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Abstract

As a new framework for understanding sensory mechanism of biological systems,

a great deal of attention has been recently paid to stochastic resonance. The

stochastic resonance explains properties of sensory neurons that accurately detect

weak input stimuli by using a small amount of internal noise. In particular, Collins

et al. reported that a network of stochastic resonance neurons gives rise to robust

sensory function for detecting a variety of complex input signals. In this study, we

investigate effectiveness of such stochastic resonance neural networks to chaotic

input signals. By using the Rössler equations, we analyze the network capability

of detecting chaotic dynamics. We also apply the stochastic resonance network

systems to speech signals and examine plausibility of the stochastic resonance

neural network as a possible model for the human auditory system.

Keywords - Stochastic Resonance, Neural Network, Chaos, Speech, Auditory

System



1. Introduction

Recently, a great deal of attention has been paid to stochastic resonance [1] as a

potential model for sensory neurons in real biological systems [2, 3, 4]. Stochas-

tic resonance well elucidates function of the sensory neurons in the sense that it

enables neurons to detect weak input stimuli by using a small amount of internal

noise. From this viewpoint, stochastic resonance and its sensory function have

been studied for a variety of neuron models such as the FitzHugh-Nagumo neu-

ron model and the Hodgkin-Huxley neuron model [5]. Although periodic signals

have been mainly considered for input stimuli, Collins et al. extended their idea

to aperiodic input signals and demonstrated a neuronal capability to detect weak

aperiodic input stimuli [6]. In particular, they showed that a network of stochastic

resonance neurons gives rise to a sensory function which is much more robust than

a single neuron in the sense that the network does not require any careful tuning

of the optimal noise intensity [7]. Their results therefore imply that the network

structure might be of significant importance for studying a sensory function in real

neural systems.

On the basis of the Collins work [7], this paper applies the network of stochastic

resonance neurons as a sensory model to detect chaotic input. We study how the

dynamical structure of chaos is encoded into the firing rate of the neural network.

The present study is of potential importance because chaotic dynamics have been

recently discovered in a variety of biological systems [8, 9] and it is an important

open problem to consider how the dynamical characteristics of chaos are encoded

in neuronal information processing systems. Although there are several research

works which discuss problems for encoding chaotic dynamics into single neuron

models [10, 11, 12], as far as we know, encoding chaos into neural network models



has not yet been thoroughly investigated.

By using the Rössler equations as a typical example of deterministic chaos,

we study response characteristics of a network of stochastic resonance neurons to

chaotic input stimuli. Our main focus is on the study of whether the geometrical

structure of chaotic dynamics can be encoded into delay-coordinate of the firing

rate of the neural network. By using the nonlinear prediction technique, accuracy

of the geometrical encoding of chaos is evaluated. Dependence of the accuracy

of the geometrical encoding on the neural network parameters such as the noise

intensity, the number of the neural elements, and the time constant parameter is

also investigated. As a possible application, we further apply the neural network

model to reconstruct speech signal of a normal phonation of vowel /a/ and examine

plausibility of the neural network as a real physiological model for human auditory

system.

The present paper is organized as follows: In section 2, we introduce a network

of noisy FitzHugh-Nagumo neurons as a stochastic resonance network model. In

section 3, we study response characteristics of the neural network to chaotic input

generated from the Rössler equations. We investigate the network capability of

reconstructing chaotic dynamics by varying the noise intensity, the network size,

and the time constant parameter. In section 4, we apply the network model to

speech signals and study how many neurons are required to reconstruct speech

signals which are perceived clear enough to human ear. The final section is devoted

for conclusions and discussions of the present study.



2. A network of FitzHugh-Nagumo neurons

Let us consider a network of FitzHugh-Nagumo (FHN) neurons [13, 14] described

as follows (see also Fig. 1):

τεv̇i = −vi(vi − 0.5)(vi − 1) − wi + S(t) + ξi(t), (1)

τẇi = vi − wi − e (i = 1, ..,K). (2)

The variables vi and wi stand for the dynamical states of the i-th neuron, ξi repre-

sents independent Gaussian white noise satisfying E[ξi(t)] = 0 and E[ξi(t)ξj(s)] =

2Dδ(t − s)δ(i − j), (E[·]: ensemble average), and K represents the number of the

neurons in the network. e and ε represents system parameters of the FHN model

which are fixed as {e, ε} = {0.15, 0.005}. The time constant parameter τ that con-

trols the time scale of the neural dynamics is set to be τ = 0.01. We consider that

the neurons of the network are uniform and commonly receive a weak subthresh-

old input S(t). By subthreshold, we mean that each neuron never fires without

any noise. In the following numerical experiments, dynamics of the stochastic dif-

ferential equations (1) and (2) are simulated by integrating the equations with a

first-order approximate algorithm [15] with an integration step of Δt = 5·10−5.

When the i-th neuron potential vi(t) crosses a threshold value of vth = 0.7,

we define that the i-th neuron fires. Then the firing rate Ri(t) of the i-th neuron

is computed by counting a number of the firing times within a duration of W .

Activity of the FHN neural network is finally measured by the firing rate of the

summing unit RΣ(t) (see Fig. 1) that sums up and averages the firing rates of all

neural elements as RΣ(t) = 1
K

∑K
i=1 Ri(t).

In Fig. 2, response characteristic of a single neuron (K = 1) to time-constant

input stimuli S is shown. The firing rate R over a long-term duration W = 500 is

drawn by increasing the input stimuli S, where the noise intensity is set as D = 0



and 10−8. In case of no noise (D = 0), the FHN model has a stable equilibrium

point corresponding to the resting state and never fires for a small input signal S.

Hence, the firing rate is zero until S < 0.11231. As the input signal is increased

over S ≈ 0.11231, a limit cycle attractor is generated via a Hopf bifurcation of the

equilibrium point and the neuron exhibits oscillatory dynamics. The firing rate

jumps up at the bifurcation point and then monotonically increases as the input

stimuli S is further increased. In contrast to the noise-free model, in the case

that there is noise of D = 10−8, the neuron fires also in the subthreshold region

(S < 0.11231) and the firing rate monotonically and continuously increases as the

subthreshold input S is increased. This corresponds to the stochastic resonance

region, where the small noise enables neuron to detect a weak input stimuli. In or-

der to study the function of this type of stochastic resonance noise, in the following

sections, we consider only the subthreshold input signals.

3. Reconstructing chaotic dynamics

3. 1. Reconstructing the Rössler attractor

In this section, we study response characteristics of the network of FHN neurons

activated by chaotic input stimuli. With respect to several related works [7, 12],

the present work has the following different viewpoints. In [12], Castro and Sauer

studied response characteristics of a single noisy FHN model to chaotic input

and reported that stochastic resonance phenomenon has been observed. Collins et

al.[6, 7], on the other hand, presented a theory of a network of stochastic resonance

neurons and showed the advantage of the network model which realizes a robust

detection of weak input stimuli without any careful tuning of the noise intensity. In

this study, we focus on chaotic input signals rather than general aperiodic signals



so that we can apply techniques of nonlinear deterministic prediction to evaluate

response characteristics of the neural network.

By using the x(t)-variable of the following Rössler equations [16]:

ẋ = −y − z,

ẏ = x + ay, (3)

ż = bx + z(x − c),

we study how the dynamical structure of the chaotic input can be encoded into the

firing rate of the network of FHN neurons. The parameter values of the Rössler

equations are fixed as (a, b, c) = (0.36, 0.4, 4.5) and the input signal is set to be

S(t) = 0.05 + 0.06
x(t)

maxt|x(t)| (4)

Figures 3 (b) and (c) show dynamical structure of the chaotic input signal recon-

structed by using a delay coordinate of the mean firing rate RΣ(t) of the FHN

network as

{RΣ(t), RΣ(t − θ), .., RΣ(t − (d − 1)θ)}, (5)

where d and θ stand for the reconstruction dimension and the time lag, respectively

[17, 18]. Compared to the original chaotic dynamics of Fig. 3 (a), dynamical

characteristics of the Rössler attractor with “stretching” and “folding” are well

reproduced in Figs. 3 (b) and (c). Although the reconstructed dynamics by

a network of 20 neurons looks rather noisy in Fig. 3 (b), smoother nonlinear

dynamics can be reconstructed by a network of 1000 neurons in Fig. 3 (c). This

is due to the effect of the network structure which realizes a reliable and accurate

detection of a weak input stimuli by using an ensemble average of the firing rates

of many neural elements.



3. 2. Nonlinear prediction

In this subsection, we quantify the accuracy of reconstructing chaotic dynamics by

stochastic resonance neural networks. Although Collins et al. [7] used correlation

coefficient for measuring the accuracy of the signal detection, we exploit nonlin-

ear prediction error NPE [19, 20] for evaluating the accuracy of the geometric

reconstruction of chaotic dynamics as follows.

First, we compute time series of the averaged firing rate of the neural network

{u(n) = RΣ(nΔ) : n = 0, 1, .., N} (6)

with a sampling rate of Δ = 0.1. Then, the time series {u(n)} are divided into first

and second halves. From the first half data, a nonlinear predictor f̃ : Rd → Rd

which approximates the data dynamics as u(n + 1)≈f̃(u(n)) is constructed, using

the delay coordinate u(n) = {u(n), u(n− θ), .., u(n− (d− 1)θ)}. For the nonlinear

predictor f̃ , the Sugihara-May’s local linear predictor [20] is exploited. Then, for

the latter half data, nonlinear prediction is carried out. The forecasting procedure

is that, for a give initial state u(n), the p-step further state u(n + p) is predicted

as ũ(n + p) = f̃p(u(n)) using the p-iterate of the predictor f̃ . The NPE is finally

computed as the following normalized root-mean-square error:

NPE =

√
2
N

∑N
n=N/2{u(n) − ũ(n)}2

√
2
N

∑N
n=N/2{u(n) − E[u]}2

. (7)

In our analysis, the reconstruction dimension d, the time lag θ, the prediction step

p, and the number of the data N are set as (d, θ, p,N) = (3, 15, 2, 5000).

Figure 4 shows nonlinear prediction curve computed for the FHN network with

an increasing noise intensity from D = 2.5·10−10 to 5.12·10−7. The four prediction

curves correspond to the networks with different sizes of K = 1, 10, 100, and 1000.

First, we focus on the single neuron’s response curve (K = 1). In a small noise



region, a very large prediction error is initially observed. As the noise intensity is

slightly increased, the prediction error is decreased significantly and the response

curve produces a single sharp minimum at D≈10−8. As the noise intensity is

further increased, the prediction error is increased eventually. This is a typical

characteristic of stochastic resonance, which is known to exhibit small effective

noise for detecting weak input signals.

Next, we see the resonance characteristic of a network of FHN neurons (K =

10, 100, 1000). We recognize a basically similar prediction curve with the single

neuron model (K = 1) in Fig. 4. The significant difference, however, is the

the range of the effective noise that enables accurate reconstruction of chaotic

dynamics. Namely, as the number of the neurons is increased, the effective noise

range is widen largely and robust reconstruction of chaotic dynamics is realized

in a wide noise area. As has been pointed out by Collins et al. [7], this is due

to the advantage of the network structure that reliably estimates the strength of

the input stimuli by using an ensemble averaged firing rate of many neurons. In

a statistical sense, it is reasonable that the estimation becomes more accurate as

the number of the component neurons is increased.

3. 3. Effect of network size and time constant param-

eter

In this subsection, we study dependence of the network capability of reconstruct-

ing chaotic dynamics on the network size K and the time constant parameter τ .

By using the same chaotic input (4) from the Rössler equations (3), nonlinear pre-

dictability of the chaotic dynamics reconstructed by the network of FHN neurons

is computed by changing the network size and the time constant parameter within



the range of (K, τ)∈[10, 200] × [0.01, 0.1]. As is shown in Fig. 5, the prediction

error is decreased not only by increasing the network size K but also by decreas-

ing the time constant parameter τ . The reason why the nonlinear predictability is

improved by decreasing the time constant parameter can be explained as follows.

As the time constant parameter is decreased, dynamics of the FHN neuron be-

comes faster. Compared to the accelerated neural dynamics, temporal change in

the input signal becomes relatively slower. As a consequence, neuronal capability

of estimating the strength of slow-varying input stimuli is improved and accurate

reconstruction of chaotic dynamics is realized.

Suppose we have noisy reconstruction of chaotic dynamics by the present net-

work model. Then, how can we improve the reconstruction capability? As we

have seen, one way is to set the time constant value small enough so that the tem-

poral resolution of a single neuron becomes higher. The other way is to increase

the network size so that more reliable estimation of the input stimuli is realized

by using an ensemble averaged firing rate of many neurons. From a physiological

viewpoint, it is not realistic to control the network capability by changing the time

constant parameter, because biological neurons have their own physical properties

are not easy to adjust although not impossible [21]. It is physiologically more

plausible to control the network size in order to improve the network capability

for reconstructing chaotic dynamics.

In Fig. 6, a required number of neurons to reconstruct chaotic dynamics with

an accuracy of NPE < 0.1 is drawn by changing the time constant parameter.

As the time constant parameter is increased, the required number of neurons is

increased in an exponential manner. In physiological modeling of robust sensory

systems, this figure presents an abstract idea for how many neurons are required

for the network model.



4. Application to speech

In this section, we apply the network of FHN neurons to speech signals. By this

experiment, we examine the neural network as a possible model for the human

auditory system.

As a sample speech signal, normal phonation of a vowel /a/ (mausy003.ad)

in the standard ATR (Advanced Telecommunications Research Institute Interna-

tional) data-base is exploited. The waveform structure of the speech signal:

{x(t) : 0 < t < 200[msec]} (8)

is shown in Fig. 7 (a). The subject is a male speaker who has no evidence for

laryngeal pathology. The speech signal is low-pass filtered with a cut-off frequency

of 8 kHz and digitized with a sampling rate of 20 kHz and with 16 bit resolution.

The recording condition and the speech quality are good enough in the sense that

natural vocal sound can be reproduced by D/A conversion of the speech signal.

By using the speech signal, the input signal for the neural network is set to be

S(t) = 0.1 + 0.01
x(t)

maxt|x(t)| (9)

so that the speech is consider as a subthreshold input signal. The parameter values

of the FHN neuron are fixed as (D,W, τ) = (5.7·10−11, 5·10−5, 0.001). Under these

parameter values, the firing rate of a single neuron activated by constant input

of S = 0.1 becomes 98.8 Hz. According to ref. [22], an average frequency in the

active state of the sensory neurons in the human auditory system is about 100Hz.

Hence, this parameter setting may well correspond to the situation of the real

sensory neurons.

Figures 7 (b) and (c) show time series of a firing rate RΣ(t) of a network of FHN

neurons with K = 104 and 106. Although the network of 104 neurons generates



rather noisy dynamics, the firing rate RΣ(t) of the network of 104 neurons produces

qualitatively similar time-waveform structure with the original speech signal of

Fig. 7 (a). Figure 8 shows nonlinear prediction errors computed for speech signals

reconstructed by the FHN neural networks with K∈[104, 106]. We see that as the

number of the neurons is increased the inverse of the prediction error (1/NPE) is

also increased and accuracy of the speech reconstruction is improved.

We also examine the sound quality of the reconstructed speech signals on the

basis of the psychoacoustic experiment. As the method of the psychoacoustic

experiment, the paired-comparison test [23] is adopted. For four speech signals

reconstructed by the network with K = 2·104, 105, 5·105, and 106, “clarity” of the

speech sound is evaluated as follows.

Among the four speech signals, pick up a pair of two signals A and B and

synthesize the sounds one by one. Subjects are requested to judge which one is

clearer than the other after listening to two signals in each paired-comparison test.

For every pair selected from the four speech signals, the paired-comparison test

is carried out. On the basis of the Thurstone’s method [23], “clarity” of the four

speech signals is finally evaluated. The subjects were composed of ten males and

ten females, where none of them were experts of the psychoacoustic experiments.

In Fig. 8, “clarity” measures of the four speech signals are shown. As the

number of the neurons is increased from K = 2·104 to 5·105, we see that “clarity”

of the speech is improved significantly. Not so much difference, on the other hand,

is recognized between K = 5·105 and 106. This implies that a network of more than

5·105 neurons is capable of reconstructing speech signals which are clear enough

to be perceived as the original speech signal. The present result therefore suggests

that in order to apply stochastic resonance neural networks to auditory systems

at least 5·105 sensory neurons are required.



We also note that there is a good agreement between the inverse of the nonlin-

ear prediction error (1/NPE, dotted line) and the “clarity” measure (solid line) in

Fig. 8. This implies a possibility of using the nonlinear predictability as the mea-

sure for quantifying the “clarity” and the dynamical characteristic of the speech

signals. Recently, there are growing research interests in the nonlinear analysis

of speech signals and many researchers consider possible application of nonlinear

dynamical statistics for characterizing speech signals [24, 25, 26, 27]. The present

results encourage further applications of the nonlinear statistics such as nonlinear

predictability for evaluating speech signals.

5. Conclusions and discussions

In this paper, we studied a network of FHN neurons for detecting chaotic dynamics

in weak input stimuli. We investigated whether the geometrical structure of chaotic

dynamics can be reconstructed in a delay-coordinate space of the averaged firing

rate of the neural network, where the reconstruction accuracy is evaluated by

nonlinear prediction errors.

By using the Rössler equations, first, we studied dependence of the network

capability of reconstructing chaotic dynamics on the noise intensity. Our analyses

showed stochastic resonance property that gives rise to an intermediate noise level

for efficient reconstruction of chaotic dynamics. We also showed that more robust

and accurate reconstruction of chaos can be realized by increasing the network size

and by decreasing the time constant parameter. From a physiological viewpoint,

in order to improve the network capability, it is not realistic to change the time

constant parameter because real neurons have their own physical properties. It

may be biologically more plausible to increase the network size for realizing a



robust sensory mechanism.

On the basis of the experiments with the Rössler equations, we further applied

the network of FHN neurons for reconstructing speech signals and considered the

stochastic resonance neural network as a possible model for the human auditory

system. By using the neural elements with a dynamical frequency of about 100Hz,

we have confirmed that the speech signal which is perceived to be “clear” enough

for human ear can be reconstructed by using a network of more than 5·105 neurons.

This implies a possibility that the human auditory system uses this type of noisy

neural networks for detecting speech signals. As a possible engineering application,

the present result also encourages to use the stochastic resonance network model

for a sound amplifier device to aid hearing disabilities [28].

We note that the present investigation is only preliminary in the sense that

no detailed physiological structure has been considered for the human auditory

system. The real auditory system has more complex and systematic organization

such as the spectral decomposition of basilar membrane [22]. Also, neural elements

may not be as uniform as we have considered in the present study. Namely,

individual neurons may have different frequency ranges and the noise intensities

can be different in the brain area. Hence, it is an important future problem to

study a network of non-uniform neuron models. More realistic auditory models

should be constructed to discuss plausibility of the stochastic resonance neural

network for the real auditory systems.
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Figure 1: Schematic illustration of a network of FHN neurons with Gaussian white noise.

Each neuron receives a same input stimuli S(t). The network activity is measured by the

firing rate of the summing unit RΣ(t) that computes an averaged firing rate of all the

neural elements.

Figure 2: Response characteristic of a single neuron to a time-constant input S. The

firing rate R over a long-term duration W = 500 is drawn by increasing the input stimuli

from S = 0 to 0.2. The noise intensity is set to be D = 0 and 10−8.



Figure 3: (a): 3-dimensional delay-coordinate reconstruction {x(t), x(t − 0.125), x(t −

0.25)} of the Rössler attractor. (b),(c): 3-dimensional delay-coordinate {RΣ(t), RΣ(t −

0.125), RΣ(t − 0.25)} of the mean firing rate RΣ(t) of a network of FHN neurons with

K = 20 and 1000, respectively.



Figure 4: Nonlinear prediction curve computed for a network of FHN neurons. The

noise intensity is increased from D = 2.5·10−10 to 5.12·10−7 and the network size is varied

as K = 1, 10, 100, and 1000.

Figure 5: Nonlinear prediction error NPE computed by changing the network size K

and the time constant parameter τ within a range of (K, τ)∈[10, 200]× [0.01, 0.1].



Figure 6: A required number of neurons to reconstruct chaotic dynamics with a predic-

tion accuracy of NPE < 0.1. The time constant parameter is set to be 0.02 < τ < 0.027.

Figure 7: (a): Speech signal of a normal phonation of vowel /a/. (b),(c): Time series

of the averaged firing rate RΣ(t) of network of FHN neurons activated by speech signal of

Fig. 7 (a). The number of the neurons is set to be K = 104 for (b) and K = 106 for (c).



Figure 8: Simultaneous plots of the inverse of the nonlinear prediction error (1/NPE,

dotted line) and the ‘clarity’ measure (solid line) computed for speech signals reconstructed

by FHN neural network. The network size is varied from K = 104 to 106.


