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Abstract. Digital halftoning is a technique to convert a continuous-
tone image into a binary image consisting of black and white dots. It is
an important technique for printing machines and printers to output an
image with few intensity levels or colors which looks similar to an input
image. The purposes of this paper are to reveal that there are a number
of problems related to combinatorial and computational geometry and
to present some solutions or clues to those problems.

1 Introduction

The quality of color printers has been drastically improved in recent
years, mainly based on the development of fine control mechanism. On
the other hand, there seems to be no great invention on the software
side of the printing technology. What is required is a technique to con-
vert a continuous-tone image into a binary image consisting of black and
white dots that looks similar to the input image. Theoretically speaking,
the problem is how to approximate an input continuous-tone image by a
binary-tone image. Since this is one of the central techniques in computer
vision and computer graphics, a great number of algorithms have been
proposed (see, e.g., [6,8,9,17]) with several theoretical results by the au-
thors [1-5]. The purpose of this paper is to reveal that some notions on
combinatorial and computational geometry such as Voronoi diagram, dis-
crepancy, and dispersion are related to digital halftoning. Based on those
notions we shed light on digital halftoning from different directions.

2 Known Basic Algorithms

Throughout the paper we put the following assumptions to simplify the
discussion. We take as an input image an N X N real-valued matrix A =
(a;;), 0 < a;; < 1 for each (7, j) and output a binary matrix B = (b;;) of
the same size. Usually, black has the intensity level 0 while white has 1.
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Fig. 1. 8 x & dither matrix by Bayer [6].

For color images, we iterate the same halftoning process three times for

each of R (Red), G (Green), and B (Blue) components.

Since digital halftoning is a widely used technique, a great number of
algorithms have been proposed so far (refer to the books [10,17]). First
we briefly describe several representative halftoning algorithms with their
variations of algorithmic flavor.

2.1 Simple Thresholding

Given an N X N array A of real numbers between 0 and 1, we wish to
construct a binary array B of the same size which looks similar to A, where
entry values represent light intensity levels at corresponding locations.
The most naive method for obtaining B is simply to binarize each input
value by a fixed threshold, say 0.5. It is simplest, but the quality of the
output image is worst since any uniform gray region becomes totally white
or totally black. The most important is how to represent intermediate
intensities.

2.2 Ordered Dither

Instead of using a fixed threshold over an entire image, this method uses
different thresholds. A simple way of implementing this idea is as follows:
We prepare an M x M matrix of integers from 1 to M?. This matrix
(dither array) is tiled periodically to cover the image. Each pixel in the
image is compared with the corresponding threshold from the dither array
to decide whether a dot will be placed at that location. Fig. 1 shows the
dither matrix given by Bayer [6].



2.3 Error Diffusion

The dither algorithm is designed to preserve the average intensity level
between input and output images. There is another standard algorithm
called “error diffusion” that also possesses the same property by propagat-
ing the quantization errors to unprocessed neighboring pixels according
to some fixed ratios. More precisely, pixels are processed in a raster order,
from left to right and top to bottom. Each pixel level is compared with
a fixed threshold, 0.5 and round it up if it is greater than or equal to the
threshold and round it down otherwise. The quantization error caused
by the rounding is diffused over the unprocessed pixels around it with
fixed ratios. For example, if a pixel level is 0.7, it is rounded up to 1 and
the error —0.3 is diffused to the unprocessed pixels nearby. The ratios
suggested by Floyd and Steinberg in their paper [8] are shown in Fig. 2:

e 7/16
3/16 5/16 1/16

Fig. 2. Diffusion ratios in Error Diffusion by Floyd and Steinberg.

This method certainly preserves the average intensity level because
the rounding error is distributed to neighboring pixels. When the process
terminates, the difference between the sums of intensity levels in the input
and output images is at most 0.5.

This method not only preserves the average intensity level but also
gives excellent image quality in many cases, but it tends to produce visible
artifacts in an area of uniform intensity, which are caused by the fixed
error-diffusing coefficients.

Fig. 3. Output images: Simple thresholding, ordered dither, and error diffusion (color
images).



Fig. 3 compares the three algorithms, simple thresholding, ordered
dither and error diffusion, by their output images.

3 Variation of Known Algorithms with Related Problems

3.1 Variation of Simple Thresholding

The serious drawback of the simple thresholding is poor expression of
intermediate intensity due to its independent process at each pixel and
its use of a fixed threshold. One of the method to improve the expres-
sion is to use random thresholds. Precisely, we generate white gaussian
noise over an input image and use the noise as threshold. This method
is considered as variation of ordered dither with a dither matrix defined
by random numbers. Thus, theoretically speaking, the expected average
intensity level of the output image is expected to be equal to that of input
image.

The same idea is popular in randomized algorithms under a differ-
ent name, i.e., randomized rounding [14,16], in which a real number z,
0 <z < 1, is rounded up with probability z. It is one of the standard
techniques in randomized algorithms.

3.2 Variation of Ordered Dither Algorithm

The previous subsection described a rounding algorithm using variable
random numbers as thresholds to generalize the simple thresholding that
uses one fixed threshold. We can use a carefully designed table of random
numbers instead of generating a random number for each pixel. Dither
matrix corresponds to this table of random numbers. Small table size
tends to lead to disadvantage of visible artifacts. So, the largest possible
table size would be better. In fact, there is an algorithm along this idea,
which is known as a blue-noise mask algorithm [12,18,19] in general.
This algorithm uses a large dither matrix (blue-noise mask) of size, say
256 X 256.

Properties of Dither Matrix

The performance of the ordered dither algorithm heavily depends on
a dither matrix used. We have known how to construct the dither matrix.
Then what is a merit to use this dither matrix? In other words, does it
optimize anything? If the purpose is only to distribute numbers 1 through
22k over the 2% x 2F matrix, there are a number of different ways. Imagine
an artificial image of gradually increasing intensity from left to right.



During the transition from dark to bright, the number of white dots
should gradually increase. This means that for any number ¢ between 1
and 22% those entries having numbers greater than ¢ must be as uniformly
distributed as possible over the dither matrix. The uniformity can be
measured in several different ways. One measure is based on the ratio
between the smallest and largest diameters of empty circles containing no
point in their interior but at least two points on the circles. The smallest
empty circle is attained by the minimum pairwise distance. The largest
one is defined by the largest circle passing through three points while
containing no point in its interior with its center lying in the convex
hull of the point set. Another possible measure is based on the notion of
”discrepancy” which is related to the difference between the area and the
relative number of white dots.

The above regular grid-like construction of the dither matrix is op-
timal in the former measure since it is constructed under the notion of
incremental Voronoi insertion. An optimal dither matrix under the former
measure is designed as follows. Before construction we have to note that
dither matrix is used to cover an entire image by repeatedly arranging the
matrix. First we choose an arbitrary entry, say, the upper left corner of the
matrix, to assign number 1. Because of the periodicity, it means that we
have placed points numbered 1 on regular grids (87,85),¢,7=0,1,.... The
entry 2 must be placed at a grid point farthest from the points numbered
1. Such a place coincides with a Voronoi vertex of the Voronoi diagram
for the set of points numbered 1. Similarly, the location of the entry 3
should be chosen among the Voronoi vertices for the Voronoi diagram of
the set of points numbered 1 or 2. This strategy is called “incremental
Voronoi insertion” which is rather easy to be implemented. If we resolve
ties appropriately we obtain the dither matrix.

Unfortunately, this dither matrix is not good enough in practice. What
is wrong? The measure may be wrong. That is, the measure based on the
ratio between the minimum pairwise distance and the diameter of the
maximum empty circle may not be good enough to reflect the unifor-
mity of point distribution. The latter measure based on the discrepancy
suggested above seems to be more promising. In the measure we take a
number of regions. If points are uniformly distributed, the point density
is roughly the same in each such region. In the discrepancy measure we
can take regions of arbitrary shapes. The former measure based on the
minimum pairwise distance is roughly equal to the discrepancy measure
for a family of circular regions. In this sense the discrepancy measure is
a generalization of the former measure.



To define the discrepancy measure, we introduce a family F of regions
over an image. For each region R in F, let A(R) denote the area of R and
card(R) denote the number of points in R. Then, we take the difference

D(R)=|n-A(R) — card(R)|,

as the discrepancy for the region R, assuming that the area of the whole
image is 1.

Consider a regular pattern in which n points are placed in a \/n X /n
grid. Take a rectangular region R defined by two rows of points. Then,
the area of the rectangle is (1/y/n) X 1 = 1//n. If we locate the rectangle
so that the two sides exactly coincide with two rows of points, we have
card(R) = 2/n. Otherwise, it contains only one of rows of points, and
so card(R) = y/n. Thus, we have D(R) = |n/y/n — 2y/n| = {/n in the
former case and D(R) = |n/y/n —+/n| = 0 in the latter case. In fact, we
can prove that the maximum value of D(R) is O(y/n). Furthermore, it is
known that it remains O(y/n) when n points are randomly distributed.
However, there are deterministic algorithms which achieves the discrep-
ancy O(logn). Refer to the textbooks on discrepancy by Chazelle[7] and
Matousek[11].

Rotation of Dither Matrix

Another related problem comes from the human perception. An inter-
esting feature of human perception is that horizontal and vertical patterns
are more sensitive to human eyes than skewed patterns [15]. This fact sug-
gests us of rotating a dither matrix. Then, the problem is how to design
such a rotated pattern consisting of M? elements. This is not so easy
since a rotated pattern must be tiled to cover the entire image and the
area (number of entries) is fixed. Fig. 4 illustrates how a rotated dither
matrix covers the entire plane.

We shall explain how to design a pattern which satisfies the following
conditions:
(1) area condition: The rotated matrix must have the same number
of entries (or grid points) as that of the original matrix, and those grid
points form a connected cluster without any hole.
(2) tiling condition: The rotated matrix must be tiled to cover the
entire grid plane, that is, the entire plane must be tiled without any gap
by repeated placements of the same pattern.
(3) angle condition: The rotated matrix must be bounded by four
digital lines segments. The angle of those segments from the axes should



Fig. 4. Tiling the entire grid by a pattern.

Fig.5. A tiling pattern R = ABCD and four parameters a, b, ¢, d defining it.

be close enough to a given angle. Furthermore, the angle between two
such segments should be almost perpendicular.

The most important observation behind the scheme for achieving a
rotation is the following Pick’s theorem [13].

[Pick’s Theorem] The area of any simple polygon P in a grid (not
necessarily convex) whose vertices are lattice points is given by

area(P) = Ly, (P) + Lpa(P)/2 — 1,

where L;,(P) denotes the number of grid points in the interior of the
polygon P and Lyq(R) that of grid points on the boundary.

Our objective is to design a rotated square region R consisting of M?
grid points rotated approximately by an angle 8. We have four vertices



denoted by A, B,C and D, as shown in Fig. 5. Among the four vertices
only the vertex A is included in the rotated pattern. Since this is a tiling
pattern, the other three vertices become the positions at which the A
corner of the pattern R is located. The rotated square R has four sides,
AB, AC, BD and C'D. The grid points on the lower sides AB and AC' are
included into the rotated pattern R while those grid points on the upper
sides BC' and C'D are not. Here note that by symmetry the number of
grid points on the lower sides is equal to that of grid points on the upper
sides. See Fig. 5 for illustration.

Then, the number of grid points included in the rotated pattern R is
given by the sum of the number of grid points lying in the interior of the
rotated square R = ABC'D, half the number of grid points on the four
sides excluding the vertices, and 1 for the vertex A. Thus, by the Pick’s
theorem, the number of grid points in the rotated square pattern R is

1
Lin(R) + 5 (Lea(R) = 4) + 1
1
= Li(R) + §Lbd(R) — 1 =area(R).
Now, given a size of a rotated pattern (the number of grid points) and

an angle 6, we can construct such a rotated pattern as follows:

Designing a Rotated Pattern

(1) Find four integers a,b, ¢, and d such that

ad + bc:]\427

(2) Determine a quadrangle R = ABC'D such that
1. The bottom, right, left, and top vertices of R are A, B,C', and D.
2. The coordinates of the vertices B,C, D are determined by (24 +
a,ys +0), (x4 —c,ya+d), (x4 — c+a,ys + d+ b), respectively.
. The grid points on the lower side are included in R.

W

. The grid points on the upper side are not included in R.
5. Among the four vertices, only the bottom vertex A is included in

R.

Lemma 1. The rotated pattern R designed above satisfies the three con-
ditions listed above.



Proof. Area Condition is satisfied since the area of the rotated pattern
R is

(a+¢c)(b+d) —ab— cd = ad + be.

Tiling Condition: The pattern can tile the entire grid. When we trans-
late R so that the A corner coincides with the location of the vertex B,
the side AC of the translated pattern coincides with the side BD of the
pattern in the original location. By the definition of the rotated pattern,
they coincide with each other and those grid points on the side are in-
cluded only in the translated pattern. It is just the same for the other
sides. Finally, there is no collision of vertices since we have chosen only
one vertex among the four vertices.

Angle condition: We can choose the four parameters a,b, ¢, d so
that the slopes of the sides AB and C'D are roughly equal to tanf and
those of the sides AC' and BD are roughly equal to tan(f — 7/2). Thus,
we can choose the best possible parameter values among those values
satisfying the area condition.

Blue-noise Mask: a Huge Dither Matrix

One way to remove the artifact texture pattern of the Ordered dither
algorithm is to rotate the dither matrix. There is another way. Just use
a huge dither matrix of size, say, 256 x 256. If we carefully design such a
huge dither matrix, artifact textures are not visible anymore. The prob-
lems are how to design such a huge dither matrix and the large storage
requirement.

Such a huge dither matrix is generally referred to as a blue-noise
mask. Important is to remove periodicity. Consider a dither matrix of
size 256 x 256. When we have 256 intensity levels, each number between
1 and 256 appears 256 times in the matrix. For each number p between
1 and 256, those entries numbered 1 through p should be distributed as
uniformly as possible. A desired pattern is not a regular one but somewhat
random-looking pattern as is explained concerning discrepancy. There are
several ways to incorporate randomness. One such method is the one
called “void-and-cluster” algorithm [19].

The algorithm starts with a random distribution of points and grad-
ually tries to reform the pattern for uniform distribution. There are two
factors to break uniformity: cluster parts in which many points are lo-
cated closely to each other and void parts in which points are sparsely
distributed. An idea to achieve uniform distribution is to move a point in
a cluster to the center of a void.



Such an operation is well supported in computational geometry. Given
n points, the Voronoi diagram is constructed in O(nlogn) time. When a
point is surrounded by many points, its associated Voronoi region tends
to be small. Thus, cluster parts are found by checking areas of Voronoi
regions. On the other hand, void parts correspond to sparse parts. Such
locations are found as centers of large empty circles in which no point is
contained. A largest empty circle can be found in linear time in two ways,
one based on linear programming and the other on randomization.

3.3 Dispersion Problem

Now it finds that the problem of designing a good blue-noise mask is
closely related to the following combinatorial problem.

Dispersion Problem We want to insert a predermined number of points
one by one as much uniformly as possible in some given domain at any
instance. The uniformity is measured by the maximum ratio of the maxi-
mum gap over the minimum one. When the maximum and minimum gaps
after inserting k points are denoted by G and gg, respectively, the ratio
ri is defined by r; = G /gr. The objective here is to minimize the maxi-
mum ratio R, = max(ry,ra,...,,), which is referred to as the dispersion
of the point sequence.

There may be several different manners to define a gap. In the d-
dimensional space we define it by the radius of a ball with its center
being in the domain which contains d + 1 points on the surface but no
point in its interior. The problem here is to find upper and lower bounds
on the maximum ratio R, in each dimension.

General Approximation Algorithm We assume that a domain is
given by a convex polyhedron and its vertices are included as an initial set
of points. Then, we add points one by one. A simple way to insert points
uniformly is a so-called incremental Voronoi insertion, which inserts a
point at an interior vertex of a current Voronoi diagram that has the
largest clearance around it.

It is not so hard to check the performance of the algorithm. In 1-D,
starting with a unit interval [0,1] with an initial set {0,1}, we put a
new point at the center point of the the current largest gap [0, 1]. Thus,
a sequence of points generated is {py = 1/2,py = 1/4,p3 = 3/4,ps =
1/8,...}. Then, starting with a gap Go = go = 1, the largest and smallest
gaps when we inserted the k-th point are G = 1/2ng(k-|—1)] and g =



1/2ngj"'17 respectively. Thus, the ratio r; is 1 if & = 28 — 1 for some
integer ¢ and 2 otherwise. Thus, the maximum ratio, i.e., the dispersion
of the 1-D Voronoi insertion, is 2.

What about the 2-d case? We start with a unit square with an initial
point set {(0,0), (0,1), (1,0),(1,1)}. Then, we do the incremental Voronoi
insertion. It proceeds similarly as the one-dimensional case. That is, the
ratio is either 1 or v/2. Thus, the maximum ratio is v/2.

One-Dimensional Case Our domain here is a unit interval [0, 1]. The
two extremal points 0 and 1 are assumed to be included in the set. We
can show that there is a strategy better than the incremental Voronoi
insertion.

As an exercise, let us consider the case when we insert 3 points. Unlike
the incremental Voronoi insertion, we put the first point p; so that the
unit interval is split unevenly. Then, we put the second point py to split
the longer interval. Now we split the current longest interval into two
by putting the third point ps. This process is represented by a binary
tree rooted at the unit interval. It is followed by two intervals z; and x4,
where 1+ x9 = 1 with xy > x5. Then, 1 has branches to x5 and x4 with
x3+ x4 = 1 and 23 > x4. The node x5 is also followed by two nodes x5
and zg such that 5 + ¢ = v2 and x5 > xg.

Then, the ratios are ry = xy/x9, ro = ¥3/x4, and rg = x3/x¢. Since
the intervals z3,...,26 are not split anymore, the partition of x; into
23 and x4 and that of z9 into x5 and xg should be bisections at their
center points to minimize the ratios, that is, 3 = x4 and x5 = z¢. Now,
let us denote x5 and z3 by y; and s, respectively. Then, z9 = 2y and
x1 = 2yy. Therefore, ry = x5/24 = 2y1/y2 and r3 = x3/26 = y2/y1. Thus,
the maximum ratio K3 is minimized when ro and r3 are equal, and it is
given by

Ry=izma= | D82 _ 1)
Y2

We can show that this bound is optimal, that is, there is no sequence of
three points to achieve a better ratio. Assume w.l.o.g. that 0 < p; < 1/2.
Then, the ratio r;y is given by (1 — p1)/p1, which is at least v/2. Thus,
1/2> p; > /2 — 1. We have to choose p; in the interval [py, 1] to have a
ratio at most r1. So, again w.o.l.g. we assume that po—p; > (1—p1)/2, and
thus py > (14p1)/2. Now, the minimum gap is between p and 1, and thus
the ratio ry is given by py /(1 — py), which is bounded by v/2. This leads to
p2 < 1—p1/v/2. Combining the results, we have py > (14 p1)/2 > v/2/2,



and py < 1—p/V2<1—(v/2-1)/v/2=+/2/2. Thus, p; must be v/2/2.
It is also seen that p; must be /2 — 1. So, whatever ps is, the ratio Rs
cannot be better than /2.

We can generalize the result above in the following forms.

Lemma 2. There is a sequence of real numbers (p1,pa,...,pn) in the
unit interval [0, 1] with the dispersion
R, = 2ln/21/(ln/2]+1) (2)

Proof. First we consider the case when n is an even number, that is,
n = 2k for some integer k. The strategy to insert points is to bisect
a current longest interval each time unevenly if the resulting intervals
will be further partitioned and evenly otherwise. We rename the last 2k
intervals as follows:

Tak—1 = T4k — Y1,

Tak—3 = T4k—2 — Y2,

Tok+1 = T2k+2 — Yk-

Then, the ratios are given by

_ Xgp 2y 2y 2y
g = —— T2k—1= —— T2k—2= —— "~y Tp= ——.
i1 Y2 Y3 T2k
The maximum ratio R, = max{rak, rok—1,..., %} is minimized when
Top = I'op_1 = - -+ = rg. Hence, we have

Ry = (B2 200 22 21/ g/ (kD)
i Y2 Y3 T2k
which is equal to R,, = 2l7/21/(n/2]+1),
We have a similar proof when n is an odd number, that is, n = 2k + 1
for some k. In this case we have intervals a7 through x4z49. We set

Tak+1 = Tak4+2 — Y1,
Tak—1 = T4 — Y2,

T2k+1 = T2k+2  — Yk+1-



Then, the ratios are as follows:

Uk+1 2y 2y, 2y,
T2k+1 = — s T2k = — s T2k—1= — s """ k41 = .
W Y2 Y3 Ye+1
The maximum ratio R, = max{regt1, 72k, ..., k+1} is minimized

when they are all equal. Hence, we have

2 2 2
R, = (yk_‘H s S ﬂ)l/(k-l-l) _ Qk/(’f-l-l)7
Y1 Y2 Y3 Yk+1

which is again equal to R,, = 2L%/21/(»/2]41),

3.4 Formulation by Integer Linear Programming

The problem of optimally distributing & points over a square grid of area
n can be formulated as an Integer Linear Program. The problem P(n, k)
is, given a grid of area n, to choose k(< n) lattice points on the grid so
that the minimum pairwise distance is maximized. To solve this problem
we consider a slightly different problem P’(n,d); Given a grid of area n
and a real number d, choose as many lattice points in the grid as possible
so that their minimum pairwise distance is greater than d. Since there
are only O(n?) possible values for the pairwise distances, if we solve the
problem P’(n,d) for O(logn) different discrete values of d we can obtain
a solution to the original problem P(n,k).

To solve a problem P’(n,d) using an integer linear program, we define
a binary variable z;; for each lattice point (¢,7) in the grid of area n,
which is 1 if we choose the corresponding lattice point and 0 otherwise.
Then, the problem is to maximize the sum ) z;;, the number of grid
points chosen, under the constraint that there is no pair of points with
distance < d. The corresponding set of linear inequalities are obtained if
we enumerate all possible pairs of lattice points with distance < d.

In the continuous plane it is rather easy to define a region that contains
every possible vector of length at most d. Take two points a and b of
distance d and draw two circles of radius d centered at ¢ and b. Then, let
¢ be one of the intersections of the two circles and draw a circle of radius
d centered at ¢. Now, the intersection of these three disks is the region
required that contains every possible vector of length at most d in it. Note
that the three points form a regular triangle. See Fig.6 for illustration.

In our case we want to have a region that contains all possible integer
vectors of length at most d, where an integer vector is defined by a pair



Fig. 6. A region containing every possible vector of length at most d.

L

Fig.7. A discrete region defined by three circles.

of lattice points. Unfortunately, the above method by three circles does
not apply to the discrete case. Consider the case of d = 4. We take two
points a and b of distance 4. Then, the corresponding circles intersect at
a point ¢ that is just in the middle of the two lattice. If we draw a circle
of radius 4 centered at ¢, the resulting region does not contain a vertical
integer vector of length 4 in it. See Fig.7.

To resolve the difficulty we use at most two regions instead of one.
Given a distance d, we take its integer part d* = |d|. Then, we take a
horizontal integer vector (a,b) of length d*. Let R, be a set of all lattice
points in the intersection of the half plane above the line through a and
b and the two disks of radius d centered at a and b. Similarly we define a



Rp

Fig. 8. Two discrete regions containing every possible vector of length at most 4.

set R, by rotating Rj, by 90 degrees around the point a. Fig.8 shows two
such regions for d = 4.

It is easy to prove that every integer vector of length at most d is
contained in one of the regions. By the construction, if we take the lattice
point a as an initial point, Rj contains every integer vector of angle
in [0,7/3]. By symmetry, it also contains one of angle in [r,47/3]. If
we fix the lattice point b as one of endpoints of an integer vector, Ry
contains every integer vector of angle in [27/3, 7] or [57/3,27]. We have
the same observation for the region R,, which covers the angular intervals

[7/6,7/2],[Tr/6,37/2],[7 /2,57 /6], and [37/2, 11%/6].

4 Conclusion

In this paper we have shown that several problems on discrete and com-
putational geometry are related to digital halftoning. There are a number
of open problems. Many of them are related to conversion from the con-
tinuous plane to discrete plane. One such example is a discrete dispersion
problem in which points must be laid at some lattice points. Many things
are left unknown for such discrete versions of the problems.
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