous discrepancy can be obtained straightforwardly from the

above mentioned known results.

However, it is combinatorially attractive to give better bounds for a small �xed constant

k, and the problem seems to be highly nontrivial even for k = 2. Thus, we focus on the family

F2 in this paper, and give a nontrivial 5=3 upper bound for the inhomogeneous discrepancy.

3 Low Discrepancy Theorem for F2

Let A = (ai;j) be an n�nmatrix whose entries are real numbers in the interval [0; 1]. We denote

the sum of entries ai;j; ai+1;j ; ai;j+1; ai+1;j+1 by A
(2)(i; j) for 1 � i; j � n� 1. Given a f0; 1g-

valued matrix B, the2�2 discrepancy between A and B is max1�i;j�n�1 jA(2)(i; j)�B
(2)(i; j)j.

We prove the following theorem:
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Theorem 3.1 For an arbitrary [0; 1]-valued matrix A there exists a f0; 1g-valued matrix B

such that 2� 2 discrepancy between A and B is at most 5=3.

The following is a key lemma:

Lemma 3.2 If each entry of A is among 0; 1=4; 1=2; 3=4; and 1, then there exists a f0; 1g-
valued matrix B such that jA(R)�B(R)j � 5=4 holds for every 2� 2 region R.

We �rst derive the theorem assuming the lemma is true. Let � is an upper bound of the
discrepancy. Given A, we construct the matrix C = (ci;j) where

ci;j = ai;j �
1

4
b4ai;jc:

Thus, 4C is a [0; 1]-valued matrix. We have a rounding D of 4C with discrepancy less than �.
Consider the matrix H = A� C + (D=4): It is easy to observe that each entry of H is among
0; 1=4; 1=2; 3=4; 1. Hence, we have a rounding B of H such that 2 � 2 discrepancy between B

and H is at most 5=4. Thus, the discrepancy between B and A is less than (5 + �)=4. We
continue this argument to have a recursion � � (5 + �)=4, and hence � � 5=3.

3.1 Basic Observations

Let A = (ai;j) be a matrix in which each entry has a discrete value among 0; 1=4; 1=2; 3=4 and
1. An entry is called large (small, respectively) if its value is 3=4 or 1 (1=4 or 0, respectively).
The entries with the values 1=2 are called medium entries. A entry is indicated by a symbol
L (S, respectively) if its value is 3=4 (1=4, respectively). A medium entry ai;j is indicated by
either m orM according to its parity, that is, m if i+j is even, andM otherwise. Thus, two m
entries are arranged diagonally or o�diagonally but never be aligned horizontally or vertically.
We often indicate an integral entry (0 or 1) of A by I.

A rounding B of A is called a tame rounding if it satis�es the following conditions:
(1) Every large entry is rounded to 1. (2) Every small entry is rounded to 0.

We basically consider tame roundings. Thus, our control is just rounding medium entries.
Indeed, this is a little cheating, since we will 
ip some S or L entries in the �nal stage of the
construction. However, until then, we only consider tame roundings. Given a rounding B, a
2�2 region (rigid submatrix) R is called a violating region if jB(R)�A(R)j > 5=4. Otherwise,
it is called a safe region. The following lemmas are elementary:

Lemma 3.3 Let R be a 2� 2 region in a given matrix. Then, R is a safe region for any tame

rounding if (i) R has at most one medium entry, or (ii) R has both a large entry and a small

entry.

Lemma 3.4 If a 2 � 2 region R has at least one medium entry and at least one S (L, resp.)

entry, then R is safe as far as the medium entry is rounded to 1 (0, resp.).

Lemma 3.5 If a 2 � 2 region R has two medium entries, then R is safe as far as the two

medium entries are rounded to di�erent binary values, one to 0 and the other to 1.

Lemma 3.6 If three entries characterized as SmS or SMS (LmL or LML, resp.) are aligned

horizontally or vertically in order, any 2� 2 region containing two of them is safe as far as the

middle medium entry is rounded to 1 (0, resp.).

We call a medium element a sandwiched element if it is between two S or two L elements
on a row or a column as in the above lemma.
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3.2 Proof of Lemma 3.2

We are now ready to prove our main lemma 3.2 which guarantees that we can always round a
matrix A consisting of 0; 1=4; 1=2; 3=4 and 1 into a binary matrix so that the rounding error is
between �5=4 and 5=4 for any 2� 2 region in the matrix.

We �rst round all the sandwiched elements so that those between two S elements are turned
into 1, and those between two L elements are turned into 0. It may happen that an element is
sandwiched by both two S elements and two L elements (vertically and horizontally), where we

ip the element into 0. We �nalize the rounded values of sandwiched elements as above. For
simplicity, the �nalized sandwiched elements are denoted by F . From Lemma 3.6, no region
containing an F element can become a violating region.

We next apply parity rounding, which rounds m to 0 and M to 1 for the rest of medium
elements. Table 1 summarizes the error caused by pairs of elements in the parity rounding.
We omit pairs containing F elements, since every region containing an F element is safe.

error = �1 �3=4 �1=2 �1=4 0

mm, MM Sm, LM 0m; 1m;SS; 1M; 0M;LL 0S; 1S; SM;Lm; 0L; 1L 00;mM;SL; 11

Table 1. Error caused by pairs in the parity rounding.

Neither the patternmm norMM can occur vertically or horizontally in a 2�2 region. Thus,
from the above table, violating regions are characterized by fS;m; S;mg and fL;M;L;Mg
where two medium entries are arranged diagonally or o�diagonally. If there is no such region,
then the parity rounding gives us a rounding with discrepancy bounded by 5=4.

The parity rounding is an intermediate stage. In the subsequent process, if we 
ip m to 1,
we denote it by m�, and if we 
ip M to 0, we denote it by M�. We consider a violating region
R consisting of S and m entries. We can symmetrically treat a region consisting of L and M

entries.

R is either

�
S m

m S

�
or its rotated pattern

�
m S

S m

�
because of the parity condition.

We 
ip at least one of the two m entries to make it safe. Such a 
ipped entry is denoted by
m

�.
We consider the �rst case where two S entries are in the main diagonal position. It is easy

to adapt the following argument to the second case above. Suppose we 
ip the m-entry in the
�rst row. This 
ipping may cause side-e�ect. From Lemma 3.4, any 2 � 2 region containing
the S entry and 
ipped medium entry m� is always safe. Thus, we have to worry about only
the region R1 which intersects R = R0 only at the 
ipped entry m�. If the region R1 is safe for
the new rounding, then we stop any further 
ipping. We call R1 the sink region of the 
ipping
sequence and the region R the source region.

Note that there are many violating regions in the parity rounding, and this safe region
might become violating again due to side-e�ect if we try to resolve other violating regions. We
ignore such interaction for the time being. If a region is always safe once the 
ipping is done,
it is called a guarded region.

Observation 3.7 A region containing m
�
M

�, Sm� or LM� is a guarded region, whereas a

region containing a row or column of Im� or IM� is safe but not guarded, where I is an integral

entry.
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M L̂ M
�

L̂ L L M
�

L

S m
�

M
�

S m
�

M S m
�

M
�

S m
�

L

m S m S m S m S

Figure 2: Possible situations after 
ipping an entry of R1 to remove side-e�ect.

We note that the source region is guarded because of the above observation. If R1 is not
safe, we have to continue 
ipping one of medium entries in R1. Here note that if R1 has no
other medium entry then Lemma 3.3 guarantees that R1 is safe for any tame rounding. The
region R1 contains the 
ipped entry m� at its lower left corner.

We can observe that R1 is violating only if it is one of the following patterns:

�
M L̂

m
�

M

�
;

�
L L

m
�

M

�
and

�
M L

m
�

L

�
, where L̂ is 0; 1; or L. In the �rst case we have two M entries

which can be 
ipped into M� (
ipping one of them su�ces to make R1 safe but 
ipping both
of them still makes R1 safe). Thus, we have two possible 
ipping sequences branched from a

ipping from R1. In the remaining two cases we have only one M entry to 
ip it into M

�.
Possible situations are shown in Fig. 2.

The 
ipping(s) in R1 may cause another side-e�ect, that is, a safe region may become
violating by the 
ip. Such a region R2 is characterized again by the one intersecting only at
the 
ipped M� entry in R1.

Without loss of generality, we consider the case where R1 has anM
� entry at its lower-right

corner, and R2 intersects R1 at the entry. Due to a similar argument, the region R2 must be�
M

�
m

m Ŝ

�
or

�
M

�
S

m S

�
or

�
M

�
m

S S

�
, where Ŝ is 0; 1 or S. We can observe that the

second case cannot happen; indeed, the m entry below M
� is sandwiched by two S entries,

since if we write down both R and R2, we have

�
S m

�
M

�
S

m S m S

�
. Thus, it should be�

S m
�

M
�

S

m S F S

�
in truth, and R2 is safe.

In the �rst case, if Ŝ = S, we can similarly see that the m entry left to the S entry must
be an F entry. Thus, we assume that the Ŝ is an integral element. We can stop this 
ipping
operation by just 
ipping the m entry below the M� entry. In this case, the sequence bends,
and we call the sequence has a bending end. (Otherwise, we call it has a straight end). Then,
we have a pair (m�

; Ŝ) with the S entry in R, and thus after the 
ip any 2�2 region containing
the last 
ipped entry is safe, since m� element is sandwiched by Ŝ and S, and the rounding
error of (Ŝ;m�) is 0:5. Thus, no region containing the m� element is violated in the current
rounding, since neitherMM nor mm appears as a row in a 2�2 region of the parity rounding.
We remark that the region (we also call it the sink region of the 
ipping sequence) containing
(Ŝ;m�) and other two entries below them might become a violated region due to side-e�ect
caused by resolving other violated region.

For the third case, the 
ipping operations may continue only when the new region contains
exactly two medium entries guarded by S and L from both sides. Fig. 3 depicts a typical
situation where consecutive 
ipping operations are forced.

Lemma 3.8 Whenever we are forced to 
ip medium entries consecutively, they are aligned

horizontally or vertically without any bend except at the last 
ip.
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M L̂ L L L M L̂ L L

S m
�

M
�

m
�

M
�

m
� � � � S m

�
M

�
m

�
M

�
b

m S S S S S m S S S a S

Figure 3: Forced consecutive 
ipping operations (left), and its tail region (right).

Proof We have already seen that forced consecutive 
ipping sequence can proceed straight
horizontally or vertically. So, it su�ces to show that it never bends (except the last 
ip).
Without loss of generality we consider the situation shown in the right pattern in Fig. 3. Let
Ri be the 2�2 region intersecting only at the last 
ipped entry. Then, by the similar argument,
the diagonal entry of Ri must be S. To change the 
ipping direction, the entry a just below
M

� must be a medium entry m. What happens when we 
ip the m entry into m�? The region
we have to worry about is the one containing S and m� in its upper row. Since the lower row of
the region cannot beMM;Mm

�
; or m�

m
� because of the parity condition and our assumption

that there is no other 
ipping sequence. This means the rounding error for the lower row never
exceeds �3=4 and thus the region is safe. Therefore, we can stop the 
ipping sequence here at
the position a in the �ght pattern of Fig. 3. 2

So far we have considered each violating region independently. Next we shall consider
interaction among 
ipping sequences from di�erent violating regions. Let us examine the safe
but unguarded regions caused by a 
ipping sequence.

Lemma 3.9 If a safe region is unguarded, it can become unsafe because of side-e�ect by other


ipping sequences if it contains an I entry and three medium entries.

Proof From Observation 3.7, we have a 
ipped medium entry and an I in a column. Thus,
the only possibility that it becomes unsafe is that it has three medium entries and they are

ipped into a same binary value. 2

Usually, only the sink region is the (possible) unguarded region containing a 
ipped element.
Unfortunately, there are some exceptional cases, where the sequence stops as one of the patterns
in Fig. 4. In each of the cases, the entries I andM� in the bold letters cause a problem. Indeed,
the pair I and M

� has error 0:5, and it is adjacent to m;M . Thus, it becomes violated if the
M entry is 
ipped as a side e�ect of another 
ipping sequence; thus, it is an unguarded
region that is not the sink region. If the original sink region itself is guarded, we regard the
unguarded region as the sink region of the sequence; otherwise, we call the region a subsink,
and a 
ipping sequence containing a subsink is called a two-headed 
ipping sequence. Patterns
in Fig. 4 and their transformed analogues (i.e, �gures obtained by rotating or re
ecting, and/or
exchanging every M with m and S with L) exhaust patterns of two-headed 
ipping sequences.
We sometimes call single-headed 
ipping sequences for other sequences. For simplifying the
subsequent argument, if the two-headed 
ipping sequence is ended with a bending end, and
can 
ip the other medium entry (if exists) in the straight direction to have a single-headed

ipping sequence, we take that choice instead of the two-headed 
ipping sequence.

An important fact is that for each case, the 
ipped entry in the new tempolary-safe regin
is in the diagonal (resp. o�-diagonal) position if the one in the oringinal sink region is in the
o�-diagonal (resp. diagonal) position.

Lemma 3.10 There are either at least two single-headed 
ipping sequences or at least two

two-headed 
ipping sequences from a given source region.
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� M�
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m S M S m
�

M
�

m
�

m S m
�

I
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Figure 4: Patterns causing two-headed 
ipping sequences

Proof As seen in Fig. 4, a two-headed 
ipping sequence branches from
M I

S m
�

M
�

m S

and hence there are other paths which 
ip M in the top row or 
ip m in

the bottom row. Thus, we have at least three paths, and hence the lemma holds. 2

Lemma 3.11 If both of subsink and sink regions are violated in a two-headed 
ipping sequence

because of side-e�ect caused by other sequences, we can give 
ipping of some entries to resolve

both of violated regions without in
uencing other regions.

Proof We remark that we may destroy the tame condition here, and we emphasize that these
operations are done in the �nal stage of the construction. Thus, we give the proof of this lemma
later in Appendix I. 2

De�nition 3.12 (Negative interaction of sequences) We de�ne that a pair of 
ipping se-

quences (originated from di�erent source region) has negative interaction if they share an un-

guarded sink (or subsink) region but they have di�erent 
ipped entries located in the diagonal

or o�-diagonal position to make the region violated.

Lemma 3.13 If we have a set of 
ipping sequences without negative interaction, the \union"

of them creates no violating regions, where we mean \union" for the con�guration obtained by


ipping every medium entry that is 
ipped in at least one of the sequences.

Proof A 
ipping sequence proceeds straight along a sequence of medium entries which are
guarded by S and L from both sides, and all interior entries are 
ipped. We need not care a
region containing a pair of entries with error at most 0.25, since our rounding is tame. Also,
in the source region, we can 
ip both of the medium entries keeping it safe. Hence, we only
worry about the region which is a sink region shared by more than one 
ipping sequences. Of
course, if its only one entry is 
ipped, we have no problem. It is �ne if two medium entries in
a row or a column are simultaneously 
ipped, since these two have total error 0. Thus, there
are diagonal or orthogonal 
ipped pair, and hence we have a negative interaction by de�nition.
2

De�nition 3.14 (covering by 
ipping sequences) A set C of 
ipping sequences is called

a good covering of the matrix if its sequences are classi�ed into active sequences and normal

sequences satisfying the following conditions: (1): An active sequence must be a two-headed


ipping sequence, (2) every violated region in the parity rounding becomes a source region of at

least one sequence in C, (3) each active sequence has negative interaction with normal sequences

at both its sink and subsink, (4) each normal sequence can have negative interaction with only

active sequences.

8



Lemma 3.15 If there exists a good covering, there exists a rounding whose discrepancy is at

most 1.25.

Proof Consider the union of the 
ipping sequences. If there is no active sequence, there is
no negative interaction, and we have no problem because of Lemma 3.13.

An active sequence corresponds to a two-headed 
ipping sequence that has negative inter-
actions at both of their sinks and subsinks. However, Lemma3.11 assures that we can resolve
sinks and subsinks in active sequences without in
uencing other regions.

If a 
ipping sequence shares its sink and/or subsink region(s) only with active sequences,
we do not need to worry about the region, since it has been resolved within the active sequence.
Thus, the lemma holds. 2

Hence, it su�ces to �nd a good covering. We select (in an arbitrary manner) exactly either
a pair of single-headed 
ipping sequences or a pair of two-headed 
ipping sequences for each
source node. This is called trimming operation, and always possible because of Lemma 3.10.
We will �nd a good covering as a subset of this trimmed set by translating the problem into a
graph theoretic problem.

We prepare an easy graph theoretical fact:

Lemma 3.16 In a bipartite graph G, between node sets X and Y , if each node degree of X is

at least two and each node degree of Y is at most two, G has a matching of size jXj.

Proof For any subset Z of X, the size of its neighbor is at least jZj from the degree condition.
Thus, we have a matching of size jXj because of Hall's SDR theorem. 2

We construct a graph G = (U [V;E [J) from our set of 
ipping sequences (after applying
the trimming operation) as follows: The nodes in U are called source nodes while the nodes
in V are called sink nodes, although G is not a bipartite graph in general. The edges in E

are called regular edges, while those in J are called joint edges. For each source region R of a
single-headed 
ipping sequence, we construct a source node v(R). For each 2� 2 region R, we
de�ne two sink nodes v(R;+) and v(R;�) in V . If there is a single-headed 
ipping sequence
with a source region R and a sink region R

0 containing the �nal 
ipped entry in its diagonal
(resp. o�-diagonal) position, we de�ne a regular edge e in E between u(R) and v(R0

;+) (resp.
v(R0

;�)).
Next, consider a source region R of two-headed 
ipping sequences (by our trimming oper-

ation, we have exactly two such sequences). For a two-headed 
ipping sequence with a source
region R with a sink region R1 and a subsink region R2, we de�ne a joint edge between two
sink nodes v(R1; �1) and v(R2; �2), where �i are determined from the position of the 
ipped
entry in the same manner as the case of regular edges.

Let R be the set of all source regions of two-headed 
ipping sequences. In the construction
of G we do not de�ne source nodes for a region R in R; however, corresponding joint edges are
labeled by the source region R. In other words, for each region R in R, we have a subset �(R)
of E consisting of two edges labeled by R.

We indeed consider the graph G together with R and the labeling function � (from R to
the set of doubletons in E). We denote [G;R; �] for the triple.

Lemma 3.17 In the graph G, the node degree of a source node is two, and the node degree of

a sink node is at most two.

Proof The �rst statement follows from de�nition. The proof of the second statement is
omitted in this version. 2

9



Consider a three coloring (into red, blue, and white) of P , where the blue color is only used
for some joint edges. Intuitively, blue edges correspond to active 
ipping sequences, and red
edges correspond to normal 
ipping sequences in a good covering.

De�nition 3.18 A coloring of G is a good coloring if (1) each source node is adjacent to at

least one red or blue edge, (2) at most one red edge is incident to a sink node, and each blue

(joint) edge is adjacent to two red edges.

De�nition 3.19 (covering coloring) A covering coloring of [G;R; �] is a good coloring of

G satisfying that at least one edge of �(R) is colored either red or blue for each R 2 R.

To get intuition, if there is no joint edge, G is a bipartite graph, and containing a matching
of size jU j because of Hall's SDR theorem and Lemma 3.17. Thus, we have a good coloring
(automatically a covering coloring if there is no joint edge) by coloring matching edges into
red. We want to extend this fact to the general case, since we have the following lemma:

Lemma 3.20 If G has a covering coloring, we have a good covering of the matrix by 
ipping

sequences.

Proof We consider the 
ipping sequences associated with the red edges and blue edges in
the coloring. Since each source node is covered by such an edge, every source region that has
one-headed 
ipping sequences is covered. Since at least one edge in �(R) for a souce node R
having two-headed 
ipping sequence is colored into red or blue, such an R is also covered. The
good coloring condition assures that the set of 
ipping sequences is a good covering. 2

Lemma 3.21 The triple [G;R; �] has a covering coloring.

Proof Let P be a connected component of G. Since the maximum node degree of G is two,
P is either a cycle or a path. If it is a path, its end vertices must be in V , since node degree
of a vertex in U must be two. The critical edges of P are (1) none if it has at most one joint
edge, (2) the leftmost joint edge and the rightmost joint edge if P is a path with two or more
joint edges, (3) all joint edges if P is a cycle with two or more joint edges.

We claim that if we �x any one of critical edges for each P , there exisits a good coloring that
colors all the joint edges except the �xed edges red or blue. This claim can be constructively
proved by using a greedy method. We omit details since it is routine.

Now, we consider a new bipartite graph H = (R;P; F ) where P corresponds to the con-
nected components of G that are paths containing at least two joint edges. We have an arc
from R 2 R to P 2 P if (at least) one of edges in �(R) is in P as its critical edge. It is easy
to see that the graph H has a matching of size jPj. From the claim we have shown above, we
can color all joint edges in G into red or blue except those corresponding to the arcs in the
matching of H. Since at most one edge of �(R) is selected in the matching for each R 2 R, at
least one of them is red or blue. Thus, the coloring is a covering coloring. 2

Thus, from Lemma 3.20 and Lemma 3.15, we can conclude that there exists a rounding
whose maximum error is bounded by 1.25 if each entry of the input matrix is an integral
multiple of 0.25.
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4 Concluding Remarks

In this paper we have discussed how to achieve low discrepancy with respect to 2 � 2 square

regions when we round a [0; 1]-valued matrix into a binary one. Our new upper bound is

5=3 ' 1:67. There still exists a large gap between the lower bound (= 1) and the upper bound.

Thus, a simple but interesting open question is to tighten the gap; indeed the authors are

curious whether we can construct an example forcing the optimal rounding error to be 1.25 if

the input matrix consists of entries of integral multiples of 0.25 (it is easy to make an example

in which the rounding error is forced to be 1). Another direction is to extend the region size

from 2 � 2 to k-by-k regions for k � 3. Even for the case k = 3, we have neither a nontrivial

upper bound nor a lower bound.
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Appendix

Appendix 1: Proof of Lemma 3.11

One important observation is that a two-headed sequence is always very short. Indeed, the

subsink and sink are intersecting or adjacent to each other, and this enables to resolve the

violated region. If both of sink and source regions are violated, the situation are those given

in Fig. 5.

M I M
�

M
�

m M
�

M I M
�

S m
�
M

�
m M I M

�
I S m

�
M

�
m

m S M
�

S m
�

M
�

m
�

m S m
�

I

m S S S M m
�

Figure 5: When both of sink and subsink are violated

In the �rst two cases, we 
ip the m entry sandwiched by two M
� (on the third column

for the �rst case, on the �rst row for the second case). Since the pair m�
;M

� has error zero,

it will give no side e�ect and similtaneously resolve both violated regions. The third case is

troublesome. If we can 
ip the m in the �rst column, we have no problem. Hence the problem

occurs when we cannot 
ip it. Here, instead we 
ip the S entry in the second column to obtain

the following con�guration:

M I M
�

S m M m

m S
�

m I

M m
�

The error of m;S
� is 0:25, and hence it causes no side-e�ect since all the m entries around

it are rounded to 0. We note that this destroys the tame condition. It might happen that the

M entry in the top row and second column is 
ipped due to some side e�ect. In that case, we

apply the following 
ipping con�guration.

M
�

I M
�

S m
�

M m

m S
�

m I

M m
�

12



Appendix 2: Proof of Lemma 3.17

To prove that the degree of sink is at most two, we consider a sink region R which contains two

medium entries in either diagonal or o�-diagonal positions. Let p be one of medium entries in

such a region R, and consider 
ipping sequences with the sink region R and having p as the

last 
ipped element. Because of symmetry, we assume that p is an M
� node, and p is located

at the upper-left corner of R. There are at most seven patterns of 
ipping sequences which

have such an R as a sink region and 
ip p as the last 
ipped entry. In precise, Fig. 6 shows all

the possible seven patterns of a sink region (bold-bounded region) R where p is the M� entry

located at the center.

M L

L M*

M

L L L

L L

L

M* M* M* M* M* M*

M*m* m*

m* m*

m*

M M M M M M

L̂

L̂

L̂

L̂

MM

S

S S

SM*

m*

Figure 6: Possible patterns for a sink

Indeed, at least four of the eight neighbors of p are determined in each pattern, and it can

be observed that no two of such patterns can simultaneously exist around p. Thus, if the sink

region has two diagonal (resp. o�-diagonal) medium entries, the node degree of w(R;+) (resp.

w(R;�)) is at most two.

Also, we can see that a sink and a subsink cannot be similtaneously exist around p; Here,

we may worry about the following pattern

M m M

M I M
�

I M

S m
�

M
�

m
�

M
�

m
�

S

m S S S S S m

where the subsink from the two-headed sequence originated from the leftmost region is the sink

from the two-headed sequence originated from the rightmost region, and they share an M
�.

However, since we have adopted a rule that we choose a single-headed 
ipping sequence at a

bending end of a two-headed sequence if possible, that kind of pair of two-headed sequences

cannot occur, and the real �gure is the following one.

M m M

M I M I M

S m
�

M
�

m
�

M
�

m
�

S

m S S S S S m

It is easier to handle the case to show that w(R;+) (resp. w(R;�)) has degree at most two

if R has only one medium entry in the diagonal (resp. o�-diagonal) position1.

1This case is indeed irrelevant since it is not related to a negative interaction.
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