
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Fault-Tolerant and Self-stabilizing Mobile Robots

Gathering : Feasibility Study

Author(s)
Defago, Xavier; Gradinariu, Maria; Messika,

Stephane; Raipin-Parvedy, Philippe

Citation Lecture Notes in Computer Science, 4167: 46-60

Issue Date 2006

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/4924

Rights

This is the author-created version of Springer,

Xavier Defago, Maria Gradinariu, Stephane Messika

and Philippe Raipin-Parvedy, Lecture Notes in

Computer Science, 4167, 2006, 46-60. The original

publication is available at www.springerlink.com,

http://dx.doi.org/10.1007/11864219_4

Description

Fault-tolerant and Self-stabilizing Mobile Robots

Gathering

— Feasibility Study —

Xavier Défago1,⋆, Maria Gradinariu2, Stéphane Messika3, and Philippe
Raipin-Parvédy2,4

1 School of Information Science, JAIST, Ishikawa, Japan
defago@jaist.ac.jp

2 IRISA/Université de Rennes 1, France
mgradina@irisa.fr

3 LRI/Université Paris Sud, France
messika@lri.fr

4 France Telecom R&D, France
philippe.raipin@orange-ft.com

Abstract. Gathering is a fundamental coordination problem in cooper-
ative mobile robotics. In short, given a set of robots with arbitrary initial
location and no initial agreement on a global coordinate system, gath-
ering requires that all robots, following their algorithm, reach the exact
same but not predetermined location. Gathering is particularly challeng-
ing in networks where robots are oblivious (i.e., stateless) and the direct
communication is replaced by observations on their respective locations.
Interestingly any algorithm that solves gathering with oblivious robots
is inherently self-stabilizing.
In this paper, we significantly extend the studies of deterministic gath-
ering feasibility under different assumptions related to synchrony and
faults (crash and Byzantine). Unlike prior work, we consider a larger set
of scheduling strategies, such as bounded schedulers, and derive interest-
ing lower bounds on these schedulers. In addition, we extend our study
to the feasibility of probabilistic gathering in both fault-free and fault-
prone environments. To the best of our knowledge our work is the first
to address the gathering from a probabilistic point of view.

1 Introduction

Many applications of mobile robotics envision groups of mobile robots self-
organizing and cooperating toward the resolution of common objectives. In many
cases, the group of robots is aimed at being deployed in adverse environments,
such as space, deep sea, or after some natural (or unnatural) disaster. It re-
sults that the group must self-organize in the absence of any prior infrastructure
(e.g., no global positioning), and ensure coordination in spite of faulty robots
and unanticipated changes in the environment.

⋆ Work supported by MEXT Grant-in-Aid for Young Scientists (A) (Nr. 18680007).

The gathering problem, also known as the Rendez-Vous problem, is a funda-
mental coordination problem in cooperative mobile robotics. In short, given a
set of robots with arbitrary initial location and no initial agreement on a global
coordinate system, gathering requires that all robots, following their algorithm,
reach the exact same location—one not agreed upon initially—within a finite
number of steps, and remain there.

Similar to the Consensus problem in conventional distributed systems, gath-
ering has a simple definition but the existence of a solution greatly depends
on the synchrony of the systems as well as the nature of the faults that may
possibly occur. In this paper, we investigate some of the fundamental limits of
deterministic and probabilistic gathering in the face of different synchrony and
fault assumptions.

To study the gathering problem, we consider a system model first defined
by Suzuki and Yamashita [1], and some variants with various degrees of syn-
chrony. In this model, robots are represented as points that evolve on a plane.
At any given time, a robot can be either idle or active. In the latter case, the
robot observes the locations of the other robots, computes a target position, and
moves toward it. The time when a robot becomes active is governed by an acti-
vation daemon (scheduler). In the original definition of Suzuki and Yamashita,
called the ATOM model, activations (i.e., look–compute–move) are atomic, and
the scheduler is assumed to be fair and distributed, meaning that each robot
is activated infinitely often and that any subset of the robots can be active si-
multaneously. In the CORDA model of Prencipe [2], activations are completely
asynchronous, for instance allowing robots to be seen while moving.

Suzuki and Yamashita [1] proposed a gathering algorithm for non-oblivious
robots in ATOM model. They also proved that gathering can be solved with
three or more oblivious robots, but not with only two.5 Prencipe [3] studied
the problem of gathering in both ATOM and CORDA models. He showed that
the problem is impossible without additional assumptions such as being able to
detect the multiplicity of a location (i.e., knowing the number of robots that may
simultaneously occupy that location). Flocchini et al. [4] proposed a gathering
solution for oblivious robots with limited visibility in CORDA model, where
robots share the knowledge of a common direction as given by some compass.
Based on that work, Souissi et al. [5] consider a system in which compasses are
not necessarily consistent initially. Ando et al. [6] propose a gathering algorithm
for ATOM model with limited visibility. Cohen and Peleg [7] study the problem
when robots’ observations and movements are subject to some errors.

None of the previously mentioned works addressed the gathering feasibility
in fault-prone environments. One of the first steps in this direction was done
by Agmon and Peleg [8]. They prove that gathering of correct robots (referred

5 With two robots, all configurations are symmetrical and may lead to robots endlessly
swapping their positions. In contrast, with three or more robots, an algorithm can
be made such that, at each step, either the robots remain symmetrical and they
eventually reach the same location, or symmetry is broken and this is used to move
one robot at a time.

in this paper weak gathering) can be achieved in the ATOM model even in the
face of the crash of a single robot. Furthermore, they prove that no deterministic
gathering algorithm exists in ATOM model that can tolerate a Byzantine6 robot.
Finally, they consider a stronger daemon, called fully synchronous, in which all
robots are always activated simultaneously, and show that weak gathering can
be solved in that model when the number of Byzantine robots is less than one
third of the system.

Contribution. In this paper, we further study the limits of gathering feasibility in
both fault-free and fault prone environments, by considering centralized sched-
ulers7 (i.e., activations in mutual exclusion) and k-bounded schedulers, that is,
schedulers ensuring that between any two consecutive activations of a robot, no
other robot is activated more than k times.

The main results we obtain are as follows. Firstly, we strengthen the impossi-
bility results of Agmon and Peleg [8] since we show that, even in strictly stronger
models, their impossibility result holds. Secondly, we outline the essential limits
where Byzantine and crash-tolerant gathering become possible. In particular, we
propose interesting lower bounds on the value that k (the scheduler bound) must
take for the problem to become possible. Thirdly, we show in what situations
randomized algorithms can help solve the problem, and when they cannot. To
the best of our knowledge our work is the first to study the feasibility of prob-
abilistic gathering in both fault-free and fault-prone systems. Additionally we
evaluate the convergence time of our probabilistic gathering algorithms under
fair schedulers using the coupling technique developed in [9]. The convergence
time of our algorithms is polynomial in the size of the network in both fault-
free and crash-prone environments under fair bounded schedulers. We conjecture
that our bounds are optimal and hold for the case of Byzantine-prone systems.

Structure of the paper. The rest of the paper is structured as follows. Section 2
describes the robots network and system model. Section 3 formally defines the
gathering problem. Section 4 propose possibility and impossibility results for
deterministic and probabilistic gathering in fault-free environments. Section 5.1
and 5.2 extend the study in Section 4 to crash and Byzantine prone environments.
Due to space limitations, most of the proofs are omitted, but they are included
in the full version [10].

2 Model

2.1 Robots Networks

Most of the notions presented in this section are borrowed from [1, 2, 8]. We
consider a network of a finite set of robots arbitrarily deployed in a geographical

6 A Byzantine robot is a faulty robot that can behave arbitrarily, possibly in a way
to prevent the other robots from gathering in a stable way.

7 The rationale for considering a centralized daemon is that, with communication
facilities, the robots can synchronize by running a mutual exclusion algorithm, such
as token passing.

area. The robots are devices with sensing, computational and motion capabilities.
They can observe (sense) the positions of other robots in the plane and based on
these observations they perform some local computations. Furthermore, based
on the local computations robots may move to other locations in the plane.

In the case robots are able to sense the whole set of robots they are referred
as robots with unlimited visibility; otherwise robots have limited visibility. In
this paper, we consider that robots have unlimited visibility.

In the case robots are able to distinguish if there are more than one robot at
a given position they are referred as robots with multiplicity knowledge.

2.2 System Model

A network of robots that exhibit a discrete behaviour can be modeled with an
I/O automaton [11]. A network of robots that exhibit a continous behaviour
can be modeled with a hybrid I/O automaton [12]. This framework allows the
modeling of systems that exhibit both a discrete and continuous behavior and
in particular the modeling of robots networks.

The actions performed by the automaton modeling a robot are as follows:

– Observation (input type action).
An observation returns a snapshot of the positions of all the robots in the vis-
ibility range. In our case, this observation returns a snapshot of the positions
of all the robots;

– Local computation (internal action).
The aim of a local computation is the computation of a destination point;

– Motion (output type action).
This action commands the motion of robots towards the destination location
computed in the local computation action.

The local state of a robot at time t is the state of its input/output variables
and the state of its local variables and registers. A network of robots is modeled
by the parallel composition of the individual automata that model one per one
the robots in the network. A configuration of the system at time t is the union
of the local states of the robots in the system at time t. An execution e =
(c0, . . . , ct, . . .) of the system is an infinite sequence of configurations, where c0

is the initial configuration8 of the system, and every transition ci → ci+1 is
associated to the execution of a subset of the previously defined actions.

Schedulers. A scheduler decides at each configuration the set of robots allowed
to perform their actions. A scheduler is fair if, in an infinite execution, a robot
is activated infinitely often. In this paper we consider the fair version of the
following schedulers:

– centralized : at each configuration a single robot is allowed to perform its
actions;

8 Unless stated otherwise, this paper makes no specific assumption regarding the re-
spective positions of robots in initial configurations.

– k-bounded : between two consecutive activations of a robot, another robot
can be activated at most k times;

– bounded regular : between two consecutive activations of a robot, all the
robots in the system perform their actions once and only once.

– arbitrary: at each configuration an arbitrary subset of robots is activated.

Faults. In this paper, we address the following failures:

– crash failures: In this class, we further distinguish two subclasses: (1) robots
physically disappear from the network, and (2) robots stop all their activities,
but remain physically present in the network;

– Byzantine failures: In this case, robots may have an arbitrary behavior.

2.3 Computational Models

The literature proposes two computational models: ATOM and CORDA. The
ATOM model was introduced by Suzuki and Yamashita [1]. In this model each
robot performs, once activated by the scheduler, a computation cycle composed
of the following three actions: observation, computation and motion. The atomic
action performed by a robot in this model is a computation cycle. The execution
of the system can be modeled as an infinite sequence of rounds. In a round
one or more robots are activated and perform a computation cycle. The ATOM
model was refined by Agmon and Peleg [8]. The authors distinguish the case
of hyperactive systems where all robots are activated simultaneously and non-
hyperactive systems where a strict subset of robots are simultaneously activated.

The CORDA model was introduced by Prencipe [2]. This model refines the
atomicity of the actions performed by each robot. Hence, robots may perform
in a decoupled fashion, the atomic actions of a computation cycle. They may be
interrupted by the scheduler in the middle of a computation cycle. Moreover,
while a robot performs an action A, where A can be one of the following atomic
actions: observation, local computation or motion, another robot may perform
a totally different action B.

In this paper, we consider both models, refined with the scheduling strategies
presented above. Moreover, we consider that robots are oblivious (i.e., stateless).
That is, robots do not conserve any information between two computational
cycles.9 We also assume that all the robots in the system have unlimited visibility.

3 The Gathering Problem

A network of robots is in a terminal (legitimate) configuration with respect to
the gathering requirement if all the robots share the same position in the plane.
Let denote by PGathering this predicate.

9 One of the major motivation for considering oblivious robots is that, as observed
by Suzuki and Yamashita [1], any algorithm designed for that model is inherently
self-stabilizing.

An algorithm solves the gathering problem in an oblivious system if the
following two properties are verified:

– Convergence Any execution of the system starting in an arbitrary con-
figuration reaches in a finite number of steps a configuration that satisfies
PGathering.

– Termination Any execution starting in a terminal configuration with re-
spect to the PGathering predicate contains only legitimate configurations.

Gathering is difficult to achieve in most of the environments. Therefore,
weaker forms of gathering were studied so far. An interesting version of this
problem requires robots to converge toward a single location rather than reach
that location in a finite time. The convergence is however considerably easier to
deal with. For instance, with unlimited visibility, convergence can be achieved
trivially by having robots moving toward the barycenter of the network [1].

Note that an algorithm that solves the gathering problem with oblivious or
stateless robots is self-stabilizing [13].

4 Gathering in Fault-Free Environments

In this section, we refine results showing the impossibility of gathering [3, 8]
by proving first that these results hold even under more restrictive schedulers
than the ones considered so far [3, 8]. Interestingly, we also prove that some
of these impossibility results hold even in probabilistic settings. Additionally,
to circumvent these impossibility results, we propose a probabilistic algorithm
that solves the fault-free gathering in both ATOM and CORDA models, under
a special class of schedulers, known as k-bounded schedulers. In short, a k-
bounded scheduler is one ensuring that, during any two consecutive activations
of any robot, no other robot is activated more than k times.

4.1 Synchronous Robots – ATOM model

Note 4.1. Prencipe [3] proved that there is no deterministic algorithm that solves
gathering in ATOM and CORDA models without additional assumptions, such
as the ability to detect multiplicity.

The following lemma shows that the impossibility result of Prencipe [3] holds
even under a weaker scheduler—the centralized fair bounded regular scheduler.
Intuitively, a schedule of this particular scheduler is characterized by two prop-
erties: each robot is activated infinitely often and between two executions of a
robot every robot in the network executes its actions exactly once. Moreover, in
each configuration a single robot is allowed to execute its actions.

Lemma 4.1. There is no deterministic algorithm that solves gathering in the
ATOM model for n ≥ 3 under a centralized fair bounded regular scheduler, with-
out additional assumptions (e.g., multiplicity knowledge).

Algorithm 4.1 Probabilistic gathering for robot p.

Functions:
observe neighbors :: returns the set of robots within visibility range of robot p (the set
of p’s neighbors). Note that, in a system with unlimited visibility, observe neighbors

returns all the robots in the network.

Actions:
A1 :: true −→

Np = observe neighbors();
with probability α = 1

|Np

S

{p}|
do

select a robot q ∈ Np

S

{p};
move towards q;

Remark: with probability 1 − α, the position remains unchanged ;

Note that the deterministic gathering of two oblivious robots was proved im-
possible by Suzuki and Yamashita [1]. The scenario is the following: the two
robots are always activated simultaneously. Consequently, they continuously
swap positions, and the system never converges. In the following, we prove that,
for the case of two robots, there exists a probabilistic solution for gathering in the
ATOM model, under any type of scheduler. Algorithm 4.1 describes the proba-
bilistic strategy of a robot. When chosen by the scheduler, a robot decides, with
probability α, whether it will actually compute a location and move whereas,
with probability 1 − α, the robot will remain stationary. The following lemma
shows that Algorithm 4.1 reaches a terminal configuration with probability 1.

Lemma 4.2. Algorithm 4.1 probabilistically solves the 2-gathering problem in
the ATOM model under an arbitrary scheduler. The algorithm converges in
2 steps in expectation.

The next lemma extends the impossibility result proved in Lemma 4.1 to
probabilistic algorithms under unfair schedulers.

Lemma 4.3. There is no probabilistic algorithm that solves the n-gathering
problem, for n ≥ 3, in ATOM model, under a fair centralized scheduler with-
out additional assumptions (e.g., multiplicity knowledge).

The key issue leading to the above impossibility is the freedom that the
scheduler has in selecting a robot r until its probabilistic local computation
allows r to actually move. The scenario can however no longer hold with systems
in which the scheduler is k-bounded. That is, in systems where a robot cannot
be activated more than k times before the activation of another robot. In this
type of game robots win against the scheduler and the system converges to a
terminal configuration.

Lemma 4.4. Algorithm 4.1 probabilistically solves the n-gathering problem, n ≥

3, in the ATOM model under a fair k-bounded scheduler and without multiplicity
knowledge.

Lemma 4.5. The convergence time of Algorithm 4.1 under fair bounded sched-
ulers is n2 rounds10 in expectation.

Proof. In the following, we use the coupling technique developed in [9]. Algo-
rithm 4.1 can be seen as a Markov chain. Let’s call it A hereafter. A coupling
for Algorithm 4.1, is a Markov chain (Xt, Yt)

∞

t=1 with the following properties:
(1) each of the variables (Xt), (Yt) is a copy of the Markov chain A (given initial
configurations X0 = x and Y0 = y); and (2) if Xt = Yt then Xt+1 = Yt+1.
Intuitively, the coupling time is the expected time for the two processes Xt and
Yt to reach the agreement property (Xt = Yt). As shown in Theorem 1 [9] the
coupling time is also an upper bound for the hitting time or convergence time
of a self-stabilizing algorithm.

Assume (Xt) and (Yt) are two copies of the Markov chain modeling Al-
gorithm 4.1. Let us denote by δ(Xt, Yt) the distance between Xt and Yt (the
number of robots that do not share identical positions in Xt and Yt). In the
worst case, δ(Xt, Yt) = n (where n is the number of robots in the network).
In the following we show that, with positive probability, the distance between
Xt+1 and Yt+1 decreases. Assume that the scheduler chooses robot p at instant t,
and assume that p does not share the same position in Xt and Yt. With pos-
itive probability, Xt+1(p) = Yt+1(p). Assume that the scheduler chooses two
or more robots in t. Since the scheduler is bounded, within a round of size R,
δ(Xt+R, Yt+R) ≤ δ(Xt, Yt) − 1. Following the result proved in Theorem 2 [9],
the coupling time for this chain is bounded from above by B

1−β
. Where B is the

maximal value of the distance metric (in our case this value is n) and β is the
constant such that for all (Xt, Yt) we have E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt). In our
case, β = n−1

n
. So, the hitting (convergence) time for Algorithm 4.1 is n2 rounds

in expectation. ⊓⊔

4.2 Asynchronous Robots – CORDA model

In the following, we analyze the feasibility of gathering in a stronger model,
namely, CORDA. Obviously, all the impossibility results proved in the ATOM
model hold for CORDA [14].

The next lemma states that 2-gathering, while probabilistically feasible in
ATOM model, is impossible in the CORDA model under an arbitrary sched-
uler.11 We recall that, in the CORDA model, robots can be interrupted by the
scheduler during a computation cycle.

Lemma 4.6. 2-gathering is impossible in the CORDA model under an arbitrary
scheduler.

Now, instead of an arbitrary scheduler, we consider a k-bounded scheduler,
and obtain the following possibility result.

10 A round is the longest fragment of an execution between two successive actions of
the same process. Following the variant of the chosen k-bounded scheduler a round
can have k steps or kn steps.

11 Note that 2-gathering is trivially possible under a centralized scheduler.

Lemma 4.7. Algorithm 4.1 probabilistically solves the n-gathering problem, n ≥

2, in the CORDA model under a k-bounded scheduler and without multiplicity
knowledge.

5 Fault Tolerant Gathering

5.1 Crash Tolerant Gathering

In the following we extend the study of the gathering feasibility to fault-prone
environments. In this section (n, f) denotes a system with n correct robots but
f and the considered faults are the crash failures. As mentioned in the model,
Section 2, in an (n, f) crash-prone system there are two types of crashes: (1) the
crashed robots completely disappear from the system, and (2) the crashed robots
are still physically present in the system, however they stop the execution of any
action. In the sequel we analyze both situations.

Lemma 5.1. In a crash-prone system, (3, 1)-gathering is deterministically pos-
sible under a fair centralized regular scheduler.

The following lemma proves that the previous result does not hold in systems
with more than three robots. More precisely, this lemma expands the impossi-
bility results proved in Lemma 4.1 and 4.3 to crash-prone environments.

Lemma 5.2. In a crash-prone system, there is no deterministic algorithm that
solves the (n, 1)-gathering problem, n ≥ 4, under a fair bounded regular central-
ized scheduler without additional assumptions (e.g, multiplicity knowledge).

Lemma 5.3. In a crash-prone system, there is no probabilistic algorithm that
solves the (n, 1)-gathering problem, n ≥ 3, under a fair centralized scheduler
without additional assumptions (e.g., multiplicity knowledge).

The key argument in the previous impossibility proof is that the scheduler
has the possibility to choose a robot until that robot is allowed to move (by its
probabilistic algorithm). In some sense, the scheduler managed to derandom-
ize the system. However, the process of derandomization is no longer possible
with a bounded scheduler. The following lemma proves that (n, 1)-gathering
is probabilistically possible under a bounded scheduler and without additional
assumptions.

Lemma 5.4. In a crash-prone system, Algorithm 4.1 is a probabilistic solution
for the gathering problem in systems with n correct robots but one and under a
bounded scheduler.

In the following, we extend our study to systems with more than one faulty
robot. Hereafter, (n, f)-gathering refers to the gathering problem in a system
with n correct robots but f . If the faulty robots disappear from the system,
then the problem trivially reduces to the study of a fault-free gathering with
n−f correct robots. In contrast, in systems where faulty robots remain physically

present in the network after crashing, the problem is far from being trivial.
Obviously, gathering all the robots including the faulty ones, is impossible since
faulty robots may possibly have crashed at different locations.

From this point on, we study the feasibility of a weaker version of gathering,
referred to as weak gathering. The (n, f)-weak gathering problem requires that, in
a terminal configuration, only the correct robots must share the same position.
The following lemma proves the impossibility of deterministic and probabilis-
tic weak gathering under centralized bounded and fair schedulers and without
additional assumptions.

Lemma 5.5. In a crash-prone system, there is neither a probabilistic nor a
deterministic algorithm that solves the (n, f)-weak gathering problem, n ≥ 3 and
f ≥ 2, under a fair centralized regular scheduler without additional assumptions.

Algorithm 5.1 Deterministic fault-tolerant weak gathering for robot p

Functions:
observe neighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);
maximal multiplicity :: returns a robot in the group with the maximal multiplicity;
or, if several such groups exists, makes an arbitrary choice among them;

Actions:
A1 :: true −→

Np = observe neighbors();
q = maximal multiplicity(Np);
move towards q;

An immediate consequence of the previous lemma is the necessity of an addi-
tional assumption (e.g., multiplicity knowledge), even for probabilistic solutions
under bounded schedulers.

In the sequel, we identify the conditions under which the weak gathering
accepts deterministic and probabilistic solutions. Algorithm 5.1 proposes a de-
terministic solution for the weak gathering that works under both centralized
and bounded schedulers. The idea of the algorithm is the following: a robot,
once chosen by the scheduler, moves to the group with the maximal multiplicity
– “attraction action”. In case that all groups have the same multiplicity, the
chosen robot will go to the location of another robot – “unbalanced action”.
The attraction action helps the convergence while the unbalanced action breaks
the symmetry.

Lemma 5.6. In a crash-prone system, Algorithm 5.1 deterministically solves
the (n, f)-weak gathering problem, f ≥ 2, under a centralized scheduler if robots
are aware of the system multiplicity.

Algorithm 5.2 Probabilistic fault-tolerant gathering for robot p with multiplic-
ity knowledge

Functions:
observe neighbors :: returns the set of robots within the vision range of robot p (the
set of p’s neighbors);
maximal multiplicity :: returns the set of robots with the maximal multiplicity;

Actions:
A1 :: true −→

Np = observe neighbors();
if p ∈ maximal multiplicity(Np) ∧ |maximal multiplicity (Np)| > 1 then

with probability 1

|maximal multiplicity(Np)|
do

select a robot q ∈ maximal multiplicity(Np);
move towards q;

else
select a robot q ∈ maximal multiplicity(Np);
move towards q;

In the following we show that (n, f)-weak gathering can be solved under
arbitrary schedulers using a probabilistic algorithm, Algorithm 5.2, and multi-
plicity knowledge. Algorithm 5.2 works as follows. When a robot is chosen by
the scheduler it moves to the group with maximal multiplicity. When all groups
have the same size, then the robot tosses a coin to decide if it moves or holds
the current position.

Lemma 5.7. In a crash-prone system, Algorithm 5.2 probabilistically solves the
(n, f)-weak gathering problem, f ≥ 2, under an unfair scheduler if robots are
aware of the system multiplicity.

5.2 Byzantine Tolerant Gathering

In the following we study the gathering feasibility in systems prone to Byzantine
failures. In the sequel (n, f) denotes a system with n correct robots but f . Agmon
and Peleg [8] proved that gathering in Byzantine environments is impossible
in ATOM and CORDA models for the case (3, 1). The impossibility proof is
given for the case of the ATOM model and algorithms that are not hyperactive.
The following lemma proves the (3, 1)-gathering impossibility under the weakest
scheduler, in particular the centralized, fair and regular.

Lemma 5.8. In a Byzantine-prone system, there is no deterministic algorithm
that solves (3, 1)-weak gathering under a fair, centralized and bounded regular
scheduler without additional assumptions.

Note 5.1. Note that Algorithm 5.1 solves the Byzantine (3, 1)-weak gathering
under a centralized regular scheduler and multiplicity knowledge. The cycle cre-
ated in the impossibility proof is broken because the Byzantine robot cannot
play the attractor role.

The following lemma shows that if the scheduler is relaxed, the (3, 1)-weak
gathering becomes impossible even if robots are aware of the system multiplicity.

Lemma 5.9. In a Byzantine-prone system, there is no deterministic algorithm
that solves the (3, 1)-weak gathering, even when robots are aware of the system
multiplicity, under a centralized fair k-bounded scheduler with k ≥ 2.

Note 5.2. Byzantine (n, 1)-weak gathering for any odd n > 4 is possible un-
der any fair centralized scheduler and multiplicity knowledge. The algorithm is
trivial: a robot moves to the group with maximal multiplicity.

The following lemma establishes a lower bound for the bounded centralized
scheduler that prevents the deterministic gathering.

Lemma 5.10. In a Byzantine-prone system, there is no deterministic algorithm
that solves (n, 1)-weak gathering, with n ≥ 2 even, under a centralized k-bounded
scheduler for k ≥ (n − 1). This result holds even when robots are aware of the
system multiplicity.

Corollary 5.1. Byzantine (n, 1)-weak gathering is possible under a centralized
scheduler:

– in systems where n ≥ 4 is odd, robots have multiplicity knowledge and the
scheduler is fair, or

– in systems where n ≥ 2 is even and the scheduler is k-bounded with k ≤

(n − 2).

The following lemma states the lower bound for a bounded scheduler that
prevents deterministic gathering.

Lemma 5.11. In Byzantine-prone systems, there is no deterministic algorithm
that solves (n, f)-weak gathering, f ≥ 2, under a centralized k-bounded scheduler

with k ≥

⌈

n−f
f

⌉

when n is even, and with k ≥

⌈

n−f
f−1

⌉

when n is odd, even when

the robots can detect multiplicity.

Proof. – Even case. Similar to the (n, 1) case above, assume that the system
starts in an initial configuration in which all robots are arranged in two
groups. Assume the same scheduler as in the (n, 1) case: for each move of a
correct robot the scheduler chooses a Byzantine robot. The Byzantine robot
will try to balance the system equilibrium hence it will move towards the old
location of the correct robot. In order to win the game the Byzantine robots
need to move each time a correct robot moves. Since there are n−f correct

robots in the system, the scheduler has to be bounded by no less than
⌈

n−f
f

⌉

for the Byzantine team to win.
– Odd case. For the odd case assume an initial configuration where robots

but one (a Byzantine one) are arranged in two groups. When chosen by the
scheduler the Byzantine robot not member of a group moves such that the
equilibrium between the two groups does not change. Let denote G1 and

G2 the two groups. Consider the following schedule. Every time a correct
robot, member of Gi, moves, a Byzantine robot moves as well in the opposite
direction. Hence the system equilibrium does not change. The game is similar
to the even case. The only difference is that the number of Byzantine robots
that influence the faith of the game is f − 1. Therefore, in order to win
the game, the Byzantine team needs a k-bounded scheduler bounded by

k ≥

⌈

n−f

f−1

⌉

.

⊓⊔

Lemma 5.12. In systems with Byzantine faults, Algorithm 5.2 probabilistically
solves the (n, f)-weak gathering, n ≥ 3, problem under a bounded scheduler and
multiplicity detection.

6 Conclusion

The results presented here extend that of prior work on the possibility and
impossibility of gathering in fault-free and both crash-prone and Byzantine-
prone systems. For instance, we strengthen several prior impossibility results by
showing that they still hold against weaker schedulers, and under various failure
models. We also mark out more accurately the limit between possibility and
impossibility by deriving appropriate upper and lower bounds.

To the best of our knowledge, this is actually the first study that considers
probabilistic solutions to solve the gathering problem. Here, we identify condi-
tions under which a probabilistic solution exists, as well as conditions for which
not even a probabilistic solution exists.

The main results of the paper are summed up in Table 1 for fault-free systems;
in Table 2 for crash-prone systems; and in Table 3 for the weak gathering problem
in Byzantine-prone systems.

As an open question, some of the impossibility proofs only consider the use
of randomization for determining whether a robot takes actions or not when it
is activated. One can argue that using randomization in a different way may
possibly change some of the lower bounds presented here. We conjecture that
the bounds will hold even if randomization is used differently.

References

1. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM Journal of Computing 28(4) (1999) 1347–1363

2. Prencipe, G.: Corda: Distributed coordination of a set of autonomous mobile
robots. In: Proc. 4th European Research Seminar on Advances in Distributed
Systems (ERSADS’01), Bertinoro, Italy (2001) 185–190

3. Prencipe, G.: On the feasibility of gathering by autonomous mobile robots. In Pelc,
A., Raynal, M., eds.: Proc. Structural Information and Communication Complex-
ity, 12th Intl Coll., SIROCCO 2005. Volume 3499 of LNCS., Mont Saint-Michel,
France, Springer (2005) 246–261

Table 1. Summary of the main results in fault-free environments.

A
T

O
M

C
O

R
D

A

m
u
lt

.

n
o

m
u
lt

.

c
e
n
tr

a
li
z
e
d

re
g
u
la

r

k
-b

o
u
n
d
e
d

a
rb

it
ra

ry

u
n
fa

ir

Conditions Solution Source

• • • ◦ – Impossible Prencipe [3] (Note 4.1)

• ◦ • • • ◦ ◦ ◦ n ≥ 3 No deterministic Lemma 4.1

• • ◦ ◦ ◦ • n = 2 Probabilistic Lemma 4.2

• ◦ • • n ≥ 3 No probabilistic Lemma 4.3

• ◦ • ◦ • n ≥ 3 Probabilistic Lemma 4.4

• • • ◦ n = 2 Impossible Lemma 4.6

◦ • ◦ • ◦ • – Probabilistic Lemma 4.7

“•” means explicit; “◦” means implicit; negative results are in italic

Table 2. Summary of the main results in crash-prone systems.

A
T

O
M

C
O

R
D

A

m
u
lt

.

n
o

m
u
lt

.

c
e
n
tr

a
li
z
e
d

re
g
u
la

r

k
-b

o
u
n
d
e
d

a
rb

it
ra

ry

u
n
fa

ir

Conditions Solution Source

• • • • n = 3, f = 1 Deterministic Lemma 5.1

• ◦ • • • ◦ ◦ ◦ n ≥ 4, f ≥ 1 No deterministic Lemma 5.2

• ◦ • • ◦ ◦ n ≥ 3, f ≥ 1 No probabilistic Lemma 5.3

• • • • f = 1 Probabilistic Lemma 5.4

• ◦ • • • ◦ ◦ ◦ n ≥ 3, f ≥ 2, weak Impossible Lemma 5.5

• • • f ≥ 2, weak Deterministic Lemma 5.6

• • ◦ ◦ ◦ ◦ • f ≥ 2, weak Probabilistic Lemma 5.7

‘•” means explicit; “◦” means implicit; negative results are in italic

Table 3. Summary of the main results in Byzantine-prone systems.

A
T

O
M

C
O

R
D

A

m
u
lt

.
n
o

m
u
lt

.

c
e
n
tr

a
li
z
e
d

re
g
u
la

r

k
-b

o
u
n
d
e
d

a
rb

it
ra

ry

u
n
fa

ir

Conditions Solution Source

• ◦ • • ◦ n = 3, f = 1 No deterministic Agmon–Peleg [8]

• ◦ • • • ◦ ◦ ◦ n = 3, f = 1 No deterministic Lemma 5.8

• • • • n = 3, f = 1 Deterministic Note 5.1

• ◦ • ◦ • • ◦ ◦ n = 3, f = 1, k ≥ 2 No deterministic Lemma 5.9

• • • n odd, n > 4, f = 1 Deterministic Note 5.2

• ◦ • ◦ • • ◦ ◦ n even n≥2, f =1, k≥n−1 No deterministic Lemma 5.10

• ◦ • ◦ • • ◦ ◦ f ≥2, k≥

8

<

:

l

n−f

f

m

if n even
l

n−f

f−1

m

if n odd
No deterministic Lemma 5.11

• • ◦ • n ≥ 3, weak Probabilistic Lemma 5.12

“•” means explicit; “◦” means implicit; negative results are in italic

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
mobile robots with limited visibility. Theoretical Computer Science 337 (2005)
147–168

5. Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust
gathering of asynchronous mobile robots with limited visibility. Research Report
IS-RR-2005-010, JAIST, Ishikawa, Japan (2005)

6. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. on
Robotics and Automation 15(5) (1999) 818–828

7. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In Durand, B., Thomas, W., eds.: 23rd Annual Symposium
on Theoretical Aspects of Computer Science (STACS’06). Volume 3884 of LNCS.,
Marseille, France, Springer (2006) 549–560

8. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. In: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), New Orleans, LA, USA (2004) 1070–1078

9. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Dis-
tributed Computing 18(3) (2006) 221–232

10. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and
self-stabilizing mobile robots gathering: Feasibility study. Tech. Rep. PI-1802,
IRISA, Rennes, France (2006)

11. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco, CA,
USA (1996)

12. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information
and Computation 185(1) (2003) 105–157

13. Dolev, S.: Self-Stabilization. MIT Press (2000)
14. Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile

robots. Theory of Computing Systems 38(5) (2005) 539–558

