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2 JAIST and PRESTO, JST, Japan
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Abstract. This paper aims at providing a rigorous definition of self-
organization, one of the most desired properties for dynamic systems,
such as peer-to-peer systems, sensor networks, cooperative robotics, or
ad-hoc networks. We propose a framework in order to prove the self-
organization of dynamic systems with respect to generic criteria (e.g.,
similarity, load balancing, geographical neighborhood, battery level) that
can be composed in order to construct more complex criteria. We illus-
trate our theory with a case study that consists in proving the self-
organization of CAN, a representative peer-to-peer system.

1 Introduction

Self-organization is an evolutionary process in which the effects of the envi-
ronment are present. Natural phenomena, living forms, or social systems (e.g.,
growing crystals, cells aggregation, ant colonies) are examples of self-organizing
systems in which a global order of the system emerges from local interactions.

In the newly emerging fields of distributed systems (p2p, ad-hoc networks,
sensor networks, cooperative robotics), self-organization became one of the most
desired properties.

The major feature of all recent scalable distributed systems is their extreme
dynamism in terms of structure, content, and load. In p2p networks, nodes con-
tinuously join and leave the system. In large scale sensor, ad-hoc or robot net-
works, the energy fluctuation of batteries and the inherent mobility of nodes
induce a dynamic aspect of the system (the system size and the topology may
change) that must be addressed. In all these systems there is no central entity
in charge of their organization and control, and there is an equal capability, and
responsibility entrusted to each of them to own data [10]. To cope with such
characteristics, these systems must be able to spontaneously organize toward
exhibiting desirable global properties. In peer-to-peer systems, self-organization
is handled through protocols for node arrival and departure, based either on a
fault-tolerant overlay network, such as in CAN, Chord, Pastry [7, 14, 18, 16], or
on some localization and routing infrastructure, such as in OceanStore [11, 22].
Recent peer-to-peer applications exploit the natural self-organization of peers in
semantic communities (clusters) [9, 12, 17]. In ad-hoc networks, solutions have
been proposed for a self-organizing public-key management system that allows
users to create, store, distribute, and revoke their public keys without the help of



any trusted authority or fixed server [4]. Self-organization was also used in order
to cluster ad-hoc nodes [21]. Self-organizing algorithms have also been devel-
oped that arrange mobile robots into predefined geometric patterns (e.g., [19]).
Inspired from crystal growth, Fujibayashi et al. [8] simulations self-organizing
heuristics for the shape formation of a group of mobile robots. Their work uses
the notion of virtual spring—a virtual link between neighboring nodes. The
global shape is obtained by tuning the parameters of the springs.

Informal definitions for self-organization, or the related self∗ properties (e.g.,
self-configuration, self-healing or self-reconfiguration) have been proposed pre-
viously [3, 20, 21]. Babaoğlu et al. [3] propose a platform, called Anthill, aimed
at the design of peer-to-peer applications based on self-organized colonies and
swarms of agents. Anthill offers a bottom-up opportunity to understand the
emergent behavior of complex adaptive systems. Walter et al. [20] focus on the
concept of reconfiguration of a metamorphic robotic system with respect to a
goal configuration. One of the problems left open in this work is the specification
of admissible and non-admissible configurations, key notions in proving the cor-
rectness of the proposed solutions. Zhang and Arora [21] propose the concepts
of self-healing and self-configuration in wireless ad-hoc networks, and propose
self-stabilizing [5] solutions for self∗ clustering in ad-hoc networks.

The correctness proofs for all previously mentioned self-organizing systems
should be based on a well-founded theoretical model, able to encapsulate the
dynamic behavior of these systems. Dynamic systems must cope with frequent
changes in topology and size. Hence, the characterization of the self-organizing
aspects of these systems cannot solely focus on the non-dynamic periods, since
they may be absent or very short. Moreover, defining self-organization as a simple
convergence process towards a stable predefined set of admissible configurations
is inadequate for two reasons. First, it may be impossible to clearly characterize
the set of admissible configurations since, in dynamic systems, a configuration
should include the state of some key parameters that have a strong influence
on the dynamicity of the system. These parameters can seldom be quantified a
priori (e.g., the status of batteries in sensor networks, or the data stored within
p2p systems). Second, due to the dynamic behavior of nodes, it may happen
that no execution of the system converges to one of the predefined admissible
configurations.

The main contribution of this paper is to propose a formal specification
of the self-organization notion which, to the best of our knowledge, has never
been formalized in the area of scalable and dynamic systems, in spite of an
overwhelming use of the term. Our specification is based on the principles that
govern dynamic systems. The first one relates to the exchange of information
or resources within the system (components are possibly capable to infinitely
often retrieve new information/resources from components around them). The
second one is the dynamics of these systems (components have the ability to
move around, to leave or to join these systems based on local knowledge). The
third principle is the specificity of the components: Among all components of the
system, some have huge computation resources, some have large memory space,



some are highly dynamic, some have broad centers of interest. In contrast, seeing
such systems as a simple mass of components completely obviates the differences
that may exist between individual components; those very differences that make
the richness of these systems.

The tenets mentioned above share as a common seed the locality principle,
i.e., the fact that interactions and knowledge are both limited in range. We for-
malize this idea, leading first to the notion of local self-organization. Intuitively,
a locally self-organizing system should reduce locally the entropy of the sys-
tem. For example, a locally self-organized p2p system forces components to be
adjacent to components that improve, or at least maintain, some property or
evaluation criterion. We then formalize the notion of self-organization by impos-
ing the system to be locally self-organizing at all its nodes and by ensuring that
despite its dynamicity, the system entropy progressively reduces.

The second contribution of this work is a case study. Using our framework
we prove the weak self-organization of Pastry CAN, a well known peer-to-peer
overlay.

The remaining of this paper is organized as follows: Section 2 proposes a
model for dynamic and scalable systems. Section 3 formalizes the local and
global self-organization properties. In Section 4, we propose the study of CAN,
a dynamic peer-to-peer overlay. Section 5 concludes and discusses open issues.

2 Model

2.1 Dynamic System Model

Communication Graph. The physical network is described by a weakly con-
nected graph. Its nodes represent processes of the system and its edges represent
established communication links between processes. The graph is referred in the
following as the communication graph. We assume that the communication graph
is subject to frequent and unpredictable changes: processes can leave or join the
system arbitrarily often, and they can fail temporarily (transient faults) or per-
manently (crash failures). Communication links can commit transient failures
(e.g., messages loss).
Data Model. Nearly all modern applications in the dynamic distributed sys-
tems are based on the principle of data independence—the separation of data
from the programs that use the data. This concept was first developed in the
context of database management systems.

In dynamic systems, in particular in P2P systems, data stored locally at each
node, organized in flat or hierarchical structures (e.g., XML trees), play a crucial
role in creating semantic based communities (logical links between processes that
store or query similar data).

Note that system data is subject to frequent and unpredictable changes ad-
justing to nodes connections and disconnections. Data also suffers modifications
like replication, aggregation, removal and can be subject to permanent or tran-
sient failures.



Logical Overlay. We consider the network plus the data stored in the network
represented by a logical multi-layer overlay, each logical layer l being a weakly
connected graph, also referred to as the logical communication graph at layer
l. In order to connect to a particular layer l, a process executes an underlying
connection protocol. A process p is called active at a layer l if there exists at least
one process q which is connected at l and aware of p. The set of logical neighbors
of a process p at a layer l is the set of processes q such that the logical link (p, q) is
up (p and q are aware of each other) and is denoted N l(p). Notice that a process
p may belong to several layers simultaneously. Thus, p may have different sets
of neighbors at different logical layers. Can, Pastry or Chord ([14, 15, 18]) are
logical overlays using DHTs as design principle. In sensors or ad-hoc networks,
connected coverings (such as trees, weakly connected maximal independent sets
or connected dominating sets) can also be seen as logical overlays.

2.2 State Machine-based Framework

To rigorously analyze the execution of the dynamic systems, we use the dynamic
I/O automata introduced by Attie and Lynch [2]. This model allows the modeling
of individual components, their interactions and their changes. The external
actions of a dynamic I/O automata are classified in three categories, namely
the actions that modify data (by replication, aggregation, removal, or writing),
the input-output actions (I/O actions), and dynamic actions (C/D actions for
Connection-Disconnection actions) describing the mobility within the system. A
configuration is the system state at time t altogether with the communication
graph and data stored in the system.

3 Self-Organization

In this section we propose to formally define the notion of self-organization in the
context of scalable and dynamic systems (in particular p2p systems) altogether
with tools for proving their self-organization. Self-organization strongly relies on
the local self-organization property (see Section 3.1), and is characterized by
liveness and safety properties (see Section 3.2).

3.1 Local Self-Organization

Intuitively, a locally self-organizing system should force processes to improve
or at least maintain some criterion. In the following we restrict our attention
to insensitive criterion, that is criterion whose evaluation at a process is not
modified by the internal actions of other processes. A typical example of such
criterion is the proximity metric in the nodeId space. Let C be a [0, 1]-valued
function defined on the local neighborhood of a process (the local neighborhood
of a process p includes both the state of p and the state of p’s neighbors). In
the following Cp denotes an evaluation criterion in the local neighborhood of
a process. Let γp be a [0, 1] function defined for a process p, a configuration c



and an evaluation criterion Cp. γp(c, Cp) is the aggregate of the Cp(q) values in
the configuration c for all one hop neighbors q of p. In the following γp(c, Cp) is
referred as the local aggregate criterion.

In order to define local self-organization, we introduce the notion of stable
configurations. Informally, a configuration c is p-stable for a given evaluation cri-
terion in the neighborhood of a process p if the local aggregate criterion reached
a local maximum in c.

Definition 1 (p-stable configuration). Let c be a configuration of a system S
and p be a process, Cp be an evaluation criterion and γp(c, Cp) the local aggregate
of Cp at the configuration c. Configuration c is p-stable for γp if, for any config-
uration c′ reached from c after one action executed by p, γp(c, Cp) ≥ γp(c

′, Cp)

Definition 2 (local self-organization). Let S be a system, p a process, Cp an
evaluation criterion of p and γp the aggregate of Cp. S is locally self-organizing
for γp if S eventually reaches a p-stable configuration. S is locally self-organizing
if ∀p ∈ S, S is locally self-organizing for γp.

In p2p systems local self-organization should force processes to be logical
neighbors with processes which improve the evaluation criterion. Module 1 ex-
ecuted by a process p, referred in the following LSA, proposes a local self-
organizing generic algorithm for an arbitrary insensitive criterion C. Note that
existing DHT-based peer-to-peer systems (see Section 4) execute similar algo-
rithms to ensure self-organization with respect to specific criteria (e.g., geograph-
ical proximity). The nice property of our generic algorithm is its adaptability to
unstructured networks.

LSA is based on a greedy technique, which reveals to be a well adapted
technique for function optimization. Its principle follows the here above intuition:
Let q such that q ∈ N C(p), and r such that r ∈ N C(q) but r 6∈ N C(p), where
N C(p) and N C(q) are the logical neighborhoods of p and q respectively with
respect to the criterion C. If p notices that r improves the evaluation criterion
previously computed for q, then p replaces q by r in N C(p). Inputs of this
algorithm are the evaluation criterion C and the set of p’s neighbors for C, that
is N C(p). The output is the updated view of N C(p). Given a criterion C, a p-
stable configuration, in this context, is a configuration where for any neighbor
q of p, there is no neighbor r of q (r 6= p) that improves C, formally ∀q ∈
N C(p), ∀r ∈ N C(q) \ N C(p), Cp(r) ≤ Cp(q).

Note that, because of the partial view that a component has on the global
state of the system (due to the scalability and dynamism of the system), only a
heuristic algorithm can be found under these assumptions.

Theorem 1 (Local Self-Organization of LSA). Let S be a system and C be
an insensitive evaluation criterion. If S executes the LSA algorithm with C, then
S is a locally self-organizing system for any strictly monotonic local aggregation
of C.



Module 1 Local Self-Organization Algorithm for Criteria C Executed by p

(LSA)

Inputs :

Cp : the evaluation criterion used by p;

N C(p): p neighbors for the evaluation criterion C;

Actions :

R : if ∃q ∈ N C(p),∃r ∈ N C(q) \ N C(p),Cp(q) ≤ Cp(r)
then N C(p) = N C(p)

S

{rmax} \ q;

where rmax ∈ N C(q), Cp(rmax ) = maxr′∈NC(q),Cp(q)≤Cp(r′)(Cp(r
′))

Proof. Let p be a processor in the system executing the LSA algorithm. Assume
that S does not locally self-organize in the neighborhood of p. That is, there is
an execution of S, say e, that does not include a p-stable configuration.

Assume first that e is a static execution (i.e., no connection/disconnection
action is executed during e). Let c be the first configuration in e. By assumption
of the proof, c is not p-stable. Thus there is a neighbor of p, say q, that has itself
a neighbor improving the evaluation criterion. Hence, rule R (Module 1) can
be applied which makes r replacing q in the neighbors table of p. By applying
the assumption of the proof again, the obtained configuration is not stable,
hence there is at least one neighbor of p which has a neighbor which improves
the evaluation criteria. Since the evaluation criteria is bounded and since the
replacement of a neighbor is done only if there is a neighbor at distance 2 which
strictly improves the evaluation criteria, then either the system converges to a
configuration cend where the evaluation criteria reaches its maximum for some
neighbors of p, or the evaluation criterion cannot be improved.

In other words, for each node q neighbor of p we can exhibit a finite maximal
string:

Cp(q0) < Cp(q1) < . . . < Cp(qm)

where q0 is the node q and qi, i = 1, m are the nodes which will successively
replace the initial node q. Let cend be the configuration where the node qm is
added to the neighbors table of p. In cend the value of Cp(qm) is maximal hence,
either cend is stable, or no neighbor of qm improves the evaluation criteria. Thus
cend is stable. Consequently, there exists a configuration in e, namely cend , that
is p-stable.

Assume now that the execution e is dynamic, hence the system size and
topology may be modified by nodes connection and disconnection. Assume that
node p joins the system. This case is similar to the previous one, where p executes
the rule R of Module 1 a finite number of times until it reaches a p-stable
configuration.

Now, let us study the case where the system is in a p-stable configuration
and, due to the connection/disconnections the p neighbors set changes. That is,



in the p neighbors set a node r appears, and the new node r is improving the
criterion. Once p is aware of the new configuration of it neighbor it restarts the
convergence period by applying rule R. The system reaches in a finite number
of steps a p-stable configuration.

3.2 Self-Organization Through Local Self-Organization

As previously said, self-organization strongly relies on the local self-organization
property, as well as on the effect of connection/disconnection actions and data
modifications on the system. According to this effect, the system guarantees dif-
ferent levels of self-organization, namely, from weak to strong self-organization.
Before defining these properties, we introduce the notion of global evaluation cri-
terion, denoted in the following γ. The global evaluation criterion evaluates the
global organization of the system at a given configuration. More precisely, the
global evaluation criterion is the aggregate of all local criteria. For instance, if
the evaluation criterion is logical proximity (i.e., the closer a process, the higher
the evaluation criterion), then optimizing the global evaluation criterion γ will
result in all processes being connected to nearby processes.

Let Cp be an evaluation criterion and let γp be its local aggregation for any
p process in the system. In the sequel we focus only on global evaluation criteria
γ that exhibit the following property :

∀f, ∀c1, c2 ∈ f, γ(c1) < γ(c2) if ∃p, γp(c1, Cp) < γp(c2, Cp) and

∀t 6= p, γt(c1, Ct) ≤ γt(c2, Ct)

Intuitively, the increase of the value of a local criterion will determine the
increase of the global criterion if the other local criteria increase their values or
remain constant. An example of criterion that meets such a requirement is the
union/intersection of local criteria. Namely, γ is the sum of a local aggregation

criterion γ: γ(c) =
∑

p∈S

γp(c).

The weak self-organization is defined in terms of two properties. The weak
liveness property says that for each static fragment fi, either (1) fi is stable, or
(2) there exists some fragment fj, in the future of fi, during which the global
evaluation criteria strictly improves (see Fig. 1). The safety property requires
that the global evaluation criteria never decreases during a static fragment. For-
mally, we have:

γ

t

∀fi

· · ·

· · ·
∃fj

dynamicstatic

begin(fj)

end(fj)

Fig. 1. Illustration of the Weak liveness property.



Definition 3 (Weak Self-Organization). Let S be a system and γ be a global
evaluation criterion defined on the configurations of S. A system is weakly self-
organizing for γ if the following two properties hold (recall that (f0, . . . , fi, . . .)
stand for static fragments):

Weak Liveness Property:

∀e = (f0, . . . , fi, . . . , fj , . . .), ∀fi ∈ e, ∃fj ∈ e,j ≥ i : γ(end(fj)) > γ(begin(fj))
or ∀p ∈ S, begin(fj) is p-stable

Safety Property: ∀e = (f0, . . . , f, . . .), ∀f ∈ e : γ(end(f)) ≥ γ(begin(f))

The following theorem gives a sufficient condition to build a weakly self-organizing
system:

Theorem 2 (Weak Self-organization). Let S be a system and γ be an in-
sensitive global evaluation criterion. S is weakly self-organizing for γ if for any
process p, S locally self-organizes in p’s neighborhood.

Proof. Let e be an execution of S.

Safety proof Let f be a static fragment in e. Since S is locally self-organizing
then for any p node in the system there are two situations: (1) p is executing
some actions in f hence γp(begin(f)) < γp(end(f)) or (2) p does not execute
any action and in this case γp(begin(f)) ≤ γp(end(f)). Overall, γ(end(f)) ≥
γ(begin(f)).

Weak liveness proof Let p be a process. Let fi be an arbitrary static fragment
in e. S is self-organizing hence there is a static fragment fj, i ≤ j in e

such that p executes self-organizing actions in fj hence Cp(begin(fj)) <

Cp(end(fj)). Overall, for any fi there is a fragment fj such that γ(end(f)) >

γ(begin(f)).

γ

t

∀fi

· · ·

· · · ∃fj

end(fj)

end(fi)

Fig. 2. Illustration of the liveness property.

The weak self-organization definition applies to static fragments. Nothing
is guaranteed during dynamic ones (i.e., fragments in which connections / dis-
connections occur or data are modified). For example, Pastry self-organization
protocol may cause the creation of multiple, isolated Pastry overlay networks
during periods of IP routing failures. Because Pastry relies almost exclusively on
information exchange within the overlay network to self-organize, such isolated
overlays may persist after full IP connectivity resumes [7].



The following definition proposes a characterization of the system during
both static and dynamic fragments. This definition is characterized by the safety
property as defined above and a liveness property. This property says that either
(1) infinitely often, there are static fragments during which the knowledge of the
system enriches (see Fig. 2), or (2) all the processes have reached a stable state.

Definition 4 (Self-Organization). Let S be a system and γ be a global evalu-
ation criterion defined on the configurations of S. A system is self-organizing for
γ if both safety (defined here above) and liveness hold, with the liveness property
defined as follows:

Liveness Property:

∀e = (f0, . . . , fi, . . . , fj , . . .), ∀fi ∈ e, ∃fj ∈ e, j ≥ i : γ(end(fj)) > γ(end(fi))

or ∀p ∈ S, begin(fj) is p-stable

Theorem 3 (Self-organization). Let S be a locally self-organizing system. If
for any execution e = (f0, . . . , fi, . . . , fj , . . .) of S and for all static fragments fi,
fi+1 in e, γ(end(fi)) ≤ γ(begin(fi+1)) then S is self-organizing.

Proof. From the local self-organization of S, ∀fi, ∃fj such that γ(begin(fj)) <

γ(end(fj)). Using the hypothesis, γ(begin(fi)) ≤ γ(end(fi)) ≤ γ(begin(fi+1)) . . . ≤
γ(begin(fj)) < γ(end(fj)). Thus, S is self-organizing.

Note that neither the weak nor the liveness properties forbid processes to re-
set their neighbors lists after each connection/disconnection. To prevent the sys-
tem from “collapsing” during dynamic fragments, we need to specify a stronger
property guaranteeing that for all the processes whose neighborhood has not
changed, information is maintained. Specifically, this ensures the existence of a
non-empty group of processes for which local information has been maintained
between the end of a static fragment and the beginning of the subsequent one.
We can see this group of processes as the kernel of the system. More precisely,
given two successive configurations ci and ci+1 with their associated graphs Gi

and Gi+1, the static common core of Gi and Gi+1 is the sub-graph common to
Gi and Gi+1 minus all nodes for which the neighborhood has changed. Formally,
let G1 and G2 be two graphs, and ΓGi

(a) the set of neighbors of a in Gi. We
define the topological static common core of (G1, G2) as:

Notation 1 (Topological Kernel) KerT (G1, G2) = G1∩G2 \ {a : ΓG1(a) 6=
ΓG2(a)}

Since we study systems where the self-organization may be data-oriented
(typically the peer-to-peer systems), we propose a data oriented definition of
the static core of the system. That is, given two successive configurations ci and
ci+1, the data static common core of ci, ci+1 is:

Notation 2 (Data Kernel) KerD(ci, ci+1) = Di ∩Di+1, where Di is the sys-
tem data in ci.



This leads to the following property :

Definition 5 (Kernel Preservation). Let S be a system and γ be a global
evaluation criterion defined on the configurations of S. Let e = (f0, . . . , fi, fi+1, . . .)
be an execution of S and let Ki = Ker∗(end(fi), begin(fi+1)) (where Ker∗ de-
notes either KerT or KerD). S verifies the kernel preservation property for γ if
the following property holds:

Kernel Safety: ∀i, γ(Proj |Ki
(end(fi))) ≤ γ(Proj |Ki

(begin(fi+1))) where Proj |Ki
(c)

is the sub-configuration of c corresponding to the kernel Ki.

This leads to a stronger version of self-organization defined as follows:

Definition 6 (Strong Self-Organization). Let S be a system and γ be a
global evaluation criterion defined on the configurations of S. S is strongly self-
organizing for γ if it is self-organizing and it verifies the kernel preservation
property defined here above.

The concept of self-organization can be easily extended to a finite set of
criteria. In the following we show that when criteria are not interfering, i.e., when
they are independent, then one can build a self-organizing system for a complex
criterion by using simple criteria as building blocks. Using the previous example
where the local evaluation criterion was proximity, a second global evaluation
criterion is needed to decrease the number of hops of a lookup application. For
instance, we may want to use a few long links to reduce the lookup length.

Definition 7 (Independent Criteria). Let S be a system and let γ1 and γ2 be
two global criteria defined on the configurations of S. Let c be a configuration of
S and sc and sc′ the sub-configurations of c spanned by γ1 and γ2. γ1 and γ2 are
independent with respect to c if sc 6= sc′. γ1 and γ2 are independent with respect
to S if for any configuration c in S, γ1 and γ2 are independent with respect to c.

Definition 8 (Monotonic Composition). Let S be a system and let γi ∈ I a
set of criteria on the S configurations. γ = ×i∈Iγi is a monotonic composition
of the criteria γi, i ∈ I if the following property is verified: ∀c1, c2, γ(c1) < γ(c2)
iff ∃iγi(c1) < γi(c2) and ∀j 6= i ∈ I, γj(c1) ≤ γj(c2).

Theorem 4 (Multi-criteria Self-orgnization). Let S be a system and let
γ1 . . . γm be a set of independent evaluation criteria. If S is weakly, resp. strongly,
self-organizing for each γi, i ∈ [1..m] then S is weakly, resp. strongly, self-
organizing for γ1 × . . . × γm.

Proof. Let e be a configuration of S and let ei be the projection of e on the
sub-configurations modified by γi. Since, S is self-organizing with respect to γi

then ei is self-organizing with respect to γi.

Safety proof Let f be a static fragment in e and let fi be the projection of f on
the sub-configurations spanned by γi. From the hypothesis, γi(begin(fi)) ≤
γi(end(fi)) ∀i hence γi(begin(f)) ≤ γi(end(f)). So, γ(begin(f)) ≤ γ(end(f)).



Weak liveness proof Let fi be a fragment. There is fj and γk such that
γk(begin(fj)) < γk(end(fj)). Using the safety for all γj , j 6= k it follows
γ(begin(fj)) < γ(end(fj)).

Overall, S is weak self-stabilizing for γ. The proof for strong self-organization
follows using a similar reasoning.

Theorem 5 (Self-organization Hierarchy). Weak self-organization ⊂ self-
organization ⊂ strong self-organization

Proof. Straigtforward from the definitions.

4 Case Study : Self-organization of CAN

We now prove the self-organization of CAN. CAN [13] is a scalable content-
addressable network, the principle of which is to use a single namespace—the
d-dimensional torus [0, 1]d—for both data and nodes. Data and CAN nodes
are assigned unique names within this namespace, and each node is responsible
for a volume surrounding its identifier in the torus. The distributed algorithm
executed on a node arrival or departure ensures that the complete torus volume
is partitioned between all participating CAN nodes.

These algorithms are crucial for the self-organization of the system, since the
topology of CAN changes only when nodes enter or leave the system. In the
following, we show how these protocols fit into our self-organization framework.
Let us consider the following evaluation criterion :

CCAN
p (q) =

1

1 + dist(p, q)
, where dist is the cartesian distance in the torus

Theorem 6. The CAN system is a weakly self-organizing system using the
CCAN

p criterion.

Proof. We first show that the CAN protocols for node insertion and node removal
perform actions that leave the system in a p-stable configuration (weak self
organization), then show that, during unstable periods, the system exhibits the
kernel preservation property.

Node removal When a node leaves the system, its previous neighbors’ eval-
uation criteria decrease, since the distance to the leaving node is now set
to ∞. As we are only concerned with fragments in which no disconnection
can occur, let us consider actions taken by the protocol following the leaving
of the node p. Just after the departure of p, every neighbor of p saw a de-
crease in its evaluation function, and starts to look for a new neighbor. The
algorithm used by CAN [14, 13] is designed in such a way that the newly
chosen neighbor is optimal with respect to the Cartesian distance. Hence,
in the fragment following the leaving of p, the criterion for every neighbor
of p increases. Once every previous neighbor of the leaving node is finished



with the protocol, the topology of CAN does not change unless a connec-
tion or another disconnection occur. Hence, the departure protocol leaves
the system in a p-stable configuration.

Node insertion The insertion of a node is a two-step operation. In the first
step, the node p that wants to join the system computes an id , which is a
point in the d-torus, then gets the IP address of some CAN node q0. The
second step is the actual insertion: (1) q0 sends a message to the node q1

responsible for the volume containing the id computed by p, then (2) p

contacts q1 which, in turn, contacts its neighbors and splits its volume in
order to maximize the uniform distribution of nodes within the torus, and
finally (3) p enters the system with a volume defined by its id and by q1 and
its neighbors.

The key point here is that, for any node r in the torus, when a new node p is
inserted in CAN, it becomes a neighbor of r only if p is closer to r than one of
r’s previous neighbors. Hence, the Cartesian distance from r to its neighbors is
either the same or reduced, when compared to the situation before the insertion:
the evaluation criterion for every node in the system is improved by an insertion,
thus CAN is weakly self-organizing.

Note that, when CAN experiences only connections, the evaluation criterion
in the common core (see Definition 5: nodes that keep their neighborhood intact)
is unchanged, while its value increases for the new connected nodes and their
neighborhood. We can conclude that CAN, in the presence of connections, is
a strong self-organizing system with respect to the CCAN criterion (see Defini-
tion 6).

Multi-layering in CAN Another feature of CAN is its ability to support multiple
realities [14, 13]: several coordinate spaces can be used in parallel, in a layered
form. For example, in a scenario where three different realities coexist in CAN,
every node of the system has three different coordinates and, correspondingly,
three lists of neighbors, one for each layer. These realities are completely inde-
pendent, and hence Theorem 4 can be used to show that multi-realities CAN is
an example of a multi-criteria self-organizing system.

5 Conclusion & Open Problems

In this paper, we have proposed a framework for proving the self-organizing
properties of dynamic systems. Self-organization is a key feature for the newly
emerging dynamic networks (peer-to-peer, ad-hoc, robot or sensor networks).
Our framework includes formal definitions for self-organization, altogether with
sufficient conditions for proving the self-organization of a dynamic system. We
have illustrated our theory by proving the self-organization of two p2p overlays:
Pastry and CAN.

We have also provided a generic algorithm that ensures the self-organization
of a system with respect to a given input criterion. Our algorithm is based on the



greedy technique, and relies solely on the local knowledge provided by the direct
neighborhood of each process. This algorithm can be used as building-block in
the construction of any self-organized DHT-based or unstructured peer-to-peer
system.

Several problems are left open for future investigation. The first one is the de-
sign of a probabilistic extension to our model. This study is motivated by the fact
that connection/disconnection actions are well-modeled by probabilistic laws.
Essentially, the liveness property could be redefined using the Markov chains
model for probabilistic dynamic I/O automata. Moreover, since our generic al-
gorithm for self-organization uses a greedy deterministic strategy, it may reach
just a local maximum for the global criterion. Adding randomized choices could
be a way to converge (with high probability) to a global maximum.

Another interesting research direction is to prove or refute our conjecture that
the selfish self-organizing generic strategy (Algorithm LSA) is optimal among all
the self-organizing local strategies. Games and economic mechanisms theories are
rich in tools adequate to this study.

We also intend to extend our framework towards a unified theory of the self∗

(self-healing, self-configuration, self-reconfiguration, self-repairing) properties of
dynamic systems. To this end, we need to extend our case study to other dynamic
systems like robots networks and large scale ad-hoc or sensor networks, that may
offer complementary insides for understanding the rules that govern complex
adaptive systems.

Finally, we would like to study the relationship between the self-organization
and super-stabilization [6]. Note that CAN and Pastry are not self-stabilizing
or super-stabilizing (direct consequence of Theorem 1, [1]). We conjecture that
self-organization and super-stabilization are two complementary notions.
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