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1 Introduction

A tree t-spanner T in a graph G is a spanning tree of G such that the distance between every pair of

vertices in T is at most t times their distance in G. The tree t-spanner problem asks whether a graph

admits a tree t-spanner, given t. The notion is introduced by Cai and Corneil [1, 2], which finds numerous

applications in distributed systems and communication networks; for example, it was shown that tree

spanners can be used as models for broadcast operations [3] (see also [4]). Moreover, tree spanners were

used in the area of biology [5], and approximating the bandwidth of graphs [6]. We refer to [7, 8, 9] for

more background information on tree spanners.

The tree t-spanner problem is NP-complete in general [2] for any t ≥ 4. However, it can be solved

efficiently for some particular graph classes. Especially, the complexity of the tree t-spanner problem

is well investigated for the class of chordal graphs and its subclasses. For t ≥ 4 the problem is NP-

complete for chordal graphs [9], strongly chordal graphs are tree 4-spanner admissible [10] (i.e., every

strongly chordal graph has a tree 4-spanner), and the following graph classes are tree 3-spanner admissible:

interval graphs [11], directed path graphs [12], split graphs [6] (see also [9] for other known results).

We first focus on the tree t-spanner problem for bipartite graphs and its subclasses. The class of

bipartite graphs is a wide and important class from both practical and theoretical points of view. However,

the known results for the complexity of the tree t-spanner problem for bipartite graphs and its subclasses

are few comparing to the chordal graphs and its subclasses. The NP-completeness is only known for

general bipartite graphs (this result can be deduced from the construction in [2]), and the problem can

be solved for regular bipartite graphs, and convex graphs as follows; a regular bipartite graph is tree

3-spanner admissible if and only if it is complete [11]; and any convex graph is tree 3-spanner admissible

[6]. (The convex graphs were introduced by Brandstädt, Spinrad, and Stewart [13]; refer Section 2 for

definition, and see appendix for further details.)

We substantially strengthen the known results for bipartite graph classes, and reduce the gap. We

show that the tree t-spanner problem is NP-complete even for chordal bipartite graphs for t ≥ 5. The

class of chordal bipartite graphs is a bipartite analog of chordal graphs, introduced by Golumbic and

Goss [14], and has applications to nonsymmetric matrices (see [15]). We also show that every bipartite

asteroidal-triple-edge–free (ATE–free) graph has a tree 3-spanner, and such a tree spanner can be found

in linear time. The class of ATE–free graphs was introduced by Müller [16] to characterize interval

bigraphs. The class of interval bigraphs is a bipartite analog of interval graphs and was introduced by

Harary, Kabell, and McMorris [17].

Our results reduce the gap between the upper and lower bounds of the complexity of the tree t-spanner
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problem for bipartite graph classes since the following proper inclusions are known [16, 18]:

convex graphs ⊂ interval bigraphs ⊂ bip. ATE–free graphs ⊂ chordal bipartite graphs ⊂ bipartite graphs.

We next focus on the tree t-spanner problem on probe interval graphs and related graph classes. The

class of probe interval graphs was introduced by Zhang to deal with the physical mapping of DNA, which

is a problem arising in the sequencing of DNA (see [19, 20, 21, 22] for background). A probe interval

graph is obtained from an interval graph by designating a subset P of vertices as probes, and removing

the edges between pairs of vertices in the remaining set N of nonprobes. In the original papers [19, 22],

Zhang introduced two variations of probe interval graphs. An enhanced probe interval graph is the graph

obtained from a probe interval graph by adding the edges joining two nonprobes if they are adjacent to

two independent probes. The class of STS-probe interval graphs is a subset of the probe interval graphs;

in those graphs all probes are independent.

From the graph theoretical point of view, it has been shown that all probe interval graphs are weakly

chordal [20], and enhanced probe interval graphs are chordal [19, 22]. In appendix, we show that (1)

the class of STS-probe interval graphs is equivalent to the class of convex graphs (hence the class is tree

3-spanner admissible), and (2) the class of the (enhanced) probe interval graphs is incomparable with

the classes of strongly chordal graphs and rooted directed path graphs. We also mention that, for any

given probe interval graph, the graph obtained by removing all edges joining probe vertices is an interval

bigraph.

Hence, from both viewpoints of graph theory and biology, the tree t-spanner problem for (enhanced)

probe interval graphs is worth investigating. Especially, it is natural to ask if those graph classes are

tree t-spanner admissible for fixed integer t. We give the positive answer to that question: The classes of

probe interval graphs and enhanced probe interval graphs are tree 7-spanner admissible. A tree 7-spanner

of a (enhanced) probe interval graph can be constructed in O(m + n log n) time if it is given with an

interval model. Recently, Johnson and Spinrad showed that the recognition problem for the class of probe

interval graphs can be solved in O(n2) time if each vertex is given with information whether it is probe

or nonprobe [23], and the time complexity was improved to O(m log n) time by McConnell and Spinrad

[24]. Those recognition algorithms construct within the same time bounds also an intersection model of

a probe interval graph. Therefore, using their algorithms, we can construct a tree 7-spanner for a given

(enhanced) probe interval graph G = (P,N,E) in O(m log n) time.
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2 Preliminaries

Given a graph G = (V,E) and a subset U ⊆ V , the subgraph of G induced by U is the graph (U,F ), where

F = {{u, v}|{u, v} ∈ E for u, v ∈ U}, and denoted by G[U ]. For a subset F of E, we sometimes unify the

edge set F and its edge induced subgraph (U,F ) with U = {v|{u, v} ∈ F for some u ∈ V }. A sequence of

the vertices v0, v1, · · · , vl is a path, denoted by (v0, v1, · · · , vl), if {vj , vj+1} ∈ E for each 0 ≤ j ≤ l − 1.

The length of a path is the number of edges on the path. For two vertices u and v on G, the distance of

the vertices is the minimum length of the paths joining u and v, and denoted by dG(u, v). A cycle is a

path beginning and ending with the same vertex.

The disk of radius k centered at v is the set of all vertices with distance at most k to v,

Dk(v) = {w ∈ V : dG(v, w) ≤ k},

and the kth neighborhood Nk(v) of v is defined as the set of all vertices at distance k to v, that is

Nk(v) = {w ∈ V : dG(v, w) = k}.

By N(v) we denote the neighborhood of v, i.e., N(v) := N1(v). More generally, for a subset S ⊆ V let

N(S) = ∪v∈SN(v) denote the neighborhood of S. (We note that S ∩ N(S) may be non-empty.)

Connected acyclic edge set is called a tree. A tree joining all vertices is called a spanning tree. A tree t-

spanner T in a graph G is a spanning tree of G such that for each pair u and v in G, dT (u, v) ≤ t ·dG(u, v).

We say that G is tree t-spanner admissible if it contains a tree t-spanner. The tree t-spanner problem is

to determine, for given graph and positive integer t, if the graph admits a tree t-spanner. A class C of

graphs is said to be tree t-spanner admissible if every graph in C is tree t-spanner admissible. On the

tree t-spanner problem, the following result plays an important role:

Lemma 1 [2] A spanning tree T of G is a tree t-spanner if and only if for every edge {u, v} of G,

dT (u, v) ≤ t.

A graph G = (V,E) is bipartite if V can be divided into two sets V1 and V2 with V1 ∪ V2 = V and

V1 ∩ V2 = ∅ such that every edge joins a vertex in V1 and another one in V2. It is well known that a

graph G is bipartite if and only if G contains no cycle of odd length [25]. Thus, for each positive integer

k, a tree 2k-spanner of a bipartite graph G is also a tree (2k − 1)-spanner. Hence we will consider a tree

t-spanner for each odd number t for bipartite graphs in this paper.

We here define graph classes dealt in this paper. See appendix and [18, 21] for further details and

references.
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Interval graphs and related classes: A graph (V,E) with V = {v1, v2, · · · , vn} is an interval graph

if there is a set of intervals I = {I1, I2, · · · , In} such that {vi, vj} ∈ E if and only if Ii ∩ Ij 6= ∅ for each

i and j with 1 ≤ i, j ≤ n. We call the set I interval representation of the graph. For each interval I,

we denote by R(I) and L(I) the right and left endpoints of the interval, respectively (hence we have

L(I) ≤ R(I)). A bipartite graph (X,Y,E) with X = {x1, x2, · · · , xn1} and Y = {y1, y2, · · · , yn2} is an

interval bigraph if there are families of intervals IX = {I1, I2, · · · , In1} and IY = {J1, J2, · · · , Jn2} such

that {xi, yj} ∈ E if and only if Ii ∩ Jj 6= ∅ for each i and j with 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. We also

call the families of intervals (IX , IY ) interval representation of the graph. We sometimes unify a vertex

vi and its corresponding interval Ii; Iv denotes the interval corresponding to the vertex v, and R(v) and

L(v) denote R(Iv) and L(Iv), respectively.

Chordal graphs and related classes: An edge which joins two vertices of a cycle but is not itself

an edge of the cycle is a chord of that cycle. A graph is chordal if each cycle of length at least 4 has a

chord. A graph G is weakly chordal if G and Ḡ contain no induced cycle Ck with k ≥ 5. A bipartite

graph G is chordal bipartite if each cycle of length at least 6 has a chord. Let the neighborhood N(e)

of an edge e = {v, w} be the union N(v) ∪ N(w) of the neighborhoods of the end-vertices of e. Three

edges of a graph G form an asteroidal triple of edges (ATE) if for any two of them there is a path from

the vertex set from one to the vertex set of the other that avoids the neighborhood of the third edge.

Asteroidal-Triple-Edge–free (ATE–free) graphs are those graphs which do not contain any ATE. This

class of graphs was introduced in [16], where it was also shown that any interval bigraph is an ATE–free

graph, and any bipartite ATE–free graph is chordal bipartite. For a bipartite graph (X,Y,E), an ordering

< of X has the adjacency property if for each vertex y ∈ Y , N(y) consists of vertices that are consecutive

(an interval) in the ordering < of X. A bipartite graph is convex if there is an ordering of X or Y that

fulfills the adjacency property [13].

Probe interval graphs and related classes: A graph G = (V,E) is a probe interval graph if V can

be partitioned into subsets P and N (corresponding to the probes and nonprobes) and each v ∈ V can

be assigned to an interval Iv such that {u, v} ∈ E if and only if both Iu ∩ Iv 6= ∅ and at least one of u

and v is in P . In this paper, we assume that P and N are given, and we denote the considered probe

interval graph by G = (P,N,E). Note that N is an independent set, G[P ] is an interval graph, and

G[P ∪ {v}] is also an interval graph for any v ∈ N . Let G = (P,N,E) be a probe interval graph. Let

E+ be a set of edges {u1, u2} with u1, u2 ∈ N such that there are two probes v1 and v2 in P such that

{v1, u1} ∈ E, {v1, u2} ∈ E, {v2, u1} ∈ E, {v2, u2} ∈ E, and {v1, v2} 6∈ E. Intuitively, nonprobes u1
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and u2 are joined by the edge in E+ if (1) there are two independent probes v1 and v2, and (2) both

of v1 and v2 overlap u1 and u2. In the case, we know that intervals Iu1 and Iu2 have to overlap in

any affirmative interval representations. Each edge in E+ is called an enhanced edge, and the resulting

graph G+ = (P,N,E ∪E+) is said to be an enhanced probe interval graph. See [19, 20, 21, 22] for further

details.

3 NP-completeness for Chordal Bipartite Graphs

In this section we show that, for any t ≥ 5, the tree t-spanner problem is NP-complete for chordal bipartite

graphs. The proof is a reduction from Monotone 3SAT which consists of instances of 3SAT such that

each clause contains either only negated variables or only non-negated variables (see [26, LO2]). For

which the following family of chordal bipartite graphs will play an important role.

First, S0[a, b] is an edge {a, b}, and S1[a, b] is the 4-cycle (a, b, b′, a′, a). Next, for a fixed integer

` > 1, S`+1[a, b] is obtained from one cycle (a, b, b′, a′, a), S`[a, a′], S`[b, b′], and S`[a′, b′] by identifying

the corresponding vertices (see Figure 1).Figure 1

We will connect the vertices a and b to other graphs, and use S`[a, b] as a subgraph of bigger graphs.

Sometimes, when the context is clear, we simply write S` for S`[a, b]. In case ` > 0 we write (a, a′, b′, b, a)

for the 4-cycle in S`[a, b] containing the edge {a, b}. Each of the edges {a, a′}, {a′, b′}, {b, b′} belongs to

a unique S`−1, the corresponding S`−1 in S`[a, b] to {a, a′}, {a′, b′}, {b, b′}, respectively.

The following observations collect basic facts on S` used in the reduction later.

Observation 2 For every integer ` ≥ 0, S`[a, b] has a tree (2` + 1)-spanner containing the edge {a, b}.

Proof. By induction on `. The case ` = 0 is clear. Let ` > 0, and let (a, a′, b′, b, a) be the 4-cycle

in S`[a, b] containing the edge {a, b}. Let L,M,R be the corresponding S`−1 containing the edge

{a, a′}, {a′, b′}, {b, b′}, respectively. By the induction hypothesis, each of L,M,R has a tree (2` − 1)-

spanner TL, TM , TR containing the edge {a, a′}, {a′, b′}, {b, b′}, respectively.

Let T a′

M , T b′

M be the connected components of TM −{a′, b′} with a′ ∈ T a′

M and b′ ∈ T b′

M . Then TL ∪ T a′

M

and TR ∪T b′

M are two disjoint trees and T := (TL ∪T a′

M )∪ (TR ∪T b′

M )∪{a, b} is a spanning tree of S`[a, b].

Moreover, T is a tree (2` + 1)-spanner of S`[a, b]. To see this we need only consider edges {x, y} ∈ M

such that x ∈ T a′

M and y ∈ T b′

M . For such edges we have: The (x, y)-path in T consists of the (x, a′)-path

in T a′

M , the (y, b′)-path in T b′

M , and the edges {a′, a}, {a, b}, {b, b′}. Therefore,

dT (x, y) = dTM
(x, y) − 1 + 3,

6



hence, as TM is a tree (2` − 1)-spanner in M ,

dT (x, y) ≤ (2` − 1) − 1 + 3 = 2` + 1.

Observation 3 Let H be an arbitrary graph and let e be an arbitrary edge of H. Let K be an S`[a, b]

disjoint from H. Let G be the graph obtained from H and K by identifying the edges e and {a, b}; see

Figure 2. Suppose that T is a tree t-spanner in G, t > 2`, such that the (a, b)-path in T belongs to H.Figure 2

Then dT (a, b) ≤ t − 2`.

Proof. By induction on `. For ` = 0, the statement follows directly from the fact that T is a tree t-spanner

of G. Let ` > 0, and suppose inductively that the statement is true for arbitrary H and S`−1.

Let (a, a′, b′, b, a) be the 4-cycle in K containing the edge {a, b}, and let L,M,R be the corresponding

S`−1 in K containing the edge {a, a′}, {a′, b′}, {b′, b} respectively.

Let P be the (a, b)-path in T . By assumption, P ⊆ H. Consider the (a, a′)-path Q in T . We

distinguish two cases.

Case 1: Q 6⊆ L.

In this case, by definition of G, Q belongs to H ∪ R ∪ M and P is a subpath of Q. The induction

hypothesis applied to H ′ := H ∪ R ∪ M and L yields

dT (a, a′) ≤ t − 2(` − 1),

hence

dT (a, b) = dT (a, a′) − dT (b, a′) ≤ t − 2(` − 1) − 2 = t − 2`.

Case 1 is settled.

Case 2: Q ⊆ L.

Let P ′ be the (a′, b′)-path in T . If P ′ ⊆ M then P ∪ Q ∪ P ′ is the (b, b′)-path in T . The induction

hypothesis applied to H ′ := H ∪ M ∪ L and R yields

dT (b, b′) ≤ t − 2(` − 1),

hence

dT (a, b) = dT (a, a′) − dT (b, a′) ≤ t − 2(` − 1) − 2 = t − 2`.

If P ′ 6⊆ M then P ′ ⊆ L ∪ H ∪ R and Q ∪ P is a subpath of P ′. The induction hypothesis applied to

H ′ := H ∪ L ∪ R and M yields

dT (a′, b′) ≤ t − 2(` − 1),
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hence

dT (a, b) = dT (a′, b′) − dT (a′, a) − dT (b′, b) ≤ t − 2(` − 1) − 1 − 1 = t − 2`.

In either case we are done.

Observation 3 indicates a way to force an edge {x, y} to be a tree edge for given odd t: Choosing

` = t−1
2 shows that {a, b} must be an edge of any tree t-spanner T .

We now describe the reduction. Let k ≥ 2 be an integer, and let F be a 3SAT formula with m clauses

Cj for 1 ≤ j ≤ m, over n variables xi for 1 ≤ i ≤ n. We construct a chordal bipartite graph G from F

such that G has a tree (2k + 1)-spanner if and only if F is satisfiable.

Definition 4 In a graph G, an edge {a, b} is said to be forced by an S` if G is obtained from two distinct

graphs S`[a, b] and the rest by identifying the edges {a, b} in S`[a, b] and an edge in the rest. We require

that each two S`[a, b] and S`′ [c, d] have at most 2 vertices in {a, b, c, d} in common. An edge {a, b} is said

to be strongly forced if it is forced by two Sk[a, b].

Hereafter, we will omit “by two Sk[a, b]” for each strongly forced edge since it is always forced by two

Sk[a, b] for the fixed k.

By Observation 3, if G has a tree (2k + 1)-spanner T every strongly forced edge must belong to T .

For each variable xi create the gadget G(xi) as follows.

• Take 2m + 4 vertices x1
i , . . . , x

m
i , xi

1, . . . , xi
m, pi, qi, ri, si,

• and add the edges {xj
i , xi

j′
} for 1 ≤ j, j′ ≤ m, {qi, x

j
i} for 1 ≤ j ≤ m, {ri, x

j
i} for 1 ≤ j ≤ m,

{pi, xi
j} for 1 ≤ j ≤ m, {si, xi

j} for 1 ≤ j ≤ m, and {pi, ri}, {ri, si}, {si, qi}.

Furthermore,

• each of the edges {pi, ri}, {ri, si}, {si, qi}, and {xj
i , xi

j} with 1 ≤ j ≤ m, is a strongly forced edge,

• force each edge {a, b} ∈ {{qi, x
j
i} : 1 ≤ j ≤ m} ∪ {{ri, x

j
i} : 1 ≤ j ≤ m} ∪ {{pi, xi

j} : 1 ≤ j ≤

m} ∪ {{si, xi
j} : 1 ≤ j ≤ m} ∪ {{xj

i , xi
j′
} : 1 ≤ j, j′ ≤ m, j 6= j′} by an Sk−1[a, b].

Thus, the subgraph in G(xi) induced by the two independent sets {x1
i , . . . , x

m
i }∪{pi, si} and {xi

1, . . . , xi
m}∪

{qi, ri} plus the edge {pi, qi} is a complete bipartite graph (see Figure 3; in the figure, the Sk and Sk−1

are omitted, and thick edges are strongly forced).Figure 3

The vertex xj
i (xi

j , respectively) will be connected to the clause gadget of clause Cj if xi (xi, respec-

tively) is a literal in Cj . All edges {ri, x
j
i} (1 ≤ j ≤ m) or else all edges {si, xi

j} (1 ≤ j ≤ m) will belong

to any tree (2k + 1)-spanner (if any) of the graph G which we are going to describe.
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Definition 5 A clause is positive (negative, respectively) if it contains only variables (negation of vari-

ables).

We note that each clause is either positive or negative since given formula is an instance of Monotone

3SAT. For each clause Cj , G(Cj) is the 4-cycle (c+
j , d+

j , d−j , c−j , c+
j ) where {c+

j , d+
j }, {d

+
j , d−j }, and {d−j , c−j }

are strongly forced edges (see Figure 4). Finally, the graph G = G(F ) is obtained from all G(vi) and G(Cj)Figure 4

by identifying all vertices pi, qi, ri and si to a single vertex p, q, r, and s, respectively (thus, {p, r}, {r, s}

and {s, q} are edges in G), and adding the following additional edges:

• Connect every xj
i with every xi′

j′
(i 6= i′). (Thus, the subgraph induced by the two independent

sets {xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {p, s}, and {xi

j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {q, r} plus the edge

{p, q} is a complete bipartite graph.)

• For every positive clause Cj : If xi is in Cj then connect xj
i with c+

j and force the edge {xj
i , c

+
j } by

an Sk−2[x
j
i , c

+
j ]. Connect c−j with r and force the edge {c−j , r} by an Sk−2[c−j , r].

• For every negative clause Cj : If xi is in Cj then connect xi
j with c−j and force the edge {xi

j , c−j }

by an Sk−2[xi
j , c−j ]. Connect c+

j with s and force the edge {c+
j , s} by an Sk−2[c+

j , s].

The description of the graph G = G(F ) is complete. Clearly, G can be constructed in polynomial time.

See Figure 5 for an example.Figure 5

Lemma 6 G is chordal bipartite.

Proof. First note that each S` is a chordal bipartite graph. By construction,

{xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {p, s} ∪ {c−j : 1 ≤ j ≤ m} ∪ {d+

j : 1 ≤ j ≤ m}

and

{xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {q, r} ∪ {c+

j : 1 ≤ j ≤ m} ∪ {d−
j : 1 ≤ j ≤ m}

are independent sets. This partition can be extended in a natural way to a bipartition of V (G) into two

independent sets. So, G is bipartite.

Next, let G′ be the subgraph of G induced by

A := {xj
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {p, s}

and

B := {xi
j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {q, r}.
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Since G′ + {{p, q}} is a complete bipartite graph with the bipartition (A,B),

G′ is a chordal bipartite graph.

On the other hand, since it is the disjoint union of the clause gadgets,

G − G′ is a chordal bipartite graph.

Let us consider an induced cycle Z in G containing vertices from both G′ and G−G′. By construction,

Z ∩ (G − G′) ⊆ {c+
j , c−j : 1 ≤ j ≤ m}.

Let Cj be a positive clause. If c−j ∈ Z then (r, c−j , c+
j ) must be a subpath of Z, therefore Z =

(r, c−j , c+
j , xj

i , r) for some i. If c+
j ∈ Z (and c−j 6∈ Z) then, for some i1, i2, (xj

i1
, c+

j , xj
i2

) is a subpath of Z.

Since c+
j is the neighbor outside G′ of xj

i1
and of xj

i2
, Z = (v, xj

i1
, c+

j , xj
i2

, v) for a vertex v ∈ {q, r}∪{xi
j :

1 ≤ i ≤ n}.

Similarly, Z is a 4-cycle if Cj is a negative clause.

Thus, G is chordal bipartite as claimed.

Lemma 7 Suppose G admits a tree (2k + 1)-spanner. Then F is satisfiable.

Proof. Let T be a tree (2k + 1)-spanner of G. By construction of G and Observation 3, the following

edges of G belong to T :

• {p, r}, {r, s}, {s, q}, and {xj
i , xi

j} for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

• {c+
j , d+

j }, {d
+
j , d−j }, {d

−
j , c−j } for 1 ≤ j ≤ m.

Claim 1: For every i and j, {q, xj
i} 6∈ E(T ) and {p, xi

j} 6∈ E(T ).

Proof of Claim 1: If, for some i, j, {q, xj
i} ∈ E(T ) then (p, r, s, q, xj

i , xi
j) is the (p, xi

j)-path in T , hence

dT (p, xi
j) = 5. But by Observation 3, dT (p, xi

j) ≤ (2k+1)−2(k−1) = 3, a contradiction. By symmetry,

we have {p, xi
j} 6∈ E(T ). (of Claim 1)

Claim 2: For every i and j, exactly one of {r, xj
i} and {s, xi

j} belongs to T .

Proof of Claim 2: Both edges {r, xj
i} and {s, xi

j} cannot belong to T , otherwise they would form together

with {r, s}, {xj
i , xi

j} a cycle in T .

Now, assume to the contrary that, for some i, j, neither {r, xj
i} nor {s, xi

j} belongs to T . Then by

Observation 3, dT (r, xj
i ) = 3 and dT (s, xi

j) = 3. Note that by Claim 1, {q, xj
i} 6∈ E(T ), {p, xi

j} 6∈ E(T ).

Hence by Observation 3, dT (q, xj
i ) = 3 and dT (p, xi

j) = 3, too. Let P be the (r, xj
i )-path in T .

If P contains {r, s} and {xj
i , xi

j} then clearly dT (r, xj
i ) ≥ 5, a contradiction.
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If P contains {r, s} but not {xj
i , xi

j} then write P = (r, s, v, xj
i ). By assumption, v 6= xi

j , and as s

and p are nonadjacent, v 6= p. Thus, (p, r, s, v, xj
i , xi

j) is the (p, xi
j)-path in T , hence dT (p, xi

j) = 5, a

contradiction.

If P contains {xj
i , xi

j} but not {r, s} then write P = (r, v, xi
j , xj

i ). By assumption, v 6= s, and as

q and r are nonadjacent, v 6= q. Thus (q, s, r, v, xi
j , xj

i ) is the (q, xj
i )-path in T , hence dT (q, xj

i ) = 5, a

contradiction.

If P does not contain {xj
i , xi

j} and {r, s} then write P = (r, u, v, xj
i ). In this case, u, v 6∈ {s, xi

j}.

Thus (s, r, u, v, xj
i , xi

j) is the (s, xi
j)-path in T , hence dT (s, xi

j) = 5, a contradiction. (of Claim 2)

Claim 3: For each i, either all edges {r, xj
i} with 1 ≤ j ≤ m, belong to T , or all edges {s, xi

j} with

1 ≤ j ≤ m, belong to T .

Proof of Claim 3: Assume to the contrary that there exist j1 6= j2 such that {r, xj1
i } ∈ E(T ) but

{r, xj2
i } 6∈ E(T ). By Claim 2, {s, xi

j2} ∈ E(T ). Thus, (xj2
i , xi

j2 , s, r, xj1
i , xi

j1) is the (xj2
i , xi

j1)-path in T ,

hence dT (xj2
i , xi

j1) = 5. But by Observation 3, dT (xj2
i , xi

j1) ≤ (2k + 1) − 2(k − 1) = 3, a contradiction.

Thus, all or none of the edges {r, xj
i} with 1 ≤ j ≤ m, belong to T . By symmetry, all or none of the

edges {s, xi
j} with 1 ≤ j ≤ m, belong to T . Claim 3 follows. (of Claim 3)

Now, define a truth assignment f for variables xi, 1 ≤ i ≤ n, as follows:

f(xi) =

 true if, for some j, {r, xj
i} ∈ E(T )

false otherwise

By Claim 3, f is well-defined. We are going to show that f(F ) = true.

First, consider a positive clause Cj = (xi1 , xi2 , xi3) and assume to the contrary that f(xi1) = f(xi2) =

f(xi3) = false. That is, {r, xj
i1
}, {r, xj

i2
} and {r, xj

i3
} do not belong to T .

By Claim 2, {s, xi1
j}, {s, xi2

j} and {s, xi3
j} are edges of T . Recall that the edges {c+

j , d+
j }, {d

+
j , d−j }, {d

−
j , c+

j }

are edges of T , too.

Now, since T is a tree, exactly one of the edges {c+
j , xj

i1
}, {c+

j , xj
i2
}, {c+

j , xj
i3
}, and {c−j , r} belongs to

T . If {c−j , r} ∈ E(T ) then (c+
j , d+

j , d−j , c−j , r, s, xi1
j , xj

i1
) is the (c+

j , xj
i1

)-path in T , hence dT (c+
j , xj

i1
) = 7.

But by Observation 3, dT (c+
j , xj

i1
) ≤ (2k + 1)− 2(k − 2) = 5, a contradiction. If {c+

j , xj
i} ∈ E(T ) for one

i ∈ {i1, i2, i3} then (c−j , d−j , d+
j , c+

j , xj
i , xi

j , s, r) is the (c−j , r)-path in T , hence dT (c−j , r) = 7, contradicting

Observation 3 again.

Thus, all positive and, similarly, all negative clauses Cj are satisfied by the assignment f .

Thus each clause Cj of F is satisfied by the assignment f , proving Lemma 7.

Definition 8 If xi ∈ Cj (xi ∈ Cj) then we say, for convenience, that the vertex xj
i (xi

j, respectively) is

the corresponding vertex of the variable xi (literal xi, respectively). Note that the corresponding vertex
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is not shared by two clauses.

Lemma 9 Suppose F is satisfiable. Then G admits a tree (2k + 1)-spanner.

Proof. Let f be a truth assignment for variables xis that satisfies F . We first construct a spanning tree

T ′ of G′, the subgraph of G induced by p, q, r, s, xj
i , xi

j with 1 ≤ i ≤ n, 1 ≤ j ≤ m, c+
j , c−j , d+

j , d−j with

1 ≤ j ≤ m. Take

• {p, r}, {r, s}, {s, q}, {xj
i , xi

j} with 1 ≤ i ≤ n, 1 ≤ j ≤ m,

• {c+
j , d+

j }, {d
+
j , d−j }, {d

−
j , c−j } with 1 ≤ j ≤ m,

• {r, xj
i} with 1 ≤ i ≤ n, 1 ≤ j ≤ m, where f(xi) = true,

• {s, xi
j} with 1 ≤ i ≤ n, 1 ≤ j ≤ m, where f(xi) = false

into T ′.

Next, for each clause Cj choose a true literal l ∈ Cj and let lji ∈ {xj
i : 1 ≤ i ≤ n} ∪ {xi

j : 1 ≤ i ≤ n}

be the corresponding vertex of l. Then take the edge connecting lji and its neighbor in {c+
j , c−j } into T ′.

So far, T ′ is a tree. Moreover, by case analysis, the following holds.

Claim 1: T ′ is a tree 5-spanner of G′ such that if {a, b} is an edge forced (in G) by an Sk−1 then

dT ′(a, b) = 3.

Finally, extend T ′ at each forced edge using Observation 2 in an obvious way to obtain a spanning tree

T of G. More precisely, if {a, b} ∈ T ′ and is forced by an S`[a, b] (` ∈ {k − 2, k − 1, k}) then take a tree

(2` + 1)-spanner T ′′ in that S`[a, b] containing the edge {a, b} into T ; such a tree spanner T ′′ exists by

Observation 2. Clearly, after taking T ′′ into T , T remains a tree.

If {a, b} 6∈ T ′ and is forced by an S`[a, b] (` ∈ {k − 2, k − 1}) then let T ′′ be a tree (2` + 1)-spanner in

that S`[a, b] containing the edge {a, b}. Take the two connected components of T ′′ − {a, b} into T . Since

there is an (a, b)-path in T ′, T remains a tree after taking T ′′ − {a, b} into T .

Now we show that T is a tree (2k + 1)-spanner of G. As 2k + 1 ≥ 5 and by Claim 1, we only have

to check for edges {x, y} in an S`[a, b], ` ∈ {k − 2, k − 1, k}. Let T ′′ be the tree (2` + 1)-spanner in that

S`[a, b] which has been chosen in extending T ′ to T . If {a, b} ∈ T ′, then by definition of T ,

dT (x, y) = dT ′′(x, y) ≤ 2` + 1 ≤ 2k + 1.

If {a, b} 6∈ T ′, then by definition of T ′, ` 6= k. Write T ′′
a , T ′′

b for the connected components of T ′′ − {a, b}

containing a, respectively, b. If {x, y} ∈ T ′′
a (or {x, y} ∈ T ′′

b ), we again have

dT (x, y) = dT ′′
a
(x, y) ≤ 2` + 1 < 2k + 1.
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Thus, let x ∈ T ′′
a , y ∈ T ′′

b , say. Now, the (x, y)-path in T consists of the (x, a)-path in T ′′
a , the (y, b)-path

in T ′′
b , and the (a, b)-path in T ′. Hence

dT (x, y) = dT ′′(x, y) − 1 + dT ′(a, b).

As T ′′ is a (2` + 1)-spanner in S`[a, b] and by Claim 1, if ` = k − 1 then

dT (x, y) ≤ (2(k − 1) + 1) − 1 + 3 = 2k + 1,

and if ` = k − 2 then

dT (x, y) ≤ (2(k − 2) + 1) − 1 + 5 = 2k + 1.

Thus, T is a tree (2k + 1)-spanner of G as claimed.

Lemmas 6, 7, and 9 immediately imply the main theorem of this section:

Theorem 10 For every fixed k ≥ 2, the Tree (2k + 1)-Spanner problem is NP-complete for chordal

bipartite graphs.

4 Tree 3-Spanners for Bipartite ATE-free Graphs

In this section we show that any bipartite Asteroidal-Triple-Edge–free graph admits a tree 3-spanner.

We say that a vertex u of a graph G has a maximum neighbor if there is a vertex w in G such that

N(N(u)) = N(w). We will need the following result from [27].

Lemma 11 [27] Any chordal bipartite graph G has a vertex with a maximum neighbor.

It is easy to deduce from results [28, Lemma 4.4], [27, Corollary 5] and [29, Corollary 1] that a vertex

with a maximum neighbor of a chordal bipartite graph can be found in linear time by the following

procedure.

PROCEDURE NICE-VERTEX. Find a vertex with a maximum neighbor

Input: A chordal bipartite graph G = (X ∪ Y,E).

Output: A vertex with a maximum neighbor.

Method:

initially all vertices v ∈ X ∪ Y are unmarked;

repeat

among unmarked vertices of X select a vertex x such that N(x) contains
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the maximum number of marked vertices;

mark x and all its unmarked neighbors;

until all vertices in Y are marked;

output the vertex of Y marked last.

Now let G = (V,E) be a connected bipartite ATE–free graph and u be a vertex of G which has a

maximum neighbor (recall that G is chordal bipartite and therefore such a vertex u exists).

Lemma 12 Let S be a connected component of a subgraph of G induced by set V \ Dk−1(u) (k ≥ 1).

Then, there is a vertex w ∈ Nk−1(u) such that N(w) ⊃ S ∩ Nk(u).

Proof. Since u has a maximum neighbor, we have N2(u) ⊂ N(w) for some vertex w ∈ N(u). Consider

now a connected component S of a subgraph of G induced by set V \Dk−1(u) (k ≥ 3). Let w be a vertex

of Nk−1(u) such that |N(w)∩S ∩Nk(u)| is maximal. Assume that there is a vertex x in S ∩Nk(u) which

is not adjacent to w. Then, by maximality, for any neighbor z of x in Nk−1(u), there must exist a vertex

y in S ∩ Nk(u) such that {y, w} ∈ E and {y, z} /∈ E. Since vertices x and y both belong to S, they are

connected by a path P of G consisting only of vertices from V \Dk−1(u). Let y′, x′ be the neighbors on

P of y and x, respectively. Clearly, since G is bipartite, x′, y′ ∈ Nk+1(u) and {y, x} /∈ E. Consider also

shortest paths P (w, u) and P (z, u) of G connecting vertex u with w and z, respectively. Vertex x′ cannot

be adjacent with y since otherwise a subgraph of G formed by edges {y, x′}, {x′, x}, {y, w}, {x, z} and

paths P (w, u), P (z, u) will contain an induced cycle of length at least 6, which is impossible. Analogously,

vertex y′ is not adjacent with x. We claim now that edges a = {y, y′}, c = {x, x′} and e = {u, v}, where

v is a neighbor of u on P (w, u), form an ATE in G. Indeed, P avoids the neighborhood of e since

P ⊆ V \ Dk−1 and k > 2, path (y, w) ∪ P (w, u) avoids the neighborhood of c and path (x, z) ∪ P (z, u)

avoids the neighborhood of a. A contradiction obtained proves that N(w) ⊃ S ∩ Nk(u).

This lemma suggests the following algorithm for constructing a spanning tree of G.

PROCEDURE SPAN-ATEG. Tree 3-spanners for bipartite ATE–free graphs

Input: A bipartite ATE–free graph G = (V,E) and a vertex u of G with a maximum neighbor.

Output: A spanning tree T = (V,E′) of G (rooted at u).

Method:

set E′ := ∅;

set q := max{dG(u, v) : v ∈ V };

let sq
i , i ∈ {1, . . . , pq} be the vertices of Nq(u);
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for every i ∈ {1, . . . , pq} do

pick a neighbor w of sq
i in Nq−1(u);

add edge {sq
i , w} to E′;

for k := q − 1 downto 1 do

compute the connected components Sk
1 , . . . , Sk

pk
of G[Nk(u) ∪ {sk+1

i , i ∈ {1, . . . , pk+1}}];

for every i ∈ {1, . . . , pk} do

set S := Sk
i ∩ Nk(u);

pick a vertex w in Nk−1(u) such that N(w) ⊃ S;

for each v ∈ S add the edge {v, w} to E′;

shrink component Sk
i to a vertex sk

i and make sk
i adjacent in G to all vertices

from N(Sk
i ) ∩ Nk−1(u).

It is easy to see that the graph T = (V,E′) constructed by this procedure is a spanning tree of G and

its construction takes only linear time. Moreover, T is a shortest path tree of G rooted at u since for any

vertex x ∈ V , dG(x, u) = dT (x, u) holds.

Theorem 13 Let T = (V,E′) be a spanning tree of a bipartite ATE–free graph G = (V,E) output by

PROCEDURE SPAN-ATEG. Then, for any x, y ∈ V , we have dT (x, y) ≤ 3 · dG(x, y) and dT (x, y) ≤

dG(x, y) + 2.

Proof. First we will show that dT (x, y) ≤ 3 holds for any edge {x, y} of G. Since G is bipartite, |dG(x, u)−

dG(y, u)| = 1 must hold. Without loss of generality, assume that x ∈ Nk(u) and y ∈ Nk−1(u). Let x′

be the father of x in T. If x′ = y we are done; dT (x, y) = 1. Otherwise, x′ and y are from Nk−1(u) and

belong to a common connected component of the graph G[V \ Dk−2(u)]. According to the algorithm, x′

and y share a common father in T . Hence, dT (x, y) = dT (x′, y) + 1 = 3.

Now consider two arbitrary vertices v and w of G and a shortest (v, w)-path. Applying to every

edge {x, y} of this path the inequality dT (x, y) ≤ 3, we will get dT (v, w) ≤ 3 · dG(v, w). That dT (x, y) ≤

dG(x, y) + 2 follows already from the previous part of our proof and from [30, Lemma 1]. For the sake

of completeness, we present here another proof. Since T is a shortest path tree of G rooted at u, the

distances in G and T between a vertex and any of its ancestors are the same. We will prove that

dT (x, y) ≤ dG(x, y) + 2 by induction on dG(v, w). If v and w are adjacent, then we are done, because

then dT (v, w) ≤ 3. Now suppose that dG(v, w) = s ≥ 2 and let z be a neighbor of v on a shortest path

between v and w. From the induction assumption we have dT (z, w) ≤ s− 1 + 2 = s + 1 and dT (v, z) ≤ 3.

Let a = nca(v, z) be the nearest common ancestor of v and z in the tree T. Since dT (a, v) = dG(a, v),
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dT (a, z) = dG(a, z) and {v, z} ∈ E we obtain that |dT (v, a) − dT (z, a)| = 1. We can additionally assume

that dT (z, w) < dT (v, w)−1, since otherwise we immediately conclude dT (v, w) ≤ dG(v, w)+2. From this

and the previous inequality we deduce that the vertex nca(w, z) lies on the path of T between the vertices

a and z. Therefore, a is an ancestor of w, and thus dT (a,w) = dG(a,w). Notice that the distance sums

dT (v, w) + dT (a, z) and dT (v, z) + dT (a, w) are equal. Hence, dT (v, w) = dT (a,w)− dT (a, z) + dT (v, z) =

dG(a,w) − dG(a, z) + dT (v, z) ≤ dG(w, z) + 3 = dG(v, w) + 2, concluding the proof.

Any interval bigraph is a bipartite ATE–free graph, and any convex graph is an interval bigraph.

Hence we have the following corollaries.

Corollary 14 Any interval bigraph G = (V,E) admits a spanning tree T such that dT (x, y) ≤ 3 ·dG(x, y)

and dT (x, y) ≤ dG(x, y) + 2 hold for any x, y ∈ V . Moreover, such a tree T can be constructed in linear

time.

Corollary 15 ([6]) Any convex graph G = (V,E) admits a spanning tree T such that dT (x, y) ≤ 3 ·

dG(x, y) and dT (x, y) ≤ dG(x, y) + 2 hold for any x, y ∈ V . Moreover, such a tree T can be constructed

in linear time.

5 Tree 7-Spanners for (Enhanced) Probe Interval Graphs

In this section we show that any (enhanced) probe interval graph admits a tree 7-spanner.

Let G = (P,N,E) be a connected probe interval graph. We assume that an interval representation of

G is given (if not, an interval model for G can be constructed by a method described in [24] in O(m log n)

time, where n = |P | + |N | and m = |E|). Let I = {Ix : x ∈ P} be the intervals in the interval model

representing the probes and J = {Jy : y ∈ N} be the intervals representing the nonprobes.

First we discuss two simple special cases. If N = ∅ then clearly G = (P,E) is an interval graph. It is

known (see [30]) that for any interval graph G and any vertex u of G there is a shortest path spanning

tree T of G rooted at u such that dT (x, y) ≤ dG(x, y) + 2 holds for any x, y. In fact, a procedure similar

to PROCEDURE SPAN-ATEG produces such a spanner in linear time for any interval graph G and any

start vertex u. Evidently, T is a tree 3-spanner of G.

To describe other special case, we will need the following notion. A connected probe interval graph

G = (P,N,E) is superconnected if for any two intersecting intervals Iv, Iw ∈ I there is always an interval

Jy ∈ J such that Iv ∩ Iw ∩Jy 6= ∅. For a superconnected probe interval graph G, a tree 4-spanner can be

constructed easily. First we ignore all edges in G[P ] to get an interval bigraph G′ = (X = P, Y = N,E′)
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and then run PROCEDURE SPAN-ATEG on G′. We claim that a spanning tree T of G′, produced

by that procedure, is a tree 4-spanner of G. Indeed, for any edge {x, y} of G such that x ∈ P and

y ∈ N , dT (x, y) ≤ 3 holds by Corollary 14; it is an edge of G′, too. Now consider an edge {v, w} of

G with v, w ∈ P . Since G is superconnected, there is a vertex y ∈ N such that Iv ∩ Iw ∩ Jy 6= ∅, i.e.,

dG′(v, w) = 2. Then, by Corollary 14, we have dT (v, w) ≤ dG′(v, w) + 2 = 2 + 2 = 4. Consequently, T is

a tree 4-spanner of G.

To get a tree 7-spanner for an arbitrary connected probe interval graph G = (P,N,E), we will use

the following strategy. First we decompose the graph G into subgraphs G0, G1, . . . , Gk such that Gi and

Gj (i 6= j) share at most one common vertex and each Gi is either an interval graph or a superconnected

probe interval graph. Then iteratively, given a tree 7-spanner T i for G0 ∪G1 ∪ . . .∪Gi (i < k) and a tree

t-spanner Ti+1 (t ≤ 4) of Gi+1, we will extend T i to a tree 7-spanner T i+1 for G0 ∪G1 ∪ . . . ∪Gi ∪Gi+1

by either making all vertices of Gi+1 adjacent in T i+1 to a common neighbor in G0 ∪ G1 ∪ . . . ∪ Gi (if it

exists) or by gluing trees T i and Ti+1 at a common vertex.

Now we give a formal description of the decomposition algorithm. Let S0, S1, . . . , Sq be segments of

the union ∪y∈NJy. (see Figure 6 for an illustration).Figure 6

PROCEDURE DECOMP. A decomposition of a probe interval graph

Input: A probe interval graph G and its interval representation (I,J ).

Output: Subgraphs G0, G1, . . . , G2q+2 of G, where G2i (i ∈ {0, . . . , q+1}) is an interval graph and G2i+1

(i ∈ {0, . . . , q}) is a superconnected probe interval graph, and special vertices uj (j = 1, . . . , 2q+2),

where uj belongs to Gj−1 and Gj .

Method:

for i = 0 to q do

/* define an interval graph */

set X := {Ix ∈ I : L(x) ≤ L(Si)};

on intervals X define an interval graph G2i;

let I∗ be an interval from X with maximum R(·) value;

set u2i+1 := a vertex of G corresponding to I∗;

set I := I \ (X \ {I∗});

/* define a superconnected probe interval graph */

set Y := {Iy ∈ J : Iy ⊆ Si};

set X := {Ix ∈ I : L(x) ≤ R(Si)};

define a probe interval graph G2i+1 with probes X and nonprobes Y;
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let I∗ be an interval from X with maximum R(·) value;

set u2i+2 := a vertex of G corresponding to I∗;

set I := I \ (X \ {I∗});

define on I an interval graph G2q+2.

Clearly, all probe interval graphs G2i+1 (i = 1, . . . , q) are superconnected and a decomposition of G

into G0, G1, . . . , G2q+2 can be done in linear time if endpoints of the intervals I ∪ J are sorted.

Lemma 16 For any i = 2, . . . , 2q + 2, R(ui) ≥ R(ui−1) holds.

Proof. When we delete an interval Iv from I, we always leave in I an interval Iu such that R(v) ≤ R(u).

Now, for an interval graph G0 (if it is not empty), we can construct a tree 3-spanner T0 = T0(u0)

rooted at any vertex u0 of G0. For an interval graph G2i (i = 1, . . . , q + 1), we can construct a tree

3-spanner T2i = T2i(u2i) rooted at vertex u2i (see PROCEDURE DECOMP). Since all those trees are

shortest path trees, the neighborhoods of vertex u2i in G2i and T2i coincide.

Let G−
2i+1 be an interval bigraph obtained from a superconnected probe interval graph G2i+1 by

ignoring all edges between probes and deleting all probes Iv such that Iv ⊂ Iu2i+1 .

Lemma 17 For any i = 0, . . . , q, vertex u2i+1 has a maximum neighbor in G−
2i+1.

Proof. According to PROCEDURE DECOMP, interval I∗ corresponding to u2i+1 belongs to I. Let Jy

be an interval of J such that L(Jy) ≤ R(I∗) and R(Jy) is maximum. We show that vertex y of G2i+1 is

a maximum neighbor of u2i+1 in G−
2i+1. Consider a vertex w of G2i+1 which is at distance 2 from u2i+1

in G−
2i+1 and assume that intervals Jy, Iw do not intersect. If R(Iw) < L(Jy), then necessarily Iw is a

subinterval of I∗ and w is not a vertex of G−
2i+1. Hence, we may assume that R(Jy) < L(Iw). But then,

by maximality of R(Jy), there cannot exist an interval in J which intersects both I∗ and Iw. The latter

contradicts our assumption that the distance in G−
2i+1 between u2i+1 and w is 2.

Let T−
2i+1 = T−

2i+1(u2i+1) be a tree 3-spanner of an interval bigraph G−
2i+1 constructed starting at

vertex u2i+1, i ∈ {0, . . . , q} (see PROCEDURE SPAN-ATEG). Clearly, the neighborhoods of vertex u2i+1

in G−
2i+1 and T−

2i+1 coincide. We can extend tree T−
2i+1 to a spanning tree T2i+1 = T2i+1(u2i+1) of G2i+1

by adding, for each probe Iv of G2i+1 such that Iv ⊂ Iu2i+1 , a pendant vertex v adjacent to u2i+1.

Lemma 18 T2i+1(u2i+1) is a tree 4-spanner for G2i+1, i ∈ {0, . . . , q}. Moreover, for any edge {w, u2i+1}

of G2i+1, dT2i+1(w, u2i+1) ≤ 2 holds.
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Proof. Let A = {v : v is a vertex of G2i+1 such that Iv ⊂ Iu2i+1} and H be a superconnected probe

interval graph obtained from G2i+1 by eliminating vertices of A. Since G−
2i+1 is the interval bigraph

counterpart of H, tree T−
2i+1 is a tree 4-spanner for H. Consider now an edge {v, w} of G2i+1. We

may assume that at least one of these vertices (say, v) is from A. If also w ∈ A then, by construction,

dT2i+1(v, w) = 2. If w /∈ A then, since Iv intersects Iw and Iv ⊂ Iu2i+1 , Iw must intersect Iu2i+1 , too.

If w is a nonprobe, then {w, u2i+1} is an edge of G−
2i+1 and hence of T−

2i+1. If w is a probe, then

dG−
2i+1

(u2i+1, w) = 2 = dT−
2i+1

(u2i+1, w) since T−
2i+1 is a shortest path spanning tree (rooted at u2i+1) of

G−
2i+1. Consequently, in both cases we have dT2i+1(v, w) = 1 + dT−

2i+1
(u2i+1, w) ≤ 3.

Now we are ready to construct a spanning tree T for the original probe interval graph G = (P,N,E).

We say that a vertex v of G dominates a subgraph Gk of G if every vertex of Gk, different from v, is

adjacent to v in G.

PROCEDURE SPAN-PIG. Tree 7-spanner for probe interval graphs

Input: A probe interval graph G = (P,N,E), its interval representation (I,J ) and

a decomposition of G into graphs G0, G1, . . . , G2q+2.

Output: A spanning tree T = (P ∪ N,E′) of G.

Method:

set E′ = ∅ and k := 0;

while k ≤ 2q + 2 do

if there is an index j such that k ≤ j and uk dominates Gj then do

find the largest index j with that property;

for each v in Gk ∪ . . . ∪ Gj (v 6= uk) add edge {v, uk} to E′;

set k := j + 1;

else do

if k is even then do

find a tree 3-spanner Tk(uk) of an interval graph Gk;

add all edges of Tk(uk) to E′;

if k is odd then do

find a tree 4-spanner Tk(uk) of a superconnected probe interval graph Gk;

add all edges of Tk(uk) to E′;

set k := k + 1.

It is easy to see that the tree T constructed by PROCEDURE SPAN-PIG is a spanning tree of G and
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its construction takes only linear time.

Lemma 19 If for graph Gk (k ∈ {0, . . . , 2q +2}) there exists a vertex ui ∈ {u0, . . . , uk} which dominates

Gk, then there is a vertex us ∈ {u0, . . . , uk} such that dT (x, us) ≤ 1 holds for any x in Gk. Otherwise, if

such vertex ui does not exist, then for any vertices x, y of Gk, dT (x, y) = dTk
(x, y) holds.

Proof. Assume that such a vertex ui exists, but for any us there is a vertex x in Gk such that dT (x, us) > 1.

By Lemma 16, R(uk) ≥ R(ui). Hence, vertex uk is also adjacent to all vertices of Gk (except itself). On

the other hand, since for any us there is a vertex x in Gk such that dT (x, us) > 1, there was an iteration

of while loop in PROCEDURE SPAN-PIG where the edges of tree Tk(uk) were added to T . That is, it

was detected that vertex uk does not dominate Gk. A contradiction obtained proves the first part of the

lemma. The second part is evident.

Corollary 20 For any vertices x, y of Gk (k ∈ {0, . . . , 2q + 2}), dT (x, y) ≤ max{2, dTk
(x, y)} holds.

Such a vertex us described in Lemma 19 is called the focus of Gk in T .

Lemma 21 T is a tree 7-spanner for G.

Proof. Consider an edge {v, w} of G. If both vertices v and w belong to the same graph Gk (k =

0, . . . , 2q + 2) then either dT (v, w) ≤ 2 or dT (v, w) = dTk
(v, w) ≤ 4. Hence, we may assume that they are

from different graphs. Clearly, v and w both cannot belong to N .

Case 1: v ∈ P and w ∈ N .

In this case there is a segment Si ∈ {S0, S1, . . . , Sq} such that L(Si) ≤ L(w) ≤ R(w) ≤ R(Si). Clearly,

w is a vertex of G2i+1 and, by PROCEDURE DECOMP, no neighbor of w different from u2i+2 can

belong to Gk (k > 2i + 1). Hence, L(v) ≤ L(Si) ≤ L(w) ≤ R(v) must hold. Moreover, since L(u2i+1) ≤

L(Si) ≤ L(w) ≤ R(v) ≤ R(u2i+1), vertices w and u2i+1 are adjacent in G and therefore in T2i+1. So,

dT2i+1(w, u2i+1) = 1. The latter means that either vertices w and u2i+1 are adjacent in T or they both

are adjacent to the focus of G2i+1 in T (see Lemma 19).

If v belongs to G2i then, since u2i+1 is also in G2i and dG(v, u2i+1) = 1, dT2i(v, u2i+1) ≤ 3 must hold.

Hence, we have dT (v, w) ≤ dT (v, u2i+1)+dT (w, u2i+1) ≤ max{2, dT2i(v, u2i+1)}+max{2, dT2i+1(w, u2i+1)} ≤

3 + 2 = 5.

Now assume that v belongs to Gj with j < 2i. Then, vertex uj+1 dominates Gj+1 since R(uj+1) ≥

R(v) ≥ L(Si). Let us be the focus of Gj+1 in T and let r be the largest index such that graph Gr is

still dominated by us. By PROCEDURE SPAN-PIG, us is the focus in T of all graphs Gj+1, . . . , Gr.

20



Therefore, vertices uj+1, . . . , ur+1 all are at distance at most 1 from us in T . We have also, by Corollary 20,

dT (v, uj+1) ≤ max{2, dTj (v, uj+1)} ≤ 4.

If dT (v, uj+1) > 2, then necessarily s = j + 1 and r ≥ 2i (recall that R(uj+1) ≥ L(Si)). Hence,

2 < dT (v, us) ≤ 4, dT (us, u2i+1) ≤ 1 and vertex w is adjacent in T either to us or to u2i+1, depending on

whether us dominates G2i+1 or not. Thus, we have dT (v, w) ≤ dT (v, us)+dT (us, u2i+1)+1 ≤ 4+1+1 = 6.

Let now dT (v, uj+1) ≤ 2. If us dominates G2i, then again dT (us, u2i+1) ≤ 1. Otherwise, r < 2i and

vertex ur+1 dominates G2i since R(ur+1) ≥ R(uj+1) ≥ R(v) ≥ L(Si). By PROCEDURE SPAN-PIG,

ur+1 is the focus of G2i in T . Hence, dT (ur+1, u2i+1) ≤ 1 and therefore dT (us, u2i+1) = dT (us, ur+1) +

dT (ur+1, u2i+1) ≤ 1 + 1 = 2. Since w is adjacent in T either to u2i+1 or to the focus of G2i+1 in T , we

get dT (v, w) ≤ dT (v, uj+1) + dT (uj+1, us) + dT (us, u2i+1) + 1 ≤ 2 + 1 + 2 + 1 = 6.

Case 2: v, w ∈ P .

Since w (as well as v) can be a vertex from {u1, . . . , u2q+2}, it can belong to few consecutive graphs

Gi, . . . , Gi+a. Therefore, let i and j be the smallest indices such that w belongs to Gi and v belongs to

Gj . Without loss of generality, assume also that j < i.

We have R(v) ≥ L(w). Since v in Gj is adjacent to w in Gi, vertex ui must be adjacent to v. Since

Gi can be a proper interval graph (if i is odd), by Lemma 18, we have dTi(w, ui) ≤ 2. Recall that, if Gi

is an interval graph (i.e., i is even), then we would have dTi(w, ui) ≤ 1.

If j = i−1, then both vertices v and ui are in Gi−1 and, therefore, dG(v, ui) = 1 implies dTi−1(v, ui) ≤

4. Hence, we have dT (v, w) ≤ dT (v, ui)+dT (w, ui) ≤ max{2, dTi−1(v, ui)}+max{2, dTi(w, ui)} ≤ 4+2 =

6.

Now assume that j < i − 1. Then vertex uj+1 dominates Gj+1 since R(uj+1) ≥ R(v) ≥ L(w). Let

again us be the focus of Gj+1 in T and let r be the largest index such that graph Gr is still dominated

by us. Since us is the focus in T of all graphs Gj+1, . . . , Gr, vertices uj+1, . . . , ur+1 all are at distance at

most 1 from us in T . By Corollary 20, we also have dT (v, uj+1) ≤ max{2, dTj (v, uj+1)} ≤ 4.

If dT (v, uj+1) > 2, then again s = j + 1 and r ≥ i − 1. Hence, 2 < dT (v, us) ≤ 4, dT (us, ui) ≤ 1 and

therefore dT (v, w) ≤ dT (v, us) + dT (us, ui) + dT (ui, w) ≤ 4 + 1 + 2 = 7.

Let now dT (v, uj+1) ≤ 2. If us dominates Gi−1, then again dT (us, ui) ≤ 1. If us does not dom-

inate Gi−1, then vertex ur+1 must dominate it (since R(ur+1) ≥ R(uj+1) ≥ R(v)). Therefore, by

PROCEDURE SPAN-PIG, ur+1 is the focus of G2i in T and dT (ur+1, ui) ≤ 1 must hold. Thus,

dT (v, w) ≤ dT (v, uj+1) + dT (uj+1, us) + dT (us, ui) + dT (ui, w) ≤ 2 + 1 + 2 + 2 = 7.

Main theorem in this section is the following:
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Theorem 22 Any probe interval graph G admits a tree 7-spanner. Moreover, such a tree 7-spanner can

be constructed in O(m log n) time, or in O(m + n log n) time if the intersection model of G is given in

advance.

Now let G = (P,N,E) be an enhanced probe interval graph with probes P and nonprobes N .

Corollary 23 Any enhanced probe interval graph G = (P,N,E) admits a tree 7-spanner. Moreover,

such a tree spanner can be constructed in O(m log n) time.

Proof. By ignoring in G edges between nonprobes, we will get a probe interval graph G′. Let T be

a tree 7-spanner of G′ constructed by PROCEDURE SPAN-PIG. We show that T is a tree 7-spanner

of G, too. One needs to check the distance in T only between nonprobes x, y ∈ N which are adjacent

in G, i.e., {x, y} is an enhanced edge. By the definition of an enhanced edge, there must exist two

non-intersecting probes v, w such that {v, x}, {v, y}, {w, x}, {w, y} are edges in G. Without loss of

generality, assume that R(v) < L(w). Then, clearly, vertices x, y, w are all from some superconnected

probe interval graph G′
2i+1 (see PROCEDURE DECOMP). Let G′′

2i+1 be the interval bigraph counterpart

of G′
2i+1 and T2i+1 be a tree 3-spanner of G′′

2i+1. For edges {w, x} and {w, y} of graph G′′
2i+1 we have

dT (w, x) ≤ max{2, dT2i+1(w, x)} ≤ 3 and dT (w, y) ≤ max{2, dT2i+1(w, y)} ≤ 3 (recall that edges {w, x}

and {w, y} are connecting a probe with nonprobes and hence they both are edges of G′′
2i+1). Thus,

dT (x, y) ≤ dT (x,w) + dT (y, w) ≤ 3 + 3 = 6.

6 Concluding Remarks

In the paper, we have shown that the tree t-spanner problem is NP-complete even for chordal bipartite

graphs for t ≥ 5. The complexity of the tree 3-spanner problem is still open. We have also shown that

every (enhanced) probe interval graph has a tree 7-spanner. However, it is also open whether the graph

classes are tree t-spanner admissible for smaller t.
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A Graph Theoretic Aspects of Probe Interval Graphs

We first introduce the graph classes which appear only in appendix, and show the relationships between

the graph classes related to the probe interval graphs and the other graph classes.
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A.1 Definitions

For a cycle C = (v1, v2, · · · , v2k) of even length, an odd chord {vi, vj} is a chord such that i− j is odd. A

chordal graph is strongly chordal if each cycle of even length at least 6 has an odd chord.

Assume that for a graph G = (V,E) there is a tree T and a set T = {Tv|v ∈ V } of subtrees of T

such that Tu ∩ Tv 6= ∅ if and only if {u, v} ∈ E. In the case, (T , T ) is called a tree model for G. If T is

a directed tree, i.e., if each edge of T has a fixed orientation, and if all subtrees are directed paths, then

G is called directed path graph. Moreover, if T can be chosen to be a rooted tree such that all edges are

oriented downwards, i.e., in the direction from the root r to the leaves, then G is called rooted directed

path graph.

Note that this paper distinguishes between rooted directed path graphs and directed path graphs.

The first class is a subclass of strongly chordal graphs, while the second class is not. Sometimes both

classes are referred to as directed path graphs, which may lead to potential confusion.

A probe interval graph G = (P,N,E) is an STS-probe interval graph if every edge joins a vertex in P

and another in N . That is, probes do not overlap in an STS-probe interval graph.

A.2 Relations

The relations shown in this section are summarized in Figure 7. We first show two simple propositions:Figure 7

Proposition 24 For any probe interval graph G = (P,N,E), the graph G′ obtained by removing all

edges joining vertices in P is an interval bigraph.

Proof. Trivial by the definitions.

Although Proposition 24 is trivial, combining it with Müller’s result in [16] that interval bigraphs are

subset of chordal bipartite graphs, we give a simple proof of Theorem 4.1 in [23], which states that G′ in

Proposition 24 is chordal bipartite.

Proposition 25 The class of the STS-probe interval graphs is equivalent to the class of convex graphs.

Proof. Let G be an STS-probe interval graph G = (P,N,E) with P = {v1, v2, · · · , vn}. Let Ii be the

interval corresponding to the vertex vi for each i = 1, · · · , n. Then we have Ii∩Ij = ∅ for each i, j with i 6=

j. Thus we can (re)order the vertices such that L(I1) < R(I1) < L(I2) < R(I2) < · · · < L(In) < R(In).

Hence for the graph G = (X,Y,E) with X = P and Y = N , the ordering of X fulfills the adjacency

property. Thus, G is a convex graph. Similarly, for any convex graph G′ = (X ′, Y ′, E′), we immediately

have an STS-probe interval graph (P ′, N ′, E′) letting P = X ′ and N = Y ′ if X ′ has an ordering with

adjacency property.
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Theorem 26 The class of enhanced probe interval graphs is incomparable to both strongly chordal graphs

and rooted directed path graphs.

Before the proof of Theorem 26, we introduce some graph notions; a sun is a chordal graph G on

2n vertices for some n ≥ 3 whose vertex set can be partitioned into two sets, W = {w1, · · · , wn},

U = {u1, · · · , un}, such that W is independent and for each i and j, wj is adjacent to ui if and only if

i = j or i ≡ j + 1 (mod n). It is known that a graph G is strongly chordal if and only if G is sun-free

chordal (see [31, 18] for further details). Now we are ready to prove the theorem.

Proof. It is sufficient to show that there are two graphs G1 and G2 such that G1 is an enhanced probe

interval graph, and not a strongly chordal graph (hence not a rooted directed path graph), and G2 is a

rooted directed path graph (hence a strongly chordal graph), and not an enhanced probe interval graph.

The graph G1 in Figure 8(a) is a sun with 6 vertices, which is not a strongly chordal graph. LettingFigure 8

P = {a, b, c, d} and N = {x, y}, the sun is an enhanced probe interval graph (Figure 8(b)).

To construct the graph G2, we first consider the graph depicted in Figure 9(a) as an enhanced probe

interval graph. A possible representation is shown in Figure 9(b). We claim that the vertex c has toFigure 9

be a nonprobe to represent G2, and hence x1, x2, and x3 are probes. To show this, we assume that

c is a probe. Since each yi does not intersect c, without loss of generality we can assume that either

R(y1) < R(y2) < L(c) < R(c) < L(y3) or R(y1) < R(y2) < R(y3) < R(c). In both cases, x1 has to

intersect y1 and c without intersecting y2. Thus, the only possible way is x1 and y2 are nonprobes,

and x1 contains the interval [R(y1), L(c)]. Since x1 is a nonprobe, y1 is a probe. On the other hand,

since y2 is a nonprobe, x2 is a probe. Probe x2 has to intersect both y2 and c. Thus x2 contains the

interval [R(y2), L(c)], which is covered by x1. Since x2 is a probe, we have an edge {x1, x2}, which is a

contradiction.

The graph G2 is now depicted in Figure 10(a). Let assume that G2 is an enhanced probe intervalFigure 10

graph. To represent the graph G[{c1, x1, y1, x2, y2, c2, x3}], c1 has to be a nonprobe and c2 has to be a

probe by the claim. On the other hand, to represent the graph G[{c2, c1, x2, x3, y3, x4, y4}], c2 has to be a

nonprobe and c1 has to be a probe, which is a contradiction. Thus, G2 is not an enhanced probe interval

graph. We next show that G2 is a rooted directed path graph; a tree representation of G2 is given in

Figure 10(b), which completes the proof.

In the arguments in the proof of Theorem 26, no enhanced edge appears (in fact, an enhanced edge

has to be a chord of a C4). Thus, we immediately have the following.

Corollary 27 The class of probe interval graphs is incomparable to both strongly chordal graphs and
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rooted directed path graphs.
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Figure 1: The graph S`[a, b]

28



H

a e b

Figure 2: The graph obtained from H and S`[a, b] by identifying the edge e = {a, b}
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Figure 3: The gadget G(xi)
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Figure 4: The gadget G(Cj)
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Figure 5: The reduction given C1 = (x1, x2, x3) and C2 = (x1, x2, x4)
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Figure 6: Segments and a decomposition of a probe interval graph
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Figure 7: Hierarchy of graph classes
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Figure 8: Enhanced probe interval and not strongly chordal graph
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Figure 9: Probe interval graph with nonprobe c
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Figure 10: Rooted directed path, and not enhanced probe interval graph
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