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Abstract

We introduce a technique for computing approximate solutions to op-
timization problems. If X is the set of feasible solutions, the standard
goal of approximation algorithms is to compute x € X that is an e-
approximate solution in the following sense:

d(w) < (1+e)d(z”)

where £* € X is an optimal solution, d : X — R3¢ is the optimization
function to be minimized, and ¢ > 01is an input parameter. Our approach
is to first devise algorithms that compute pseudo e-approximate solu-
tions satisfying the bound

d(z) < d(zg) +eR

where R > 0is a new input parameter. Here x} denotes an optimal solu-
tion in the space X g of R-constrained feasible solutions. The parameter R
provides a stratification of X in the sense that (1) Xr C X/, for R < R’
and (2) Xr = X for R sufficiently large.

We first describe a highly efficient scheme for converting a pseudo
e-approximation algorithm into a true e-approximation algorithm. This
scheme is useful because pseudo approximation algorithms seem to be
easier to construct than e-approximation algorithms. Another benefit is
that our algorithm is automatically precision-sensitive.
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Japan for Scientific Research.

tSupport from the Natural Science and Engineering Research Council of Canada is great-
fully acknowledged.

{Supported by NSF/ITR Grant #CCR-0082056.



We apply our technique to two problems in robotics: (A) Euclidean
Shortest Path (3ESP), namely the shortest path for a point robot amidst
polyhedral obstacles in 3D, and (B) d;-optimal motion for a rod mov-
ing amidst planar obstacles (10RM). Previously, no polynomial time e-
approximation algorithm for (B) was known. For (A), our new solution
is simpler than previous solutions and has an exponentially smaller com-
plexity in terms of the input precision.

1 Introduction

The design of approximation algorithms is an important theme in the study of
optimization problems. The standard goal here 1s to compute feasible solutions
z that are e-approximate in the following sense. Suppose X is the space of
feasible solutions, and d : X — Ry is the criterion for minimization. Then

d(z) < (1 +¢)d(27) (1)

where z* is an optimum solution.

Especially in geometric settings, we can often parametrize the space X by
a real parameter R to yield subspaces {Xg C X : R > 0} with two properties:
(1) if R < R then Xp C Xp/, and (2) Xp = X for R sufficiently large. We
call R the search radius. Let 2} denote the optimum solution in Xp. Then a
pseudo s-approximation algorithm is one' that constructs z satisfying

d(z) < d(zf)+ <R (2)

for any given € > 0 and R > 0. In many situations such algorithms are easier
to construct than a true e-approximation algorithm. (Intuitively, the parameter
R serves to offset the complexity attributable to the size of the search space by
permitting a larger relative error.)

We will show that, under some fairly natural assumptions on d(z%), we
can systematically convert a pseudo e-approximation algorithm into an efficient
g-approximation algorithm which is automatically precision-sensitive. The
advantage for this approach derives from (i) the relative ease of constructing
pseudo approximation algorithms as compared to approximation algorithms, (ii)
the use of the above generic conversion scheme, and (iii) a clearer understanding
of those aspects of the approximation process that are sensitive to the precision
of the input (as well as the nature of this dependence).

Two N P-Hard Optimum Motion Planning Problems. Approxima-
tion algorithms take on a special significance when applied to problems that are
provably intractable. We will apply the above technique to derive approxima-
tion algorithms for two N P-hard problems in the area of robot motion planning.
Although motion planning [1, 2, 9, 11, 24, 26] has been extensively studied since

'In combinatorial optimization, the term “pseudo-approximation” sometimes refer to a
feasible solution when the original constraints are relaxed.



the early 1980s, very little is known about the problem of shortest length mo-
tion. Indeed, the only known efficient general algorithms apply only to the case
where robot body 1s a disc in 2D. This paucity of efficient algorithms is not for
lack of interest in optimum motion (see below for an overview of the literature
in the case of a rod). In retrospect, we now understand the lack of success:

(A) In 3D, Canny and Reif [6] show that the shortest path for a point robot
moving amidst polyhedral obstacles is N P-hard to compute. This problem is
known as Euclidean Shortest Path in 3D (3ESP).

(B) In 2D, Asano et al [3] define the “dj-distance” of a rod motion to be
the length of the trajectory of the midpoint of the rod and prove the d;-optimal
motion of a rod amidst polygonal obstacles is N P-hard to compute. Let IORM
be the acronym for this problem. The rod is a directed line segment, and for
now the reader may interpret the “dy-distance” of a rod motion to be the length
of the trajectory of the midpoint of the rod (see Appendix 1 for details).

Both (A) and (B) are the simplest optimum motion planning problems in
dimensions 3 and 2, respectively, that go beyond a planar disc robot. These
N P-hardness results were unexpected when they were first obtained. In any
case, they immediately motivated the search for approximation algorithms. For
Problem (A), Papadimitriou [16] gave the first approximation algorithm. This
was improved and sharpened by Choi et al [8]. Sellen et al [20] further con-
structed the first precision-sensitive algorithm that constructs the true com-
binatorially shortest path sequence, as well as an e-approximate path on this
sequence.

For Problem (B), no previous e-approximation algorithm was known. Asano
et al [3] provided an approximation algorithm that, for any ¢,¢’ > 0, produces
a motion u for the rod satisfying

di(p) < (1+e)di (1) +O(n’e’) (3)

where p* is a dj-optimal motion. The algorithm runs in time is O(n*a(n)K)
where «(n) is the inverse Ackermann function and

A L —logé’
K=K(Led) =m0

It is assumed that the input description involves only rational numbers, L 1is
the maximum bit length of the input integers, and n is the number of obstacle
corners. We will use the same parameters in the algorithms of this paper. All
complexity bounds in this paper are in the algebraic complexity model [8].
Unfortunately, this algorithm falls short of being a true e-approximation
algorithm in two respects. First, the analysis assumes a quantitative form of
their shortest path characterization that, while plausible, has not actually been
proved. Second, the bound has an additive term “+0O(n%’)”. which is inde-
pendent of the main term “(1 + )d;y (1*)”. Since £’ can be set as small as we
like (at some increase in the running time), we will obtain a e-approximation
algorithm if we could choose it so that the main term dominates the additive



term. To do this, we need some & priori lower bound on d; (g*) and then choose
¢" accordingly.

Both of these deficiencies are addressed in this paper. A lower bound on
dy (™) is established in section 7, which overcomes the second of these short-
comings. With regard to the first, while we can prove a quantitative form
of the shortest path characterization theorem, the associated path complexity
bound turns out to be poorly suited for the purposes of constructing an efficient
g-approximation algorithm because of its dependence on L. (Recall that the
characterization of shortest paths for a point or disc has no such dependence.)
The development of an e-approximation algorithm for IORM that depends only
on a qualitative shortest path characterization theorem was the driving motiva-
tion for pseudo approximation framework that forms the key innovation of this
paper.

This general framework shows how to start with any pseudo approximation
algorithm satisying some simple properties and derive an efficient e-approximation
algorithm. While the formal definition of “pseudo approximations” is some-
what specialized for the current applications, it should be understood that the
intuitive concept of a pseudo approximation is that of having an arbitrary ad-
ditive term which can be made as small as one likes. In this sense, almost any
straightforward discretization of a continuous optimization problem is a pseudo
approximation. Therein lies the power of this framework.

F =(0,0)
@
B =(-b,0) A= (a,0)

)

Zo

(k)

Figure 1: (a) Canonical position of rod AB with focus F'. (b) Moving from 7y
to 77 amidst polygonal obstacles (shaded area).



Optimum Motion Planning of a Rod. The configuration space for the
motion of a rod is 3-dimensional (as for 3ESP) but it is non-Euclidean. A rod
is a fixed directed line segment AB of unit length, as shown in Figure 1(a).
The problem is to find a motion of the rod from some initial placement 7, to
some final placement Z; while confined to a closed polygonal region Q C RZ%
The complementary set R?\ € is the obstacle set. See Figure 1(b). Let F be
a fixed point on AB, called the focus point. If y is a motion of the rod, the
corresponding trajectory of F' is called the trace of p; the length of this trace
is the dj-distance of p, denoted by dy (). If g* has the minimum d;-distance
among motions from Zy to 71, we write d1(Zy, Z1) = di(p*) and call p* a d;-
optimum motion. Thus the input to our algorithms is (Zy, 71, ), plus other
input parameters such as € when appropriate. We refer to Appendix I for further
background, including a description of the free space FP = FP(Q). Although
we focus on di-optimality, other notions of optimality have been considered in
the interesting history of this problem:

e The oldest work here is Kakeya’s problem [5], which asks for the small-
est area swept by the rod while moving it from any position to its “dual
position” (this is the position reached by rotating the rod 180° about
its midpoint), in the absence of obstacles. The obvious rotation motion
sweeps out an area of w/4 which turns out to be far from optimal.

e Ulam’s problem [25, 15] is to minimize the average length of the tra-
jectories of the two endpoints A, B while moving from Zy to Z;. This is
also in the absence of obstacles. Icking et al [13] introduced the Cauchy
surface area formula as a tool for analyzing such motions. They define the
dp-distance for rod motion, where n > 1 is any integer or n = co. This
distance is a metric for n > 2, and Ulam’s problem corresponds to da.

e An optimality notion that is not based on distance is to maximize the the
minimum clearance (i.e., distance to the nearest obstacle) of the motion.
Here, O’Dunlaing et al [14, 22, 23] gave a quadratic time solution based
on the retraction approach.

e Although the di-distance is not a metric, it is a natural and interesting
measure. Restricted forms of di-motions were investigated by Papadim-
itriou and Silverberg [17], Sharir [21] and O’Rourke [15]. The surprising
result of Asano et al [3] is that di-optimal motion is N P-hard whenever
F' lies in the relative interior of the rod. The authors recently succeeded
in extending the NP-hardness result to the case when F'is at an endpoint
of the rod. This result will be presented in near future.

Contributions of this work.

(I) We introduce the framework of pseudo approximation algorithms and
derive an efficient search scheme for converting any suitable pseudo ap-



proximation algorithm into a true e-approximation algorithm. The ap-
proximation algorithm is precision sensitive.

(IT) We construct an efficient e-approximation algorithm for the dj-optimal
motion of a rod. This is based on a new and simplified strongly polynomial
pseudo e-approximation algorithm. Instead of Equation (3), our pseudo
approximate motion p satisfies

A (1) < dy (i) + <R (4)

where ¢ > 0 and 12 > 0 are arbitrary parameters. Here p% is the optimal
di-motion when the trace is restricted to a ball of radius R centered at
the initial position of the focus (denoted by F[Zy]).

(IITI) As another application, we provide a new e-approximation algorithm for
the shortest path for a point amidst polyhedral obstacles in 3D. This
algorithm depends logarithmically on the input precision parameter L.
Previous e-approximation algorithms are polynomial (or even exponential)
in L. Being simpler than previous solutions, it is possibly implementable
(a hope that was expressed for the algorithm in [16]). See also [20] for
some experimental results.

(IV) An improved analysis of the boundary 9F P of the space of free placements
of arod. This boundary is important for di-optimal motion. We introduce
a 2-complex structure for this set.

Paper Overview. In Section 2, we introduce the framework of pseudo
approximations. Section 3 shows how to convert a pseudo approximation algo-
rithm into an e-approximation algorithm. Section 4 gives a pseudo approxima-
tion algorithm for 3ESP, leading to a new e-approximation algorithm. Section
5 reviews known results about the local structure of di-optimal rod motion.
Based on this, we present in Section 6 a pseudo approximation algorithm for
dy-optimal rod motion (1ORM). Section 7 proves a lower bound on any non-zero
di-distance. We conclude in Section 8. Appendices I and Il summarize some
background on d;-optimal rod motion.

2 The Pseudo Approximation Framework

We describe an abstract framework for pseudo approximation algorithms.

Suppose that we are searching for an optimum solution #* in a search space
X, where optimality is based on minimizing the function d : X — R~. Assume
that the space X that has been “stratified” into the sets {Xz C X : R > 0}
such that (a) Xgp C Xp/ for R < R, and (b) we know a value R* such that
X = Xpg+. The parameter R should be interpreted as “search radius”.

For each R > 0, let }, € Xg denote an optimum solution in Xz. It follows
that

d(zy) > d(ap) > (") 5)



for R < R'. Now assume that we have a pseudo approximation function,
(0,1 xRyo—= X
such that for all ¢ € (0,1] and R > 0, 7(e, R) € Xg (and hence d(n(e, R)) >
d(z%)) and
d(r(e, R)) <d(ag) +eR. (6)
Since the parameter £ > 0 in (6) is fixed throughout this discussion, we may
suppress it: we simple write “r(R)” instead of “mw(e, R)” where we view 7 as

the function 7 : R>q — X
There i1s one additional property we need:

da) <R = d(ry) = (). (7)

This says that the search radius parameter R has some direct correlation with
d(z%}) (i.e., the stratification of X is tied to the underlying cost function).

Some Claims. To interpret what the following claims say, it is convenient
to call R a high value in case d(w(R)) < R, and a low value otherwise.

Cramm 1 If R is a high value, i.e., d(m(R)) < R, then R > d(z*) and d(z*) =
d(2F).
Proof. The first relation follows from R > d(7(R)) > d(z}) > d(z*). The second

relation d(z%) = d(x*) is then a consequence of the “correlation property” (7).

Q.E.D.

CrLamm 2 If R is a low value, i.e., d(n(R)) > R, then d(z*) > R(1 — ¢).

Proof. By way of contradiction, suppose d(z*) < R(1—¢). Then by (7), d(z}) =
d(z*). Hence d(n(R)) < d(z}) +cR=d(z*)+cR < R(l—¢)+¢R = R. This
gives the desired contradiction. Q.E.D.

CLaIM 3 Fiz any constant o > 1. If Ruin s a low value, Ryax a high value
and Rpax < aRpin, then d(m(Rmax)) < d(x¥) (1 + o

€
1—e /"

Proof. Since Ry, 1s a low value it follows from Claim 2 that

d(l’*) > (1 - 5)Rmin~ (8)
Thus
d(m(Rmax)) < d(x}‘%max) + eRmax  (Equation (6))
= d(«") + eRmax (Claim 1)
< d(z”) + caRmin
< d(x*)+ 6%_%1 (Equation (8))
= d) (1422

Q.E.D.



COROLLARY 1 Assuming ¢ < 1/2, if Ruin s a low value, Ryax a high value
and Rmax < 2Rmin, then

d(m(Rmax)) < d(2")(1 + 3¢) (9)
We will also need the following:
CramM 4 If R is a low value and d(x7,) = d(z*), then d(7(R)) < d(z*)/(1 —¢).

Proof. By Claim 2, d(n(R)) > R implies d(z*) > R(1 —¢). Thus d(w(R)) <
d(eh)+eR=d(z*)+eR < d(z™) +ed(e*)/(1 —¢) =d(z*) /(1 —¢). Q.E.D.

Suppose our pseudo-approximation function m(R) has the following mono-
tonicity property:

d(r(R—7r)) > d(r(R)), forallr>0. (10)

This property is not hard to ensure in the two main examples in this paper. It
has an interesting consequence:

CrLamm 5 If the pseudo approzimation function satisfies (10), then it induces a
0 — 1 ordering of the real numbers in the following sense: if R s a low value
then R —r 1s a low value, for all r > 0.

Proof. If R is a low value, then d(7(R)) > R. Hence d(n(R — 7)) > d(w(R)) >
R>R—r 1e, R—ris alow value. Q.E.D.

3 Conversion to Precision Sensitive c-A pproximations

We now show how any pseudo approximation algorithm in the previous section
can be converted into an ¢-approximation algorithm.

Our analysis uses two simple assumptions: (1) d(7(0)) > 0 (i.e. 01is a low
value) and (2) ¢ < 1/2. Note that if (1) fails, then d(7(0)) = 0 and 7(0) is
already an optimal solution. As for (2), we could have used any C' < 1 in place
of 1/2.

We first present a simple binary search method. The idea is to exploit
the Corollary to Claim 3, by maintaining a pair (Rmin, Rmax) satisfying the
wmvariant that Ry, 1s a low value and Ry .x a high value. We start from the
largest search radius R*. At each iteration, we halve the gap Ryax — Rmin,
halting when the gap is at most Ryj,. The basic comparison of the binary
search is testing if a number R > 0 is high or low. This amounts to a call of the
pseudo approximation function to compute d(7(R)) and comparing it with R.



SIMPLE BINARY SEARCH
OuTPUT: R such that d(7(R)) < d(2*)(1 + 3¢).
Bask Cask: if R* is low, Return R*.
Rmin < 0 and Ry «— R
Do {
R+ (Rmax + Rmin)/2~
If R is low, then Ry, «+ R
else Rmax +— R.
+ while (Rmax > 2Rmin)
Return Rumax.

Correctness: The base case is justified by Claim 4 (use the fact 1/(1 —¢) =
1+e+¢e?/(1—€) < 1+2¢). The loop invariant is maintained as we update Ry
and Rpyax. Upon termination, the output is correct by the corollary of Claim 3.

Complexity: We claim that the number of iterations is at most 2+Ig(R* /d(x*)).
Each iteration reduces the gap Ry ax — Rmin by a factor of two, and the initial
gap is R*. So it suffices to show that the final gap is at least d(2*)/4. Let rpax
and rpin be the values of the variables Ry .x and Ruin in the previous iteration
(i.e., the last iteration for which Rpyax > 2Rmin). Now, (Pmax + rmin)/2 is equal
to either Rpyax or Rmin. Hence, either Ryax = (Fmax + Pmin)/2 and Rumin = "min
or Rmax = max and Rmin = (Fmax + "min)/2. Therefore, since rmax > 27min,

Rmax - Rmin - (rmax - rmin)/Q > rmax/4 Z Rmax/4 Z d(l‘*)/4

(the last inequality follows from Claim 1). This concludes the proof.

Geometric Search. We can significantly speed up the above search using
the following 2-tiered search:



GEOMETRIC SEARCH
OuTPUT: R such that d(m(R)) < d(2*)(1 + 3¢).
0. Basg Cask: if (R* is low) then Return R*.
1. Kgy Test: If (R=11is low)
then Rpin = 1, £ = [lglg R*], and go to Search 2 directly.
else Ryin = 1/2, k =0, and go to Search 1 first.
2. SEARCH 1: // Now Ronin2?" is high
While (Rpin is high) do
Ruin < Rin2 2" k — k+ 1;
// Invariant 1: Rmin22k is high
3. SEARCH 2: // Now Ry, is low and Rmin22k is high
lo  0; hi « 2F;
While (hi —lo > 1) do
// Invariant 2: Rpin2!° is low, Rmin2 is high
m <+ (hi+10)/2;
if (Rmin2™ is low) then lo « m;
else hi « m;
Rmin — Rmin2l0; Rmax — Rmin2hi;
4. Return Rnax.

Correctness: The base case is justified as for the simple binary search. The
two loop invariants are easily verified. The final return statement is again jus-
tified by the Corollary to Claim 3.

Complexity: After & > 1 iterations in Search 1, the variable R, reaches the
value ry :=2-2"2-2°9-2" .. 9= — 9= 75, is high, then r; > d(2*); hence
22" < 1/d(z*) and so k < lglg(1/d(x*)). But the total number of iterations in
Search 1 is just one more than the last value of k for which 7y is high. This proves
the first search has < 1+ Iglg(1/d(«)) iterations. In Search 2, we begin with a
pair of values (lo, hi) = (0,2%). If we came directly from Step 1 (Key Test), then
k = [lglg R*]; otherwise we just completed Search 1 and k& < |lglg(1/d(z*))].
We conclude that

k < max{[lglg R"], [1glg(1/d(x"))] .
Initially hi — lo = 2% but finally we have 1/2 < hi —lo < 1. The number of
iterations is < 14+ k = 1 + max{[lglg R*7, [lglg(1/d(z*))] .

In summary:

LEMMA 2 The geometric search procedure determines R such that d(w(R)) <
d(xz*)(1 4 3¢) using at most

2 4+ max{[lglg R*],2 [lglg(1/d(«x™))]|}

calls to the pseudo approrimation function.

10



Let us simply write max{[lglg R*],2 [lglg(1/d(z*))| = O(lglg(R*/d(x™)))
As corollary, if computing 7(R) and d(7(R)) takes time T' = T'(¢, R*), we achieve
an e-approximation algorithm whose time is O(T x lglg(R*/d(x*))).

Note that Search 2 can be viewed as a “geometric mean” search: we can
view the search as maintaining an interval (Rpmin, Rmax) in which each “halving
step” involves replacing one endpoint of the interval by the geometric mean
v/ Rmin Rmax. Even Search 1 can be interpreted in this way (except that in the
absense of a low value, we replace Rpyi, by 1). This explains why we call this
search method “Geometric Search”.

Note that when R is high, the combination of Search 1 and Search 2 is really
a disguised form of “unbounded search” in the sense of Bentley and Yao [4].
The difference is that standard unbounded search uses an absolute error bound,
while we use a relative error bound (cf. Corollary to Claim 2). Our complexity
bound is 2 + [lglg(1/d(x*))]. Known techniques for unbounded searching can
be applied here to improve the upper bound to |lglg(1/d(z*)]+o(lglg(1/d(x*)).
We leave such improvements as an exercise.

One variant is to compute an d priori lower bound r* on d(z*). We can
perform a simultaneous search for critical value radius from above (starting
from R*, as in Search 1) and from below (starting from #*). The number of
iterations is then

min{lg(lg(R™/d(=")),1glg(d(z")/r")}.

In this way, we lose precision sensitivity but gain the potential to have speed
up when d(2*) is very large (near R*) or very small (near r*).

Precision-Sensitive Solution. The running time of our e-approximation
algorithm depends on d(z*). In our applications below, R* < ¢ for some ¢ > 1
and the maximum bit length L of the input numbers. Hence if d(z*) < ¢~% then
Iglg(R™/d(x*)) = O(Iglg(1/d(x"))); otherwise Iglg(R"/d(x")) = O(Iglg(R")).
We call lg(1/d(2*)) the “output precision” of the problem instance since it is
proportional to the number of bits needed to express d(z*) to within a constant
factor. In this sense, we say that our algorithm is precision sensitive. Note
that despite being sensitive to d(x*), our algorithm does not explicitly know z*
or d(x*).

The notion of precision sensitivity was first introduced in Choi et al [8]. Tt
should be noted that the 3ESP approximation algorithm there has a stronger
objective than our version here: their objective was to determine a sequence
of edges that determines the shortest path, as well as to determine an e-
approximate feasible motion along this sequence. Call this the “Combinatorial
3ESP Approximation Problem”. In this version, it is natural to define the “out-
put precision” as log(1/A) where A = d(2*) —d(x2) and x5 is a combinatorially
distinct next shortest path. The gap A is a measure of the necessary number of
bits that must be evaluated if we want to distinguish «* from x5. The current
best lower bound for non-zero A is doubly exponentially small (so Ig(1/A) is
single exponential). The precision-sensitive algorithm of [8] is only polynomial
in the output precision, and hence the overall algorithm is not known to be

11



polynomial time. In contrast, for our two applications below, we show a lin-
ear upper bound on lg(1/d(x*)) and so the running time of our algorithms are
actually logarithmic in the output precision.

4 Approximation Algorithm for 3ESP

We now construct a pseudo approximation algorithm for 3ESP that has the
properties required for our binary search method in the previous section. This
serves three purposes: (1) Tt gives the first indication that our abstract setting
in the previous section is non-vacuous. (2) It will serve as a model for our
next section, where we give a pseudo approximation algorithm for rod motion.
Additional complications will arise in the case of rod motion. (3) Finally, our
new algorithm has advantages over previous solutions (some of which address
shortest path problems in more general settings) [16, 9, 8, 1, 2, 20, 24]. One
1s its simplicity, thus making it a more likely candidate for implementation.
Another is its running time complexity being O(log L), in contrast to previous
algorithms whose complexity is polynomial (or even exponential) in L.
The main result of this section is this:

THEOREM 3 There s a pseudo approzimation algorithm for SESP whose run-
ning time is O(n*/e?), or more precisely O(n*e=?1glg(2L /d(z*))).

This is a worst case complexity bound: the actual complexity is O(min{n?/e, |A]|log(n?/¢)}),
where |A| denotes the number of edges in the graph that is searched to find the
shortest path. It is also worth noting that this complexity does not depend on
the parameter R (at least in the algebraic complexity model). While it is possi-
ble to convert this bound into the bit complexity model, a tight analysis can be
intricate. Reference [8] is one of the few papers that gave a careful accounting
of the bit complexity of an approximation algorithm.
Coupled with the geometric search procedure in the previous section, and
using the estimate R* = 2¥  we obtain an e-approximation algorithm with
complexity

O(n*e?lg lg(QL/d(x*))).

As this expression depends on d(z*), to obtain an d priori bound on the running
time, we need a lower bound on d(z*) in terms of the input parameters. This
is not hard: we may assume Zy # 7, or else the problem is trivial. Then we
obtain d(z*) > ||Zo — Z1|| > ¢ %, for some constant ¢ > 1.

Input Parameters and Representation. Let R > 1 and ¢ > 0 be
given. (Later we will choose ¢/ = /6 where « is the corresponding pseudo
approximation parameter.) There is also the the standard input (Zy, 71,Q)
for motion planning, where Z;,7; € R3 and Q@ C R3 is a closed polyhedral
set. There are n obstacle edges and vertices, and the numbers used in their
description are L-bit rational numbers, i.e., the numerators and denominators
are L-bit integers. We shall write Qg for the restriction of Q to a ball of radius
R centered at Zy. Let u} denote a shortest path from 7y to Z; when restricted

12



to Qg. Our goal is to compute a path in Qg that is a “pseudo approximation”
to ph.

Fragment Visibility Graph. We describe a fragmentation of the obstacle
edges (that depends on the parameters R, ¢’ and n) and a “visibilty graph”
FVG = (N, A; W) on the resulting set of fragments. Specifically, FVG is a
weighted undirected graph, N is the node set, A the arc set,and W : A — Ry
is the weight function. Note that we use the node/arc terminology to avoid
conflict with the vertex/edge terminology reserved for the obstacle set Q. First,
we specify the node set N. For each obstacle edge e € 2, we replace it with
er = e N L. Then we subdivide eg into [n/¢'] fragments, each of length at
most Re’/n. Summed over all edges, we have O(n?/e’) fragments. Next, the
node set N comprises these fragments, including Z; and 7 as special fragments.
The arc set A comprises those pairs (o4, 0p) of fragments that are “weakly
visible” | i.e., there is a line segment [0}, 7] C Qg such that ¢} € ¢, and o} € 5.
We define the arc’s weight W(o,, 04), not as ||o} — o7 ||, but as ||o, — &4|| where
G4 and &y are the midpoints of ¢, and . We refer to [8] for the details of these
computations (deciding weak visibility, etc).

Given the fragment visibility graph FVG = (N, A; W), we can compute the
shortest path P* from the source Zy to Z; using standard techniques such as
Dijkstra’s algorithm. Since |A| = O(n*/&?) this algorithm can be implemented
in time O(|N|log|N|+ |A]) = O(n*/e"?), using Fibonacci heaps (E.g., [10]).

Relation between the Fragment Visibility Graph shortest path P*
and the restricted Euclidean shortest path pj,. The relation is indirect:
from P*, we construct an Euclidean motion g(P*). Then we derive a relation
between p(P*) and the restricted Euclidean shortest path pj,. First we set
out some basic properties that follow immediately from the definition of the
fragmentation process:

Observation A. If P is any single edge path in F'VG joining two fragments
o4 and oy of different obstacle edges, then their exists an Euclidean path p(P)
in Qg joining &, and &, such that d(p(P)) < W(P)+¢'R/n.

Observation B. If P is any path in FV{ joining two fragments ¢, and oy of
the same obstacle edge, then their exists an Euclidean path p(P) in Qg joining
&4 and &y such that d(p(P)) < W(P) + ¢ R/n.

Observation C. If Euclidean line segment g in Qg joins two points v, and
vy, belonging to fragments o, and o, of different obstacle edges, then there
exists a path P(u) in FV G joining fragments o, and o such that W(P(p)) <
d(p) + ¢ R/n.

Observation D. If Euclidean path g in Qg joins two points v, and vy, belong-
ing to fragments o, and o, of the same obstacle edge, then there exists a path
P(p) in FVG joining fragments o, and o3, such that W(P(u)) < d(p) + < R/n.

Let P be any path in the FVG from Zy to Z;. We can decompose P into
k < 2nsubpaths Py, Pa, ..., Py, such that odd-indexed subpaths consist of single
edges joining fragments of different obstacle edges, and even-indexed subpaths
(possibly of zero length) join fragments of the same obstacle edge. Define u(P)
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to be the Fuclidean path formed by concatenation of u(Py),...,u(Ps). By
Observations A and B, we have:

d(p(P) = Zd(u(Pi))
< QWP+ R/n]
< I/I_/(P)—|—26’R. (11)

On the other hand, if g 1s any Euclidean path in Qg then p can be de-
composed into k < 2n subpaths g1, pa, ..., g such that odd-indexed subpaths
consist of single line segments joining fragments of different obstacle edges, and
even-indexed subpaths (possibly of zero length) join points on fragments of the
same obstacle edge. Define P(u) to be the path in FV G formed by concatena-
tion of the paths P(j1), ..., P(p). By Observations C and D, we have:

k

WEE) = D W(P)
< D () + A
< d_(u)—I—Qe’R. (12)

We now put these two steps together. Begin with the shortest path P* join-
ing Zy and 71 in FVG. Using the construction above, we obtain an Euclidean
path p(P*).

LEMMA 4
du(P")) < d(y) +4'R.
Proof.
d(u(Pr)) < W(P")+2'R (by (11))
< W(P(py)) + 2¢'R  (by definition of P*)
< dp)+ATR by (12))

Q.E.D.

We make the final connection to the abstract binary search of the previ-
ous section. The restricted search space Xp comprise all the Euclidean paths
in Qr. The pseudo approximation function = : (0,1] x R — X is given by
n(e, R) = p(P*) where P~ is the shortest path in the Fragment Visibility Graph
constructed with the parameters ¢’ = ¢/4 and R. By lemma 4, we know that =
is a pseudo approximation function. We need to verify the properties d(p*) < R
implies d(u}) = d(p*) (Equation (7)) and R* < 2L. But they are easily seen.
This proves the main result stated above.

REMARK: This approach immediately generalizes to shortest path for a
point robot moving amidst polyhedral obstacles in any fixed dimension.
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5 Local Structure of Optimum Rod Motion

In this section, we give a top level overview of the underlying geometry of
optimal di-motion of a rod. This is necessary prerequisite for the approximation
algorithm to be presented in the next section. We defer details to the appendices
because of some overlap with [3]. However, the current paper offers technical
improvements and alternative treatment.

Decomposition of JF P. There are three known approaches to analyz-
ing the structure of the free space F'P = FP(2) of a rod. In [18], the set
FP is decomposed into cells using the notion of concept of clockwise- and
counterclockwise-stops. The projection of these cells on to R? gives a simple
decomposition of € into planar regions. The second approach [22; 23] is based
on the concept of Voronoi cells. Neither of these approaches are suitable for
analyzing optimum dj-motion. The third approach [3] was introduced for d;-
optimal motion, and is based on a cell decomposition of 9F P. This boundary
can be decomposed into a 2-complex comprising 2-cells (called patches), 1-cells
(called edges) and 0O-cells (called vertices). The details are given Appendix II.
In particular, it is shown (theorem 8) that the number of patches, edges and
vertices in the complex is O(n?), O(n®) and O(n?), respectively.

Similar to retraction-based motion planning [14], our goal is to construct a
1-dimensional complex (i.e., a skeleton) in which optimum motion can be found.
The obvious place to look is to consider the subcomplex K of 0F P comprising
the edges and vertices. The skeleton we seek will clearly need to augment K
with additional edges to ensure global connectivity. But it turns out that no
finite number of edges suffices for di-optimum motion.

On Stopover Curves and Mirrors. One can still hope for some “parametrized
form” of the skeleton that can reduce optimal motion to a finite graph search.
To see how this might work, consider the well-understood problem of optimum
motion p* for the unit disc in the plane [12]. Here, the circular arcs of radius
1/2 and centered at convex corners are called displaced corners [3]. They are
important because the trace of p* is non-straight only by incorporating parts
of these arcs. The optimal trace will join and leave such circular arcs at a tan-
gent. If every tangent is potentially part of an optimum motion, there is no
finite graph that we can construct. But it turns out that we can construct a
finite search graph in which these displaced corners are used as “parametrized
vertices”.  The analog of these displaced corners for optimal di-optimal rod
motion is called stopover curves [3]. Each stopover curve is simply the trace
of a corresponding stopover edge of 0F P. Each placement 7 in a stopover
curve is constricted in the sense that rotation about the focus F' is impossible:
the rod is stopped by two obstacle features, one acting as a clockwise stop, the
other as a counter clockwise stop. There are three kinds of stopover curves: (1)
circular edge defined by a concave corner €', (2) elliptic edge defined by a
pair to distinct walls Wy, Ws, and (3) conchoidal edge defined by a convex
corner (' and a wall W. The traces of these edges are parts of a circle, an ellipse

15



or an conchoid. In addition to these cases, there 1s a fourth kind of constricted
edge: these are defined by two corners and the trace is a straight line segment.
We do not consider this a stopover curve. See Appendix II for more details.

The number of stopover edges is O(n?) and we might hope for a finite search
graph using these curves as “parametrized vertices” in the search graph. But
this hope is dashed by the phenomenon of mirrors. In a di-optimal motion, the
traces can “reflect” off the mirrors following the law of reflection (c.f. Appendix
IT). In fact, mirrors are the reason for N P-hardness [3]. Fortunately, when we
seek approximate motions, we can avoid mirrors altogether.

Locally di-optimal motion. In order to make further progress, we need to
understand what can happen “locally” in a dj-optimal motion p : [0, 1] — FP.
Intuitively, the trace Fiu : [0,1] — R? must travel along a straight line unless it
1s forced by some obstacle features to turn or bend.

Let X be a metric space with metric d(z,y), and fix a continuous function
(curve) f :]0,1] = X. If e > 0 and 0 < 5 < 1, we call an open interval T
an (e, f)-neighborhood of ty if t; € T and for all t € I, d(f(1), f(t0)) < e.
We may also call T an f-neighborhood of ¢ if it is a (g, f)-neighborhood for
some ¢ > (0. If P is any property of curves, we say that f satisfies P at {;
(0 < tg < 1) if there exists ¢ = £(tg) > 0 and a (g, f)-neighborhood T of ¢ such
that the restriction f|I of f to I satisfies property P. If f satisfies P at all ¢,
(0 < tg < 1), then we say f satisfies P locally.

An interval T C [0,1] is said to be stationary for f if f|I is a constant
function. Our definition of neighborhood is necessitated by the presence of
stationary intervals that are nontrivial (i.e., that have non-empty interior). The
essential f-neighborhood of t; is the intersection of all f-neighborhoods of
tg. The essential f-neighborhoods of ¢y is stationary for f. In applications, we
choose X = R? with the Euclidean metric, and f = Fu where g is any motion.
Often, we want to focus on the properties of u, not Fu. To do this, we use
Fp-intervals while discussing properties of p, as seen next. We define three
local properties of motions:

e 4 is Locally Straight: Let Py(p) be the property that “the trace Fy is
straight”. We say a motion p is locally straight at ¢ if Py holds whenever
F is restricted to a Fu-neighborhood of ¢.

e 4 is Locally a Vertex: Let Pj(p) be the property “there exists 0 <¢ <1
such that p(t) is a vertex (O-cell)”. Then we say yu is locally a ver-
tex at ¢ if P; holds whenever pu is restricted to a Fpu-neighborhood of ¢.
Equivalently, 4 is locally a vertex at ¢ iff ;4(2) is a vertex for some ¢ in the
F p-essential neighborhood of ¢.

e 4 is Locally Reflecting: Let Pa(p) be the property that “there exists 0 <
t < 1 such that pu(t) is reflecting”. We say that p is locally reflecting
at ¢ if Py holds whenever p 1s restricted to a Fu-neighborhood of ¢.

Here is the statement of the main result:
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THEOREM 5 (LocAL CHARACTERIZATION) Let i :[0,1] = F P be a dy-optimal
motion and 0 < tg < 1. Suppose p 1s not locally straight at to. Then one of the
following four situations hold:

1. p 1s locally a vertex at tg.

2. p(to) is pivotal at a convexr corner C' (ie., Flu(to)] = C). Moreover, Fpu
is locally “bending” around C. See Figure 2(a).

3. ulto) is constricted. Either (a) Fu is is locally tracing a stopover curve at
to, or (b) the trace is a straight line that meets a stopover curve tangentially
at tg. See Figure 2(b).

4. p is locally reflecting at to. See Figure 2(c,d). Let the curve v be the
displaced wall or corner where this reflection takes place. Then the trace
Fu meels and leaves v at an incident point v according to Snell’s law.
Morover, the trace in the neighborhood of r lies within the zone of ~.

Fu(to)

Stopover Curve

inaecessible

(a) (k) (c)

Figure 2: Locally non-straight traces: (a) pivoting around corner, (b) tangential
or tracing a stopover curve, (c,d) reflecting off a displaced wall or corner

Note that this theorem does not say anything about the motion when p is
locally straight at ¢;. In [3] we stated such a result without proof. We now
provide the proof in Appendix III.

6 Pseudo Approximation Algorithm for Rod Mo-
tion

The main result of this section is the following.

THEOREM 6 There is a pseudo approrimation algorithm for dy-optimal rod mo-

tion whose running time is O(n°s=2(n + ¢~ 1)).

17




Its proof follows the model of the 3ESP algorithm. We will define a frag-
mentation (depending on the input parameters (Zy, 71,82), € > 0 and R > 0)
of the edges that bound the space of free configurations, and a “visibility
graph” FVG = (N, A; W) on these fragments. Specifically, if FP = FP(Q)
is the space of free configurations, define the restricted free space to be
FPgp = {Z € FP : F[Z] € Qgr} where Qg is defined as before, namely
Qr = QN B(R) and B(R) is the disc of radius R centered at F[Zy]. A re-
stricted optimal motion of a rod is a motion u}, : [0,1] — F Pg such that
wi(i) = Z; (i =0,1) and dy(pF) is minimum.

To specify the node set N, we consider edges e of the complex O0F P that
are either stopover curves or mirrors. Let er be the restriction of e to F'Pg.
We can view such an edge e as a motion e : [0, 1] — F P, and thus speak of the
trace of e. We can subdivide e into submotions, again called fragments. The
length of a fragment o is simply the length of the trace Fo, denoted by d; (o).
The node set N comprising these fragments, together with pivotal edges and Z,
and 71, has total size O(n%/%e/=1(n'/? 4 &/=1/2)). The fragmentation process
depends on the type of the edge.

Straight Mirrors We let each fragment have length < ¢’ R/n. Each straight
mirror is associated with a wall. Let W be a wall of F'Pg. Then |W| < R.
Suppose Sy comprise all mirror fragments associated with W. Then the
total length of all the fragments in Sy is |W], and thus |Sw| < n/e’.
Since there are < n walls, the number of fragments from straight mirrors

is O(n?/¢').

Stopover Edges Again we first break the edges into fragments of length <
g’R/n. Since every stopover edge has total length which is O(1), and
there are O(n?) stopover edges, the total number of stopover fragments is

O(n3/e").

Circular Mirrors This is more complicated. First, we create superfrag-
ments of length < (¢//n)'/?. Each superfragment is further subdivided
into fragments of length < (¢//n)?/2. Each circular mirror is associated
with a convex corner. Let C' be such a corner and let S¢ comprise all
fragments associated with C'. The length of all the fragments in S¢ is
< 27, and hence |S¢| = O((n/e")?/?). Since there are < n corners, the

number of fragments from circular mirrors is O(n®/?'=3/2).

We define the arc set A C N2 based on weak visibility again, but the low
level computation is somewhat more complex (but O(1) in the algebraic com-
plexity model). As before the weight W (o, o3) of the arc joining weakly visible
fragments o, and o is taken to be the Euclidean distance between the frag-
ment midpoints. In addition, there 1s an arc joining fragments from the same
mirror superfragment or stopover edge whose length is just the distance along
the mirror superfragment or stopover edge between the fragment midpoints.
The connection between paths in the Fragment Visibility Graph and d;-motion,
through the analogues of (11), (12), is complicated by the non-linear features of
our domain, in particular circular mirrors.
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Observation A. If P is any single edge path in F'VG joining two fragments
o, and o, not both of which are circular mirror fragments, then their exists
an FEuclidean path p(P) in Qg joining their midpoints &, and &3 such that
d(u(P)) < W(P) + ' R/n.

Observation A’. If P is any single edge path in FVG joining two frag-
ments ¢, and o both of which are circular mirror fragments, then their exists
an FEuclidean path p(P) in Qg joining their midpoints &, and &3 such that
Au(P)) < W(P) + (&' /n)*/R.

Observation B. If P is any path in FV{ joining two fragments ¢, and oy of
the same straight mirror or stopover edge, then their exists an Euclidean path
p#(P) in Qg joining &, and &, such that d(u(P)) < W(P) 4+ < R/n.

Observation B’. If P is any path in F'V joining two fragments o, and oy
of the same circular mirror superfragment, then their exists an Euclidean path
u(P) in Qg joining &, and &y, such that d(u(P)) < W(P) + (¢'/n)*/*R.

Observation C. If Euclidean line segment g in Qg joins two points v, and
vy, belonging to fragments o, and o, not both of which are circular mirror
fragments, then there exists a path P(u) in FV G joining fragments o, and o}
such that W(P(u)) < d(p)+ < R/n.

Observation C’. If Euclidean line segment g in Qg joins two points v, and vy,
belonging to fragments o, and o both of which are circular mirror fragments,
then there exists a path P(y) in FVG joining fragments o, and oy such that
W(P(n)) < d(p) + (=//n}/" R,

Observation D. If Euclidean path g in Qg joins two points v, and wvg, be-
longing to fragments o, and o} of the same straight mirror or stopover edge,
then there exists a path P(y) in FVG joining fragments o, and oy such that
W(P(n)) < d(u) +¢ R/n.

Observation D’. If Euclidean path g in Qg joins two points v, and v, be-
longing to fragments o, and o, of the same straight mirror superfragment,
then there exists a path P(y) in FVG joining fragments o, and oy such that
W(P()) < d(p) + (=//n}/" R,

Let P be any path in the F'V G from Z to Z1. We can decompose P into sub-
paths Py, Py, ..., Py, where each P; is either (i) a single edge joining fragments
of distinct stopover edges, straight mirrors, or circular mirror superfragments,
or (i) maximal subpaths joining fragments of the same stopover edge, straight
mirror, or circular mirror superfragment. By maximality each stopover edge,
straight mirror, or circular mirror superfragment can be involved in at most
two subpaths of type (i). Thus, there are O(n) subpaths of type (i) involving
at least one non circular mirror fragment, and O(n(n/<’)) subpaths of type (i)
joining circular mirror fragments. Similarly, there are O(n) subpaths of type (ii)
involving at least one non circular mirror fragment, and O(n(n/<’)) subpaths of
type (ii) joining circular mirror fragments. If we define (P) to be the Euclidean
path formed by concatenation of u(Py), ..., p(Py) then, by Observations A, A’
B and B’, we have

d(u(P) < W(P)+O(E'R). (13)
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Similarly, if ¢ 18 any Euclidean path in Qg then p can be decomposed into
subpaths i1, pa, ..., px such that each p; is either (i) a single line segments
joining fragments of distict stopover edges, straight mirrors, or circular mir-
ror superfragments, or (ii) a maximal subpath joining fragments of the same
stopover edge, straight mirror, or circular mirror superfragment.

Define P(u) to be the path in FV G formed by concatenation of the paths
P(p1), ..., P(ug). By Observations C, C’, D and D’, we have

W(P() < du)+O(R). (14)

We now put these two steps together. Begin with the shortest path P* join-
ing Zy and 71 in FVG. Using the construction above, we obtain an Euclidean
path p(P*). As before it follows directly from equations (13) and (14) that
du(P*)) < () +O(='R).

This concludes our proof of Theorem 6. Now we can apply the geometric
search algorithm to obtain a true e-approximation algorithm whose running time
depends on lg(1/dy(p*)). We next prove a lower bound on dy (p*).

7 Lower Bound on non-zero d;(u*)
This section is devoted to the proof of the following result:
THEOREM 7 Assume dy(p*) > 0. Then dy(p*) > c~L for some constant ¢ > 1.

First, recall that the input description, including all obstacle corners and
the initial position F[Z] of the rod focus point F', involves only L-bit rational
numbers. We assume that the lengths of the half-rods, AF and FB, are also
L-bit rational numbers, denoted a and b respectively.

The sparsity of points with small rational coordinates allows us to easily
dispose of the case in which the initial and final positions of the focus differ: if
F[Zo] # F[Z] then dy(Zo, Z1) > ||F[Z0] — F[Z1]]| > 27 %L. Henceforth, assume
F[Zy] = F[Z1]. In this case the theorem is an immediate consequence of the
following:

Main Claim. If F[Z] is never too far (no further than ¢=%, for some fixed
constant ¢ > 1) from F[Z] then the placements F[Z] and F[7Z;] must be
equivalent up to a pure rotation (i.e., dy(Zo, Z1) = 0).

Imagine rotating the rod about its focus F. We refer to the first obstacle
feature encountered in a clockwise (respectively, counterclockwise) rotation in
configuration 7 as the CW (respectively, CCW) feature stop at 7. Two
configurations with coincident foci are equivalent up to a pure rotation if and
only if their CW and CCW feature stops are identical. To establish this equiva-
lence 1t suffices to consider each rod endpoint separately and show that the CW
and CCW feature stops of each half rod are identical in the two configurations.

The argument will be made for the half rod AF'; the corresponding argument
for F'B is identical. Start by considering an open disc D of radius a centered at
F[Zg]. Then every obstacle wall either (i) does not intersect D; (ii) intersects
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the boundary of D twice (and so has no associated corner in D); (iii) inter-
sects the boundary of D once (and so has exactly one corner in D); or (iv) is
entirely contained (and so has both of its associated corners) in D. We will
choose representative points associated with walls as follows: Walls of type
(1) have no representative point. Walls w of type (ii) are represented by their
closest point py, to F[Zy], provided py, # F[Zo]. (If pw = F[Z5] then w has no
representative point.) Walls w of type (iii) are represented by their corner inside
D, provided this corner does not coincide with F[Zy]. (If the corner coincides
with F[Zp] then w has no representative point.) Finally, walls w of type (iv)
are represented by their two associated corners, provided the corner does not
coincide with F'[Zy].

Walls of type (ii) and (iii) that do not have representative points (because
they pass through or end at F[Z]) serve to partition D into wedges centred at
F[Zg]. The wedge occupied by the rod in its initial configuration (the entire disc,
if there are no edges of type (ii) or (iii)) is called the primary wedge. Clearly,
unless F'[Z] exceeds distance a from F[Z;] somewhere in its trace, the rod also
occupies the primary wedge in its final configuration. The representative points
serve to partition the primary wedge of D into secondary wedges formed by rays
centered at F[Z] through the individual representative points. Note that as Z
changes the secondary wedges change. However, if F[Z] never leaves a disc of
radius ¢~L where ¢ > 1 is a fixed constant, then (i) the distance from F[Z]
to individual representative points never exceeds a, and (ii) the relative order
of the rays defining the secondary wedges (except for those rays that coincide
in the initial, and final, configuration) remains fixed. This follows from the
following elementary observations:

Observation A. All representative points are described by O(L)-bit rational
numbers.

Observation B. The distance from F[Zg] to its closest point on the radius
a circle centered at any representative point is at least ¢~ for some positive
constant ¢ > 1.

Observation C. The distance from F[Zy] to its closest point on the line
joining any two representative points is either zero or at least ¢~ for some
positive constant ¢ > 1.

It follows that the secondary wedges, Ag and Ay, occupied by the half rod
AF 1n its initial and final configurations are idential. It remains to show that
any free placement 7 of AF in Ay with F[Z] = F[Zy] has a unique CW and
CCW stop. Since Ay contains no representative points in its interior, if the CW
(or CCW) stop of AF at Z is realized by a obstacle corner then that corner
must be a representative point defining one of the bounding rays of Ay. If the
CW (or CCW) stop of AF at 7 is realized by a wall w, we observe that: (i)
since AF has a free placement in Ag, w does not intersect both sides of Ay; (ii)
since Ag contains no representative points in its interior, w does not have an
associated corner inside Ag, or cross the boundary of D twice within Agy; and
hence (iii) w must intersect the boundary of D and one of the sides of Ag. The
uniqueness of w follows from the fact that obstacle walls do not intersect.

This concludes the proof of the Main Claim.
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8 Final Remarks and Open Problems

This paper has demonstrated the usefulness of pseudo approximation algo-
rithms. Applied to two of the simplest N P-hard optimum motion planning
problems, we obtain new e-approximation algorithms. Many interesting ques-
tions remain to be explored:

(1) There should be other application of our general methodology to exploit-
ing pseudo approximations.

(2) Our complexity analysis is in the algebraic model of computation. Tt is
of interest to obtain true bit-complexity bounds, in the spirit of Choi et al [8].

(3) The complexity of the two approximation algorithms (shortest path for
a point robot in 3D and d;-shortest path for a rod in 2D) should be possible to
improve, by not treating the pseudo approximation algorithms as black-boxes
in the binary search scheme.

(4) Can we extend these techniques to approximating general d,-optimal
motion, and also to an arbitrary rigid planar robot?
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APPENDIX I: Basic Vocabulary

A rod is a closed line segment AB, directed from the B-end (base) to the A-end
(apex). The A-end is the end with the arrow head in figures. See Figure 1(a).
So we also think of the rod as a line segment, directed from B-end to the A-
end. The corresponding open segment is simply denoted as AB. The focus is a
point F'in the relative interior of the rod. The rod is thereby divided into two
half-rods, AF and BF, viewed as open segments.

The closure and boundary of an arbitrary set S C R? is denoted by S and
0S5, respectively. We are given a closed planar set © C R? in which the rod
is free to move. Its boundary 02 is polygonal, and is naturally partitioned
into pairwise disjoint sets: singleton sets called corners and open line segments
called walls. An obstacle feature refers to either a corner or a wall. The
closure W of an open wall W is called a closed wall. For simplicity, we assume
non-degeneracy on €2 as convenient.

We use the language of “placements” [26]. A placement is a pair 7 =
(p,0) € R? x S where p € R? is a point and ¢ € S! an angle. We also
write Z = (x,y,0) if p = (x,y). For any set S C R? we write S[Z] C R?
for position of the set S in placement Z. This position S[Z] is obtained by
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rotating the plane containing S about the origin by #, then translating the plane
by p, viewed upon some reference plane. For example, AB[Z] is the position of
the rod in placement Z, and it is just a closed line segment. Thus the symbol
“[Z]” acts as an Euclidean transformation of the plane. We choose a canonical
representation of our rod AB: F' = (0,0), A = (—a,0) and B = (b,0) for some
0<a<1landb=1-a. Forplacement 7 = (z,y,0), we have F[7] = (z,y),
AlZl = (x—acos@,y—asinf) and B[Z] = (x+bcosf, y+bsinf). Furthermore,

AB[Z] = {(z +tcosf,y +tsinf: —a <t <b}.

A placement 7 is free if AB[Z] C Q. Let FP = FP(Q) denote the set of
free placements (or configuration space). Consider a continuous function

wils,t] > R*x St

where [s,1] is a real interval. For any point X € R? let Xy : [s,] — R? denote
the path Xpu(t) = X[u(t)]. We call Xp the X-trajectory of p. In case X = F
(the focus of the rod), the X-trajectory is called the trace of p. We call u
a potential motion if both its A-trajectory and B-trajectory are rectifiable
(i.e., has a definite arc length). This implies the trace of y has a length d; (),
called the di-distance of y. A potential motion y is a feasible motion (or
simply, “motion”) if AB[u(u)] C Q for all u € [s,t]. The di-distance between
7, 7" € FP, denoted by d1(7,7"), is the minimum d;-distance of a feasible
motion from Z to Z’. A motion p is dy-optimum if d(p) = dy(p(0), p(1)).

For r > 0 and p € R? let B,(p) denote the closed Euclidean ball of radius
r centered at p. Write B,(0) when p is the origin. For S C RZ let B,(S)
denote the set U{B,(p) : p € S} (alternatively, B,(S) is the Minkowski sum
B, (0) @ S). For a free placement 7, B,.(AB[Z]) has the shape of a capsule or
“racetrack”. The clearance Clearance(7) is defined to be largest » > 0 such
B, (AB[Z]) C Q. Let the racetrack of Z refer to the set B.(AB[Z]) when
r = h(Z); we denote the racetrack of 7 by RT(Z). We say 7 is closest to
those obstacle features s that intersect RT'(Z) on its boundary. The racetrack
shown in Figure 3 shows two closest features, s1,s2. By definition, the interior
of a racetrack has no obstacle points.

APPENDIX II: Structure of 0F P

We focus on the boundary F P of F'P: OF P comprise those placements Z such
that AB[Z] touches at least one obstacle feature. That is, Z € OF P iff there
exists a wall W or a convex corner (' such that at least one of three conditions
hold: A[Z] € W or B[Z] € W or C' € AB[Z]. We will partition dF P into a cell

complex.

Constraints. We describe the cell complex via the intermediate concept of
constraints (the treatment here is slightly different from [3]). First, consider
four types of basic constraints, denoted as
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51

Figure 3: Racetrack RT(7): Closest features s1, s2 and Partition of its boundary

[BTaw],[B-aw], [B+ac], [B-ac].

We could replace B by A to get 4 more basic constraints. Altogether there
are 8 types of basic constraints. We emphasize that the corners C' in constraints
are always conver corners, i.e., the obstacle set R2\ Q is locally convex at C.

An obstacle feature s is a CW stop for 7 if a CW rotation of the rod
about the focus F, starting at 7, first becomes infeasible by virtue of crossing
s. A CCW stop for 7 is similarly defined. According to this definition, if an
endpoint of a rod just grazes a feature s, then s is not considered a stop. For
instance, in Figure 4(a), W is a CCW stop for the indicated placement 7.

Constraints are properties of placements. A placement Z with a constraint
property & is said to satisfy that ¢, and written Z[E£. For instance, the con-
straint [BYT@IV] (read “B counter-clockwise at W”) is satisfied by placement 7
if B[Z] € W and W is a counter-clockwise (CCW) stop for Z (see Figure 4(a)).
Similarly, [B~@C] (“B clockwise at C”) is satisfied by Z if C' € BF[Z] and C' is
a clockwise (CW) stop for 7 (see Figure 4(d)). The other two basic constraints
are illustrated in Figure 4(b) and (c).

Recall that BF is regarded as an open segment in this definition. Similarly,
W is an open segment. A consequence of this definition is that if B[Z] = C|
then Z does not satisfy any of the basic constraints. This is by design.

Patches, Edges, Vertices. For any basic constraint &, the set {Z € FP :
ZE£EY} is seen to be relatively open. Each connected component of this set is
a 2-dimensional cell. The closure of such a cell is called a {-patch. Next,
we define the 1-dimensional cells; also known as edges of F'P. These are the
connected components of the intersection of two patches. Again, we can use
the intermediate concept of constraints: an edge constraint is any pair of
basic constraints £, &2, which we write as £; A 2. We say 7 satisfies the edge
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(a) [BT@W]
W
(b) [B-@W]
® °
C C
(c) [BY@C] (d) [B~@C]

Figure 4: Basic Constraints

constraint, Z}=€; A&s, if? 7 lies in the £;-patch and the £;-patch. For instance,
[B~@C] A [AT@WV] is an edge constraint satisfied by Z such that C' € BF[7],
A € W[Z] and for which €' and W are CW and CCW stops (respectively).
If Z satisfies an edge constraint that has CW and CCW stops, we say Z is
constricted. Finally the intersection of three or more independent patches is a
0-dimensional set. Each placement in such a set is called a vertex.

Note that by definition, patches and edges are closed sets: an edge contains
vertices for its endpoints, and a patch contains edges for its boundary. Let an
open patch be defined as a patch minus its boundary edges, and an open
edge be an edge minus its endpoints. Then the open patches, open edges and
vertices constitute a 2-complex for 9F'P.

It important to realize that this is not the same as saying Z|=¢£; and Z|=¢,.
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The classification of edges and vertices is more involved than for patches.
Remark that in [3], we gave a somewhat different constraint analysis; in par-
ticular, the “edges” there do not coincide with the ones used here. But for
our present purposes, it is enough to introduce three special classes of edges:
mirrors, stopovers and pivots. Informally, the kind of edges excluded from this
list are those satisfying an edge constraint which involve either two CW-stops
or two CCW-stops.

Mirrors and Displaced Features. There are two kinds of mirrors: straight
mirrors and circular mirrors. A placement Z of a mirror are said to be re-
flecting. The case of straight mirrors is easy to characterize: a straight mirror
is an edge of F P that satisfies a joint constraint [X T@QW] A [X~@W], where
X = Aor B and W is any wall. Figure 5(a) shows a wall W giving rise to two
straight mirrors. But in general, due to the presence of other obstacles, a wall
can give rise to a linear number of mirrors.

Corresponding to each mirror is a natural mirror motion; the trace of this
motion is straight or circular, and is called a displaced wall feature (W4, Wg
in Figure 5(a)) or a displaced corner feature (C'4, Cp in Figure 5(b)). These
displaced features are shown as dashed lines. Furthermore, the portion of the
plane between the wall W and the displaced feature Wx (X = A, B) that is
swept by the half rod F'X is called the zone of the mirror.

Analysis of Circular Mirrors. We want to analyze the nature of the
circular mirrors associated with a convex corner '. This analysis will also help
clarify our decomposition of F' P based on patches. Consider the exterior angle
at ', bounded by the incident walls Wy, W5 (see Figure 5(c,d)). This angle is
partitioned into 5 sectors, by extending the walls W7, W5 into the exterior angle,
and by introducing normals to these walls at C'. The extension and normal of
W; are denoted We®t and Wit in Figure 5(c) and (d).

Let M denote the sector bounded by the two normals; the rest of the exterior
angle has two connected parts denoted Fy and Fy. Let FP4(C)={Z € FP:
A[Z] = C, AB[Z] € M} (there is a similar F Pg(C)). If Z € FP4(C), we say Z
belongs to a sector, say M, if AB[Z] is contained in M, etc. We consider two
cases, depending on whether the angle at €' is greater than (Case (c)) or less

than (Case (d)) a right angle.

e Case (c). In this case, F; is in turn divided into two parts E! and EY
(i = 1,2), where E] is the part adjacent to the wall ;. Referring to
Figure 5(c), note that a placement 7 € FP,(C) belongs to Ef iff

ZE[AT@WA A [ATQ@C).
Also, Z belongs to EY iff
ZE[ATQWA] A [AT@W;].

We replace Wy by W and A~ by AT in case of B and EY. Finally, 7
belongs to M iff
ZE[ATQW, ] A [ATQWS).

28



e Case (d). In this case, M is divided into three parts named M, My, Ms.
Referring to Figure 5(d), note that a placement 7 € F'P4(C) belongs to
Eq iff

ZE[ATQW, ] A [ATQC].

In case of Fy, we replace A~ by AT and W, by Ws. Next, Z belongs to
My iff
ZE[ATaW ] A [AT@C].

Similarly, Z belongs to My iff
ZE[AT@WL] A [AT@C].
Finally, Z belongs to My iff

ZE[AY@W,] A [A”QIS).

Summarizing cases (c¢) and (d), we can say 7 € F'P4(C) belongs to M iff Z
satisfies a joint clockwise (A™) and counterclockwise (AT) constraint.

Of course, the presence of other obstacles breaks up FP4(C) into several
connected compoents. Each connected component in F P, (C'), restricted to one
of the 5 sector constitute an edge of JF'P. By definition, a circular mirror is
one of these edges comprising placements that belongs to M. The boundary
between these sectors, when they are free, are vertices of 9F'P.

The terminology of “mirrors” comes from the fact that the trace of opti-
mum motions sometimes “reflect” off the displaced wall or corner, the reflection
obeying the law of reflection. This mirror phenomenon is critical for our N P-
hardness proof in [3].

Stopover Edges and Stopover Curves. We define a stopover edge
as a constricted edge whose trace is not straight. Recall that 7 € 9FP is
constricted iff 7 has a CW-stop and a CCW-stop, so it cannot rotate. The
trace of a stopover edge is called a stopover curve. There are three kinds of
stopover edges, and their constraints are:

(1) [AT@W;] A [B~@Ws] where Wi, W5 are non-parallel walls: the trace is
part of an ellipse.

(2) [AT@W] A [X~@(C] where X = A or B: the trace is part of a conchoid.

(3) [AT@W;] A [A~@W>]: this can only happen when the A-end of the rod
is (stuck) at a concave corner determined by W and Ws. The trace is a circular
arc.

Of course, in the above constraints, we could also interchange the roles of
A and B. The last kind of constricted edge, which we do not consider to be
a stopover edge, satisfies the constraints [AT@C4] A [B~@QC5] or [AT@QCY] A
[A-@C5] or where O, Cy are corners. The trace is a straight line segment.

Pivotal Edges. The third class of edges is very simple: they satisfy the
pivotal constraint [AT@QC] A [B~@(C] where C'is any convex corner (the roles
of A, B can be exchanged). Note that 7 satisfies this constraint iff F[Z] = C.
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Figure 5: (a),(b) Mirrors and Displaced Features, (c),(d) Analysis of Circular
Mirrors

We call Z pivotal in this case. A maximal connected set of such placements is
a pivotal edge and corresponds to a motion of pure rotation about the focus
which is fixed at some C'.

Complexity of the Cell Complex. We conclude this appendix by bound-
ing the size of the cell complex of OF P which we just described.

THEOREM 8 Let there be n wall and corner features. In our 2-complex of OF P,
the following bounds hold:

(a) The number of patches is O(n?).

(b) The number of edges is O(n?).

(c) The number of vertices is O(n?).

Proof. (a) Each patch is determined by one of the 8n basic constraints. A basic

constraint £ can give rise to < n patches. To see this suppose the constraint
& relates to a wall W, say € = [AT@W]. In the absense of any other features
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there 1s only one patch. We now introduce features one at a time: each feature
can only increase the number of patches by 1. First we introduce the corner
features. Each corner feature, if it increases the number of patches, can only
do so by split one current patch into two new patches. Now we introduce the
wall features (their corners have already been introduced). But these cannot
increase the number of patches. A similar argument applies when & relates to a
corner (', as in ¢ = [AT@Q(C].

(b) There are 64n? edge constraints. Each edge constraint & A s, in the
absence of any other features, determines a 1-dimensional set of placements
that is a connected set. Again, each new feature we introduce, if it disrupts
the connectivity of any connected component, can only increase the number of
components by 1. Hence there are at most 64n3 edges in the complex.

(c) Each vertex can be charged to a triple of obstacle features. There are
n® such triples. But every triple can be charged a constant number of times.
Hence number of charges is O(n?). Q.E.D.

APPENDIX III: Proof of Local Characterization
Theorem

We prove Theorem 5 which gives a local characterization the d;-optimal motion.

The following classification of placements is based on considering the behav-
ior of the clearance function as we make small rotatations, where rotations are
always about the focus F:

DEFINITION 1 (1) The placement 7 is stopped if Clearance(7) is locally maz-
imum in the sense that any infinitesimal rotation (CW- or CCW-) will decrease
the clearance.

(2) A placement Z is critical if Clearance(7) is locally minimum in the sense
that any infinitesimal rotation (CW- or CCW-) will increase the the clearance.
(3) Define a rotation function p : FP — IF'P as follows. If 7 is stopped or
eritical, let p(7) = Z. Otherwise, there is a unique direction to rotate 7 so as
to locally increase the clearance of Z. Define p(7Z) to be the first local marima
reached by this rotation. We also define

H(7Z) = Clearance(p(7)).

In Appendix I, we introduced the racetrack RT(Z). See Figure 3. If
Clearance(Z) > 0, then the boundary of RT(Z) contains four special points
called the North, South, East, West Poles of 7. The boundary is thereby
divided into four open curves, called the North-East, North-West, South-
East, South-West tracks. Stopped placements can be characterized as place-
ments whose East or West Poles are covered, or two adjacent tracks are covered.
(Two tracks are adjacent if they are both bounded by one of the four poles. E.g.,
the North-East track is adjacent to North-West and to South-East tracks.) Sim-
ilarly, we may characterize critical placements to be those placements Z whose

31



North or South Poles are “covered” (i.e., contained in some obstacle feature),
and furthermore, no point on the boundary of RT(Z) is covered. The latter
condition is important, as it implies that a critical placements could not be
simultaneously stopped.

These characterizations depend upon the assumption Clearance(Z) > 0, but
they can be extended to the case Clearance(Z) = 0 by taking limits. Thus,
stopped placements and critical placements are generalizations (respectively) of
constricted placements and reflecting placements. The requirement that critical
placements must not have any other points on its racetrack boundary covered
is translated into the requirement that a reflecting placement must not satisfy
any other constraints (other than what is required by definition).

Next we introduce some special motions. Let p: [0, 1] = F'P be a motion.

e 4 is constricted if for all ¢ € [0, 1], () is constricted.

e 4 is pivotal if for all ¢ € [0,1], u(¢) is pivotal. In this case, there is a
unique convex corner C' such that Fu(t) = C.

e u is reflecting if for all ¢ € [0, 1], p(t) is reflecting.
e 4 is restrained if it is constricted, pivotal or reflecting.

e A placement 7 is restrained if it is one of the following: (a) constricted,
(b) pivotal, (c) reflecting, or (d) a vertex. REMARK: The clause (d)
might seem unnecessary, but Figure 6(i) shows a vertex ¥} that does not
fall under (a), (b) or (c). More important is the remark that our definition
of a reflecting placement Z does not allow the Z to satisfy any other
covered by clauses (a), (b) or (¢). In proofs, we do not care if the vertex 13
is considered restrained (though it is harmless to be considered restrained);
but we do need V5, V3 to be considered restrained.

e A motion p is unrestrained if for all ¢, 0 < ¢ < 1, p(¢) is not restrained.
Note p(0) and p(1) may be restrained in this definition.

o 4 is straight if for all ¢ € [0, 1], Fu(?) lies on the straight line segment
[Fu(0), Fu(1)]. Moreover, the trace is monotone in the sense that for
0<t <t <1, Fu(t') is closer than Fu(t) to Fu(l).

. We now prove two lemmas about unrestrained placements.
LEMMA 9 If Z is unrestrained, then H(Z) > 0.

Proof. If Clearance(Z) > 0, then the result follows from the fact that H(Z) >
Clearance(Z). So assume Clearance(Z) = 0. In this case, AB[Z] must touch
some feature s (wall or corner). There is a unique direction in which we rotate
7 away from s; this is because s cannot be a corner at F[Z] (it would make
7 pivotal), and s is not a wall normal to AB[Z] (it would make 7 reflecting).
Moreover, if we make a small enough rotation, Z would remains free (otherwise
7 is constricted). This proves that p(7) # 7, i.e., H(Z) > 0. Q.E.D.
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Figure 6: Vertices that are not constricted, pivotal or reflecting

LEMMA 10 Let p: [0,1] — F'P be an unrestrained motion. If u is dy-oplimal,
then p 1s straight.

Proof. Suppose for all 0 < t < 1, Clearance(p(t)) > 0. Then it is an easy remark
that g must be straight.

Our goal is to construct a new motion ' with three properties: (1) Clearance(p'(t)) >
0, (2) @/'(t) = p(t) for t = 0,1, and (3) p, ' have the same trace, Fi' = Fp.

iFrom (3), we have dy(p') = di(p) (= length of their traces). Since p is
optimal, and from (2), we conclude that ' must be optimal. From (1) and
the easy remark, p/ must be straight. Using (3) again, it follows that p is also
straight, proving our lemma.

Hence it remains to construct p'. Towards this end, consider p’' = popu
(composition of p with p). We see that Fu'' = Fu. Furthermore, Lemma 9 tells
us that H(p(t)) > 0 forall 0 < ¢ < 1. Thus Clearance(p(t)) = H(u(t)) > 0. So,
#"" has properties (1) and (3) needed for /. We can get (2) by concatenating
a rotation at the beginning and at the end of u”. So what else is lacking?
Unfortunately, p” can have discontinuities: this happens at those 0 < tg < 1
where p(tg) is critical. By Sard’s Lemma [18, 19], we may assume that there only
finitely many such discontinuities, which must be isolated. Now p’ is obtained
from p” by “patching up” each of these discontinuities via a rotation at each
discontinuity.

To see how this patchwork is achieved, observe that an isolated discontinuity
at to means that p”(t5) # p”(tF). Moreover, p/(tf) and p”(t;) must be
the two local maximas for the clearance function as we rotate pu(tg) in the
CW- and CCW- directions. We can connect p’(t5) to pu(t7) by a rotation
motion that passes through p(tp). The minimum clearance achieved by this
rotation motion is equal to Clearance(p(u(tg))) = Clearance(u(tg)) > 0. In
other words, by inserting such rotation motions into u” |, we preserve the property
that Clearance(y/(t)) > 0. This completes the description of . Q.E.D.

We next show two more preliminary results about constricted motions. If
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p € R* and ¢ > 0, let B.(p) C R? denote the open ball of radius ¢ > 0
centered at p € R% For Z € FP, define the reachable ball B.(Z) C FP
comprising those placements Z’ that can be reached by a motion g : [0, 1] — F'P
where the trace Fyu is restricted to B.(F[Z]). Define the set of c-accessible
points from 7 to be {F[Z'] : 7' € B:.(Z)}, and denoted FB.(7Z). Clearly,
FB.(Z) C B:(F[Z]). Also, B.(F[Z])\ FB.(7) is the set of e-inaccessible

points from 7.

LEMMA 11 Let p:[0,1] = FP be a constricted edge. Then the trace Fy is the
boundary of the locally accessible points. That is, for any 0 < t < 1, there 1s an

¢ > 0 such that

(i) The e-accessible points F'B.(u(t)) and the e-inaccessible points B, (Fu(t)) \
FB.(pu(1)) are connected sets.

(ii) The restriction of F'y to B: (yi(t)) is a connected curve that separates ' B, (j(t))

from B (Fu(t) \ I Be (u(t)).

Proof. As illustrated in Figure 7, the trace Fu is one of four types: (a) is an
eliptic arc, (b) is a circular arc, (¢) and (d) represent upper and lower conchoid
arcs, while (e) and (f) are straight segments. To see that the trace Fu forms
the boundary for the locally accessible points, we note that for any 0 < ¢ < 1,
there is an open range R = R(t) of angles at Fu(t) such that for any 6 € R,
there is a feasible motion starting from pu(¢) with trace moving in the direction
0. Moreover, every motion starting from u(¢) in the opposite direction —f is

infeasible. Q.E.D.

Next we analyze how a restrained motion and a constricted motion can be
joined together in an optimal motion. We first introduce the necessary notation.
Let p: [a, 0] = FPand p' : [a',b'] = F P be two motions. We can concatenate
them provided b = o’ and p(b) = p'(a¢’) and obtain a new motion denoted
' [a,b'] = FP where p/(t) = p(t) if t € [a,b] and p'’'(t) = p/(t) otherwise.
We also write p” = p; p’ for the concatenation of p and p'.

LEMMA 12 Let p = pg;p1 be dy-optimal with pg constricted and py unre-
strained. Let Z be the placement where pg joins py. Assume Fpug and Fu
are both non-constant functions and the set of e-inaccessible points from Z is
conver. Then Fpug is straight and connects to Fuy tangentially at the point
FlZ].

Proof. Since p1 is unrestrained, its trace Fuq is straight. By Lemma 11, Fpug
locally bounds the inaccessible points. Thus the tangent lines of py (locally)
lies in the accessible region. Let Fpg meet Fuy at the point r. See Figure 8(a).
If Fup is not a tangent to Fug at r, we can construct a shorter motion to
obtain a contradiction. To do this, take a neighborhood B.(r) as in Lemma 11.
Join a point p on the Fpug to a point ¢ on Fyy by a line segment within this
neighborhood. This segment is in the locally accessible region and g can be
modified to take a shortcut by tracing this segment. Q.E.D.
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Figure 7: Local Geometry of Constricted Motions

The set of e-inaccessible points from a non-vertex constricted Z is generally
convex for ¢ sufficiently small (being bounded by straight segments or arcs of
ellipses, circles or conchoids). Unfortunately, there is an exception: when the
arc is the part of a conchoid that is closer to the directrix of the conchoid than
to the pole. In this case the e¢-accessible points need not be convex. This is
illustrated in Figure 8(b). We treat this case next.

LEMMA 13 Let g = po; p1 be a motion with gy constricted and p1 unrestrained.
Let Z be the placement where po joins py. Assume Fug and Fuy are both non-
constant functions and for all ¢ > 0, the set of e-accessible points from Z 1s
non-conver. Then p is not optimal.

Proof. If p is optimal, then gy is straight. Moreover, the trace of pg is part
of a conchoid curve v (see Figure 8(b)). We can choose a point p = Fug(to)
and a point ¢ = Fuy(ty) (for suitable #g,¢1), both sufficiently close to F[7],
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Figure 8: Transition between constricted motion po and unrestrained motion
p1: (a) convex case, (b) nonconvex case

such that there exists a straight motion from pg(tg) to p1(t1). This proves the
non-optimality of p. Q.E.D.

Proof of the Local Characterization (Theorem 5): Let Fpu be locally
non-straight at ¢g, 0 < to < 1. If u(tg) is locally a vertex at ¢y, then we satisfy
the first condition in the theorem. In the rest of this proof, we assume otherwise.

CLAIM: g 1s locally restrained at tg, i.e., if I is any F'p-neighborhood of ¢,
there exists some ¢t € T such that p(t) is restrained.

By way of contradiction, assume the claim is false. Then Lemma 10 tells us
that p restricted to [ is straight. This contradicts our assumption that g 1s not
locally straight at #g.

i From this claim, we conclude that g must be locally constricted, pivotal or
reflecting at ¢;. We consider each possibility in turn.

(1) Suppose i is locally pivotal at t5. That it is clear that ;(Zg) is in fact pivotal,
i.e., there is a convex corner C' such that Fu(ty) = C. Let T = [t1,t2] be the
maximal interval containing to such that Fu(t) = C for all t € I. Since g is
not locally a vertex, it means that there exists a £ > 0 such that p|[t; — e,11]
and p|[tz,t2 + €] is unrestrained and thus straight. Moreover, the trace of these
two straight motions must “bend” around C' because of optimality.

(i1) Suppose g is locally constricted at 5. Again, we conclude that pu(tg) is
constricted. So let I = [t1,12] be the maximal interval containing ¢y such that
Fu(t) is constricted for all t € T. We have two possibilities: (a) If t; = 3
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or tg = ta, then pu(tp) is the transition between a constricted motion p|[t1, 2]
and some other motion, say p'. Since u(tg) is not locally a vertex, we conclude
that p' cannot be restrained. By Lemmas 12 and 13, we conclude that Fyu' is
straight, and meets the trace Fy; tangentially at p(tg). (b) If t; < tg < ta, then
#(to) is locally tracing a stopover curve.

(iii) Finally, assume p(tg) is locally reflecting. Let I = [t1,%2] be the essential
Fp-neighborhood of t5. Then there is some t; € T where pu(t3) € M, where M
is a mirror. Without loss of generality, let A[u(¢s)] lie in some wall or corner.
According to our analysis of mirrors in Appendix II, pu(t3) satisfies some edge
constraint of the form [At@s] A [A~@s'] where s,s' are two features. There
are three possibilities (a) s = s’ are the same wall, (b) s is a corner and s
is an incident wall (or vice-versa), (c) s,s’ are the two walls incident on a
common corner. For all sufficiently small ¢ > 0, the points Fu(t; — ), Fu(ts),
Fu(ts + ¢) are not collinear. This is just our assumption that j is not locally
straight at ¢y. Let R C R? denote the zone of the mirror M — this is the region
U{AF[Z]: Z € M}. Now, if Fu(ty —¢) or Fpu(ta + ) lies outside the zone R,
then it is not hard to see that we can define a straightline motion from p(t;)
to p(tz). This is a shortcut, contradicting the dj-optimality of p. So both
points lies in the zone. This means that p(t; —¢) satisfies [AT@s] and p(ts +¢)
satisfies [A~@s'] (the symmetric case is treated similarly). In this case, the
optimal motion from pu(t; — ¢) to p(tz + ) must have a trace that reflects off
the mirror curve of M according to Snell’s law, as claimed.

This completes the proof of Theorem 5.
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