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Abstract

Separating an object in an image from its background is a central problem (called
segmentation) in pattern recognition and computer vision. In this paper, we study the
complexity of the segmentation problem, assuming that the object forms a connected region
in an intensity image. We show that the optimization problem of separating a connected
region in an n-pixel grid is NP-hard under the interclass variance, a criterion that is used
in discriminant analysis. More importantly, we consider the basic case in which the object
is separated by two z-monotone curves (i.e., the object itself is z-monotone), and present
polynomial-time algorithms for computing exact and approximate optimal segmentation.
Our main algorithm for exact optimal segmentation by two z-monotone curves runs in
O(n?) time; this algorithm is based on several techniques such as a parametric optimization
formulation, a hand-probing algorithm for the convex hull of an unknown point set, and
dynamic programming using fast matrix searching. Our efficient approximation scheme
obtains an e-approximate solution in O(e~1nlog L) time, where ¢ is any fixed constant with

1 >¢€>0,and L is the total sum of the absolute values of brightness levels of the image.



1 Introduction

One of the most important operations that a computer vision system is expected to perform is
the separation of an object from the background. This operation is commonly called “segmen-
tation”. In this paper, we address the segmentation problem that detects or extracts regions
corresponding to certain meaningful objects in a given n-pixel intensity image.

Considerable work has been done on the segmentation of intensity images, and five different
approaches [5] have mainly been used: threshold techniques, edge-based methods, region-based
methods, hybrid techniques, and connectivity-preserving relaxation methods.

The threshold techniques [24] are effective only if all pixels that belong to the objects
have brightness levels within a certain range which can be distinguished from those of the
background. Since all spatial information is neglected, threshold techniques do not cope well
with blurring around region boundaries. The edge-based methods [10] heavily hinge on edge-
detection. A difficulty for edge-based methods is how to connect disconnected edges to form
a closed curve, especially in a blurred portion. A typical region-based method [3, 26, 16]
consists of the following steps: Partition an image into connected regions by grouping together
neighboring pixels that have similar brightness levels, and merge two adjacent regions under
some criterion such as homogeneity [23, 8] or weakness of region boundaries. A strict criterion
generally leads to creation of many small regions, while a loose one may easily merge two
regions which should be separated but are adjacent due to blurred boundaries. There are also
several hybrid methods [21, 5] in which the above criteria are combined. A typical connectivity-
preserving relaxation method such as the “active contour models” [18] starts with some initial
shape of the boundary represented by spline curves and changes the shape according to some
energy function. One of the disadvantages of connectivity-preserving relaxation methods is

that their search for a global optimum can be trapped into a local optimum.

Our approach for solving the segmentation problem is different from those mentioned above.
Our basic standpoint is to formulate the segmentation problem as an optimization problem
under certain geometric constraints, and study its computational complexity.

The objective function that we seek to optimize is the interclass variance (to be defined
in Section 2) that is used in discriminant analysis [15]. Although one could argue that the
quality of segmentation results may be evaluated eventually only by human eyes, empirical
study based on experimental work suggests that segmentation that is optimal in accordance
with discriminant analysis produces reasonably satisfactory outcome in most cases.

One important geometric constraint on the output object that we desire is connectivity. Let
G be a y/n x /n grid of n pixels. We are able to show that, however, the problem of finding a
connected object in & which maximizes the interclass variance is NP-hard. The NP-hardness
of this segmentation problem is proven by reducing to it the connected vertex covering problem
of a planar graph with maximum degree 4. Similar results are seen in [14, 25]. We outline the
NP-hard proof in the Appendix.

In addition to connectivity, we further consider another important geometric constraint
called z-monotonicity. A region S in the grid is said to be z-monotone if it is bounded by two
z-monotone curves. Note that the intersection of an z-monotone region and any pixel column
is a (possibly empty) connected region. We call an object admissible if it is z-monotone and

connected (Figure 1).



< N .
Figure 1: An admissible object bounded by two x-monotone curves.

Hence, we mainly study the associated optimization problem of computing an admissible

segmentation in polynomial time, which is stated as follows:

Admissible image-segmentation problem: Partition an intensity image into

an admissible region Sy and its complement S; so as to maximize the interclass

variance V(Sp, S1).

Our results on the admissible image-segmentation problem are as follows.

First, we present a dynamic programming formulation of the admissible image-segmentation
problem (Section 3). Although the dynamic programming approach in Section 3 is relatively
simple, it does provide a starting point for the more sophisticated approaches in subsequent
sections. In particular, the dynamic programming formulation enables us to solve in O(n?)
time an easier case in which the boundary of the optimal admissible region Sy uses only one z-
monotone chain, with the other z-monotone chain of Sy being completely on the grid boundary
(Section 3.2). We have implemented this algorithm, and the experimental results in Section 8
show that our method can obtain good image segmentation. We also give an efficient parallel
algorithm for this case. The parallel algorithm runs in O(log?n) time using O(n?/log?® n)
EREW PRAM processors (Section 4), and is based on a divide-and-conquer strategy rather
than the seemingly inherently sequential dynamic programming technique.

Second, we consider the case in which an optimal admissible region is obtained by using
two z-monotone chains in the partition (Section 5). Our algorithm is based on a parametric
method [12, 2], which is called (in computational geometry) hand probing, to compute the
convex hull of an unknown point set by using O(n) touching oracles [11]. We compute a
touching oracle in O(n) time by using a dynamic programming with the Monge property [1, 2].
The proposed algorithm thus runs in O(n?) time and O(y/n) working space, and practically
runs much faster.

Third, we give an efficient algorithm to compute an e-approximate solution in O(e~!nlog L)
time, where € is any fixed constant with 1 > € > 0, and L is the total sum of the absolute
values of brightness levels of the pixels (Section 6). We also generalize our O(e"'nlog L) time

approximation algorithm to the case in which a weighted interclass variance is used (Section

7).



2 Segmentation Problem

Let G be an N X N grid plane, i.e., G = {(¢,7) |t =1,2,...,N, 7 =1,2,..., N}, and g;; be the
brightness level of a pixel (lattice point) (¢, j) of a given image on G. Let n denote the number
of pixels of G. Throughout the paper, we assume that we are concerned with all pixels in G.
Thus n = N x N. The output object is denoted by Sy, and S; = G — Sy is the background. We
are interested in image segmentation in which the object S¢ is separated from the background
S1 by one or two z-monotone chains so that a given objective function is optimized.

Let p =1

m Z(i,j)eG ¢;; be the average brightness level over the entire image. Let n; and

w; (1 =0,1) be the cardinality of the set S; and the average brightness level of S;, respectively.
Formally, no = [So|, n1=[51], po = nl_o E(m‘)eso 9ij> and py = % E(m)egl Gij-
The objective function that we use is

V (S0, 51) = no(p — po)* 4+ na(p — p1)?,

which is called the interclass variance in discriminant analysis [15]. The interclass variance is
proportional to the sum of squares of standardized means [20].

It is known [15] that the maximization of V' (Sp, S1) is equivalent to the minimization of the
intraclass variance W (Sp, S1) defined below, which is another typical objective function used

in clustering (e.g., [17]):

W (S0, S1) = (i jyeso (967 — H0)* + 2o jyes, (965 — ).

In computer vision, discriminant analysis has already been used to solve the problem of
finding an optimal threshold by which an intensity image is transformed into a black/white
one (i.e., each pixel has a value of 0 or 1). In the method due to Ohtsu [22], the histogram
of intensity is partitioned into two classes based on discriminant analysis and good results are
obtained for most cases. However, to the authors’ knowledge, this paper gives the first attempt

to apply discriminant analysis to image segmentation.

3 Dynamic Programming Approach

We give in this section relatively naive dynamic programming algorithms. These algorithms

serve as starting points for the more sophisticated and efficient algorithms in later sections.

3.1 Rewriting the Objective Function

The interclass variance is invariant if we replace ¢;; by ¢;; — p for all (¢, 7). Thus, we can
assume without loss of generality (WLOG) that g = 0 and, accordingly, 1 = —pong/n1.

If ig < 0'in the optimal solution, then we can define another image such that the brightness
level of each pixel (¢,7) in it is —g;;. The image segmentation of this new image has exactly
the same solution as the original problem, and pg > 0 holds for the new problem. Hence, from

now on, we assume WLOG that ug > g =02> p;. We define

U(So) = Z Yij = Nolo-
(4,7)€50



Lemma 1 Under our assumption that ;1 =0, V(Sg, S1) = n?(non1) =1 (U(So))>.

Proof: Since p = 0 and py = —pono/n1, V(So,S1) = nopd + nmip? = (ngl + nl_l)(no,uo)2

= n(nony) " (nopo)?. |

Because U(Sg) > 0 and n is a fixed number for the grid &G, our problem can be written as

maximize D(So, S1) = (nony)~?U(So).

Let P(k) denote the subproblem of maximizing the above objective function D(Sy, S1)
under the constraint that ng is fixed to k. Since we have fixed no = k& and n is given, the
multiplicative term (ngny)~"/? = (k(n — k))~%2 in D(S, S1) is ineffective. Thus, P(k) can be

formulated as:

Find an admissible object Sp maximizing U(Sy) under the condition that |Sp| = k.
We define F'(k) to be the maximum value of U(Sg) with || = k.

Hence, the dynamic programming algorithms first compute F'(k) for all £ = 1,2,...,n,
then compute maxy,(k(n — k))~Y/2F(k), and finally find the object Sy attaining the maximum
value of D(Sp, 51).

3.2 Optimal Separation with a Single Monotone Chain

As a warm-up, we first consider the segmentation by using one z-monotone chain into a
connected region Sy and its complement S;. WLOG, we assume that S is below the separating
chain.

We define G, to be the m-th column of the grid &, and G<, = Ui<;, Gi. Let F(k,m)
be the maximum of U(Sg) under the conditions that |So| = k, So C G<pyy and So NGy, # 0.
Naturally, F'(k) = max)<,<n F'(k, m). Thus, it suffices to compute F'(k, m) for all k£ and m.

For each m = 1,2,..., N and for any interval I of integers in [1, N], we define f,,(I) =
Y ic1Yim- Then, we have the following recursion formula of F'(k, m).

F(k,m) = 19:;33}3%,@{17(’“ —tm—1)+ fm([1,1])}
This formula naturally leads us to a simple dynamic programming algorithm. Since m < N,
t < N, and k < n, the time complexity of the dynamic programming is O(N?n), which is

O(n?). Thus, we have the following lemma:

Lemma 2 O(n?) time and O(n) space are sufficient to compute max,=1,. N {F(k,m)} for
allk=1,2,...,n.

In this manner we can obtain the optimal value of the interclass variance. In order to obtain
an actual partition optimizing the interclass variance, we could keep track of the dynamic
programming table. Naively, this would use O(n?) working space, but we can reduce it to
O(n). We omit the details of the analysis of the space complexity, since we will show later
another algorithm, in which the space complexity is further improved to O(y/n). We have

obtained the following theorem:



Theorem 1 Given an tmage with n pizels, an optimal partition with one x-monotone chain

can be computed in O(n*) time and O(n) space.

The above algorithm has been implemented, and the segmentation results on real image

data were satisfactory.

3.3 Segmentation with Two Monotone Chains

We now consider the segmentation by using two z-monotone chains. We use the same
notation as the previous subsection.

For 0 < k < n, we define F(k,t,m) to be the maximum of U(Sp) under the conditions
that |So| = &, So C G'<,n, So contains the pixel (t,m) of G, and Sy is admissible. We define
F(0,t,m) =0 for every (t,m).

Since F(k) = max,,=1, ny{max;—; .~ F(k,t,m)}, it suffices to compute F(k,¢, m) for all

k,t, and m. For k > 0, F/(k,t,m) can be computed using the following recursive formula:
F(k,t,m) = max{max{F(k — [{|.l,m —1) + fin (I)}}
St

where the maximum is taken over all intervals I containing both ¢ and [. Note that the above
recursive formula ensures the constraints on admissible regions. This recursion leads us to a
dynamic programming algorithm.
There are O(N3) possible choices of [ and I for computing F(k,t, m) for each triple of k,
t, and m. Since the number of such triples of k, ¢, and m is O(N*), a naive implementation of
this dynamic programming formulation takes O(N7) = O(n>%) time. This is too expensive.
Instead of this, we will give an O(n?) time (and practically even faster) solution by using

the ideas of focused images and hand probing in the next section.

4 Parallel Algorithms

Although the dynamic programming algorithms in previous sections give us several advantages,
they seem to be quite difficult to parallelize. In this section, we present a divide-and-conquer
scheme for finding the optimal partition of an image. This scheme leads to two sequential
algorithms: (1) An O(n?*)-time and O(n)-space algorithm (called Algorithm A) for computing
the optimal partition of an image by using an admissible sequence based on one z—monotone
chain, (2) an O(n?)-time and O(n)-space algorithm (called Algorithm B) for computing the
optimal partition by using a not necessarily admissible sequence based on two z—monotone
chains (that is, Sp and S; may each consist of several disconnected regions). Based on the
divide-and-conquer method, we then show how to obtain efficient parallel algorithms for these
partitions that run in O(log?n) time using O(n?/logn) processors in the EREW PRAM
model. A trade-off between the parallel time and space complexities is also demonstrated.
Given m consecutive columns of N pixels each, the divide-and-conquer scheme is outlined
below: In the case of m > 1, divide the m columns into two groups of roughly the same number
of consecutive columns, then recursively solve the two subproblems, and finally combine the

solutions to the two subproblems, in O(m?N?) time, to obtain the solution to the original



problem on the m columns; in the case of m = 1, compute in O(N?) time the maximum sum
of brightness levels of k& consecutive pixels in that column, for every £k = 1, 2, ..., N. Hence
the recurrence relation T'(m) for the time complexity of a procedure with the above outline is

T(m)=2T(m/2)+ a* m*N?,

T(1)=0bx* N*
for some positive constants a and b. It is easy to see that T(N) = O(N*). We need to show
how to achieve the claimed time bounds in the two cases of the above outline and show that
O(N?) space is sufficient for the computation throughout.

Algorithm A can handle the case of m = 1 trivially in O(N) time, since based on one
x—monotone chain, the choice in a column for k consecutive pixels, for every k=1, 2, ..., N,
is unique. Algorithm B can easily handle the case of m = 1 in O(N?) because for every k,
there are N — k + 1 choices of k£ consecutive pixels in a column defined by two z—monotone
chains. The task of dealing with the case of m > 1 for Algorithm B is much easier than that
for Algorithm A; this is because no constraint on connectivity is imposed when computing
not necessarily admissible partition sequences. We therefore discuss only the computation of
Algorithm A for the case of m > 1.

Algorithm A computes for the m columns nine arrays Sy, Sgr, Srr, Sre, Sir, SgI1E,
Skrr, Srrg, and Sprp, called sum arrays, each corresponding to exactly one of the nine
patterns discussed in Section 5. Each sum array is of size m * N and contains, for every k = 1,
2, ..., m+ N, the maximum sum of brightness levels of £ pixels that is well-defined based on an
admissible sequence of a particular pattern (when not well-defined, let the sum be —o0). For
example, the pattern of Sy is that each of the m columns contributes at least one but less than
n pixels to every maximum sum (if the sum is well-defined), and Sy(¢) is not well-defined for
every ¢ < m. We also denote the sum of brightness levels of all the pixels in the m columns by
Sull. Without loss of generality, we assume that m is an even number. The divide-and-conquer
scheme divides the m columns into two groups, which we call the left and right groups. We
denote the sum arrays and the total sum of brightness levels for the left (resp., right) group
by, for example, S¥ and full® (resp., S and fullf?).

The problem in the “combine” stage of the divide-and-conquer scheme for Algorithm A
then becomes that given the nine sum arrays for each of the left and right groups, compute the
nine sum arrays for the m columns in (m?N?) time (the value full is equal to full™ 4 full®).
Note that each sum array for the left or right group contains the maximum sums for k pixels,
k< (mx N)/2. The following “array operations” are used to generate the nine sum arrays
for the original m columns: Given an appropriate sum array A for the left group and a sum
array AP for the right group, of size (m * N)/2 each, compute the sum array A of size m * N,
where

A(k) = max{ A" (i) + AR(j) | i+ =k,i> 0,5 >0, and k is well-defined for the array A}.
We denote such an operation by A” A% and the k-th element in the array A¥ A% by AV AR (k).

Then, the nine sum arrays for the original m columns are computed as follows:



S1(k) ST (k)

Spi(k) = max{SgST(k), ST (k), Sg;(k)}

Spr(k) = max{SESE(k), full® + SE(k), full® + SE(k)}

Sip(k) = max{SpSTy(k), St (k), Stp(k)}

Sip(k) = max{SE.(k) + full®, SE(k) + full®, SESE.(k)}

Spia(k) = max{Sg STy (k), g (k), STi(k)}

Spir(k) = max{SE,SE.(k), SL(k) + fullR, SL, (k) + full?}

Spip(k) = max{SESE (k), fulll + ST (k), fulll + SE,,(k)}

Sprr(k) = max{SESE.(k), SL(k)+ full?, fullb+ S5 (k), Sk, (k) + fullR, fullb+ S8, (k)

It is clear that each of the nine sum arrays for the m columns can be computed in O(m?*N?)
time; this is because for each such sum array, we compute its k-th element in O(k) time, for
every k < m* N. The space for each sum array is O(m * N), and hence the total space used
by the algorithm is also O(m x N). Therefore, the time and space for computing the nine sum
arrays for the N columns of the image plane are O(N*) and O(N?) respectively.

After obtaining the nine sum arrays for the NV columns of the image plane, the value of the

2 is chosen from the nine sum arrays. Then

optimal partition P(k), forevery k =1,2,..., N
we can report the actual optimal partition of the image plane by using the divide-and-conquer
algorithm in Section 4, again in O(N?) time and O(N?) space.

A straightforward parallel implementation of the above divide-and-conquer algorithms would
not give the claimed O(log?n) time and O(n?/log? n) processor bounds. The reason is that
if we used a parallel version of the algorithm in Section 4 to report the actual optimal parti-
tion, then the time of such a parallel algorithm would become O(log” n) (with O(n) space and
O(n?/log® n) processors, by Brent’s theorem [6]). An approach that avoids using the algorithm
in Section 4 is to store all the sum arrays computed at every level of the recursion, together with
some pointer information on how the sum arrays at that recursion level were obtained from
those computed at the previous recursion level. Then by using these sum arrays and pointers,
the actual optimal partition can be reported in O(log?n) time and O(n?/log? n) processors by
Brent’s theorem [6]. The space required by this approach is O(nlogn). Hence we have the

following theorem.

Theorem 2 An optimal partition with one x-monotone chain can be computed in O(log?® n)
time using O(n*/log?® n) processors on an EREW PRAM.

By using a combination of the two parallel approaches described above, we can achieve the
following parallel bounds: O(log®® n) time, O(n?/log®® n) processors, and O(n) space. Let L
be an integer (L will be chosen to be O(y/Togn)). Divide the O(logn) recursion levels of the
algorithms into O((logn)/L) segments of L levels each. The parallel procedure for reporting
the actual optimal partition repeats the following iterations O((logn)/L) times: For iteration
i, recompute and store all the sum arrays for recursion level ¢ * L (with the top level being
level 1). The additional amount of space so required is O(n). We then apply a parallel version
of the algorithm in Section 4 to compute the actual optimal partition, but now within each
iteration, we only need to compute repeatedly the sum arrays at the levels j with (¢ — 1) « L
< j < ix L (since all the sum arrays at recursion level i x L are already available). Hence

each iteration requires O(L*logn) time, and there are totally O((logn)/L) iterations. The



recomputation of the sum arrays at levels 7 « L, for every ¢ = 1, 2, ..., O((logn)/L), takes
altogether O((log® n)/L) time. Thus the best choice for L is O(y/log n), and the parallel bounds
follow.

The correctness of all the algorithms discussed in this section can be easily proved by

induction.

5 An Efficient Algorithm Using Focused Images

Recall that our objective is to maximize D(So,S1) = (|So||S1])~"/2U(So), where U(Sp) is the
summation of intensity levels of pixels in the region Sy. Thus, if we have two different ways of
partition (Sp,.S1) and (S{,.S7) such that |So| = [S§| (and thus |Sy| = |S7|) and U(Sy) > U(S)),
then we can discard the partition (S}, S]). This is the relationship between two different
partitions in the direction perpendicular to the axis corresponding to the cardinality of the
region. The same relationship holds for any direction. Let 8 be any direction from the positive
z—axis. Then, in the [So| — U(Sp) plane, a maximal region Sy in the direction perpendicular to
the line of angle # maximizes the quantity U(So) — 6]Sg|. We call a region Sy a focused region
if it is a maximal region for some 8 value.

This property comes from the concavity of the objective function. A partition defined by
any connected region Sy corresponds to a point characterized by (|.So|, U(S) in the |So| —U(So)
plane. Then, if we draw the curve of the form U(Sy) = D+/|So|(n — |5]) so that it passes
through the points (0,0), (n,0) and (|.So|, U(So)), the D value gives us the value of the objective
function associated with the partition (Sp, S —Sp). Obviously, the larger the D value the higher
such a curve associated with a partition. Because of the concavity of the curve, the higher the
curve the higher the tangent line in any fixed angle. This implies that we can find a maximal
region by maximizing the constant factor of the tangent line, which is given by U(Sg) — 6|5,
instead by maximizing the D value. This is an approach called parametric optimization.

Since this is a linear combination of two values U(Sy) and [Spl, all we have to do to find
an optimal partition is to enumerate all maximal regions, which correspond to construction of
the convex hull of a point set defined by pairs of regions and their corresponding U values.

We compute the convex hull of the point set without most knowledge of the coordinate
values of the points. Specifically, we use the hand probing method [12, 11], which computes
a convex polygon based on touching oracles. We give a segmentation criterion for which the
optimal solution (called the focused image) can be computed in O(n) time. This focused image
computation is used as a touching oracle of the hand probing, and is based on a dynamic

programming with the Monge property [1, 2].

5.1 Hand Probing Algorithm

Let P be the upper chain of the convex hull of an unknown point set P in the plane. We
consider computing P by using the following touching oracle:
Given a slope 6, report the tangent line with slope 8 to P, together with the tangent
point (see Figure 2).

10



U(sg) -7

7 [sg |
Figure 2: Hand probe.

The above computation model was introduced by Eisner and Severence [12] for solving net-
work optimization problems. It was extended to higher dimensional cases by Dobkin, Edels-

brunner, and Yap [11] in applications to robotics, and was named hand probing.

Lemma 3 ([12]) A convex polygonal chain with K vertices can be computed with O(K) touch-

ing oracles.

Proof: For the sake of completeness, we briefly outline the proof of the lemma. We start
with slopes 400 and —oo, and find the two endpoints of the convex chain. Suppose we have
computed a pair of chain vertices u and v such that no vertex of the convex chain between
them has been computed so far. Then, we compute the slope 8,, of the line through » and
v, and perform a touching oracle with respect to the slope 8,,. In consequence, we either find
a new chain vertex w between u and v or know » and v must be adjacent to each other on
the convex chain. Thus, we can find either a new vertex or a new edge of the convex chain by

performing a touching oracle. | |

5.2 Focused Images and Convex Hull

For a given real number 8, we define the following cost function
Uy(So) = U(So) = 015l = ( D> gij) —61Sol = > (gi; — 6)
(1,7)€S0 (1,7)€S0
Note that U(Sp) defined in the previous section coincides with Uy(Sy). We then consider the
following problem:

Q(8): Compute an admissible object Sy which maximizes Up(Sy).

We call an admissible object Sy a focused image if it is a solution of Q)(6) for some 6. The

solution of Q(#) is called a focused image associated with 6. The following is our key lemma:
Lemma 4 (Q(0) can be solved in O(n) time using O(N) = O(y/n) working space.
Proof: The proofis given in Section 4.3. |

Recall that F'(k) was defined to be the maximum value of Uy(So) = >_(; j)es, 9ij under the
condition that |Sg| = k. Let S(k) be the associated admissible object. We define Fy(k) =
F(k) — 6k. Then, the following lemma follows immediately from definitions:

11
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T: v = D(x(n-1))

7 [sg |
Figure 3: Convex hull and interclass variance.

Lemma 5 maxg, Uy(Sy) = maxy, Fy(k).

We define a point set P = {(k, F'(k)) | k=0,1,...,n} in the plane. Let P be the upper

chain of the convex hull of P.

Lemma 6 There exists a tangent line to P at the point (j, F'(j)) with a slope 8 if and only if
S(j) is a focused image associated with 8. Consequently, the point (j, F'(j)) is a vertex of P if
and only if S(j) is a focused image.

Proof: Assume that y = 6z +b is a line tangent to P at the point (j, /'(7)). Then it is easy to
see that Fy(k) = F'(k) — 0k takes the maximum value at k = j. Thus S(j) is a focused image
associated with 6.

Conversely, if S(j) is a focused image associated with 6, then all points of P lie below or
on the line y — @z = Fy(j). Thus, this line touches P at the point (7, F'(j)). [ |

We show a relation between focused images and an optimal object with respect to D(Sy, S1).
Lemma 7 The admissible object S§ mazimizing D(So, S1) is a focused image.

Proof: Suppose the maximum value D,y of D(Sp,S;1) is taken on Sg, and |S5| = v. We
consider the (z,y)-plane in which P = {(j, F'(j)) | j=1,2,...,n— 1} are plotted. We consider
in this plane the curve T': y = D, (z(n — 2))'/2. Since D(So,S1)(|So|(n — |S0]))*/? = Up(So),
the point (v, I'(v)) lies on the curve I'; and all other points (7, F'(j)) lie below (or on) I' due to
the maximality of D, (Figure 3).

Since the second derivative of \/z(n — ) is negative for 0 < # < n, the curve I' is concave
in . Hence, all points (7, I'(j)) lie below (or on) the tangent line L; to I' at (v, F'(v)). Thus,

(v, F(v)) is a vertex of P, and Sj is a focused image. |

Theorem 3 The image segmentation problem can be solved in O(n?) time and O(y/n) working

space.

Proof: It suffices to compute the vertex of P that maximizes the interclass variance. The
time complexity follows straightforwardly from Lemmas 3, 4, and 7.

Although it requires only O(y/n) working space to compute a focused image, if we naively
compute the convex chain P, we need to keep all O(n) vertices of P. In order to avoid keeping

many vertices of P, we perform the convex chain computation by using a “process the smallest
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interval first” policy, which is explained below. Suppose we have computed a new vertex
w = (s, F(s)) between a pair of convex chain vertices u = (¢, F'(¢)) and v = (4, F'(j)), and
|s —i] < |s—j|. Then, we first process the convex chain between u and w by finding the vertex
in the chain-interval [u,w] maximizing the interclass variance. Next, we process the interval
[w,v]. In this way, we only need to keep O(logn) vertices of the convex chain. Thus, the space
complexity remains O(y/n).

Next, we shall show that the working space associated with the dynamic programming
algorithm for processing touching oracles or solving a problem Q(6) is O(N) = O(y/n). It
is a simple observation that since our dynamic programming to solve ()(6) proceeds column
by column the space just for a couple of columns suffices for the forward computation to find
a maximal value of U(S) — 6]So|. The succeeding backward computation using only O(N)
space to construct a region achieving the maximum value is not trivial. As is stated before,
the dynamic programming computes the maximum value of U(Sg) — 0]So| in O(N?%) = O(n)
time and O(N) space. However, it is not the case to construct a region that achieves the
maximum value in the same computational complexity. If we store a backward pointer at
each element of the dynanmic programming table, O(N?) time suffices. However, if we restrict
the space to O(N), we need to sacrifice the time complexity. In fact, a divide-and-conquer
approach works. First of all, we implement the dynamic programming to find the leftmost and
rightmost pixels of an optimal region. The one pass of the dynamic programming establishes
the connection between the leftmost and rightmost columns. Then, the current interval defined
by the leftmost and rightmost columns is partitioned into two equal-length interval. The next
pass of the dynamic programming establishes the connections between the end columns of
the intervals and outputs the pixel positions at the current columns on the optimal paths.
Thereafter the same process is iterated until the boundary of the optimal region is reported
at every column. The number of iterations is O(logn). Since each pass is implemented in
O(n) time, the overall time needed is O(nlogn). Note that the backward computation is
implemented only once although we need to solve the problem @(#) many times and so the

time O(nlogn) is not dominant. |

Remark. The number K of vertices of P is practically much smaller than n, for which
case the algorithm runs in O(nK) time. Experimentally, K is less than 100 in typical images
on a 100 x 100 grid.

5.3 Proof of Lemma 4

First we shall show the time bound. We define g;; = g;; — #. We consider the m-th column
G, of the grid G. For a closed interval I = [u, v] of row indices, we define fm(I) = sc1 Jsm-

We compute and store both f,,([1,v])and f,,([u, N])forall 1 <wv,u < Nin O(N) time using
O(N) space. Since fo, ([u,v]) = fir([1, N]) = frn([L,u—=1]) = frn([v+1,N]) for 1L < u <wv < N,
we can query f,,(I) in O(1) time for each interval I = [u, v].

Let s(i) = max,<; fin([u,4]) and let ¢(j) = max,>; fm([j,v]). Computing s(i) (resp., t(i))
is equivalent to computing the positions of the maximum entry in the i-th column (resp., i-th
row) of the upper triangle matrix F, = (fo ([, v]))1<u<o<n-

The matrix F,, is a Monge matrix, that is, for i < ¢/ < j' < j, fu([i,7]) + fn ([, 57]) >
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fm([z,]’]) + fm([z’,]]) (Moreover, equality holds, and hence the matrix F,, is a strong Monge
matrix.) We compute and store s(z) and ¢(7) for all = 1,2,..., N in O(N) time and space by
using a fast Matrix Searching algorithm on a Monge matrix [1].

For each pair (7, j) of row indices, we define cover,, (i, j) = maxj3; ; fm(J) Then, it is easy
to see that cover,,(i,7) = fm([s(z),t(])]) if © < j. Thus, we can query cover,,(i,j) for each
pair (7,7) in O(1) time.

We define Uy(m, i) as the maximum value of Uy(S’) among all admissible objects S" C
G <y, that contain the pixel (i,m). We set Uy(0,7) = 0 for all 2. Obviously, maxs, Ug(So)
= maXo< <N imaxi<i<y Ug(m, 1) }.

Below, we compute Up(m, ) for all 0 < m < N and 1 <4 < N in O(N?) time. From the
definition of admissible objects, the following recursion formula holds:

Ug(m,i) = 1213‘?5\7{max{07 Ug(m —1,7)} + coverpy,(i,7) }

We compute Ug(m, 1) for all ¢ by using the above formula. It is not difficult to see that the
matrix (cover,,(i,J))i1<i<j<n is a strong Monge matrix. Accordingly, the matrix D,, defined
by D (i,7) = Ug(m — 1, j) + covery,(i,7) is also a strong Monge matrix. (To say precisely,
its upper triangular part is a strong Monge matrix, and also its lower triangular part is the
transposition of a strong Monge matrix.) The computation of the above formula for a fixed
m is equivalent to computing all row maxima of these two matrices, which can be done with
O(N) queries of cover,, (7, j) by using a fast Matrix Searching algorithm [1].

Therefore, the computation of maxs, Us(So) altogether needs O(N?) = O(n) queries each

of which takes O(1) time, and hence the total time complexity is O(n). The space complexity
is obviously O(N) = O(yv/n).

5.3.1 One-chain case

Next, we consider the case where the (connected) region is separated by an z-monotone chain.
We denote Sy(6) for the solution of the touching oracle for a slope . Without loss of generality,
we assume that Sy(#) is a region below an z-monotone chain. Hence, the m-th column of Sy(#)
is either empty or the half-column below a row.

We define L(m,j,0) = Zle(gm — #). Moreover, for each column index m, we define
the row index j(m,#) such that L(m,j,#) is maximized at j = j(m,#) (we give a symbolic
perturbation so that j(m) is unique). We denote Y (m,8) for L(m, j(m,80),8).

Then, the m-th column of Sy(8) is either empty or the half colum C'(m, #), which is the part
below j(m,#)-th row (including the pixel (j(m,#), m)). Indeed, if we compute the subinterval
I of [1,N] maximizing » ;Y (m,0), So(8) = UneciC(m,0). Once we know Y (m,#8) for
m =1,2,..,N,it is known that I can be computed in O(N) time [4].

Naively, it needs O(N) time to compute Y (m, #) for each m, hence the total time complexity
becomes O(N?). However, we can give preprocessing so that we can compute Sy(#) for each 6
in O(N) time.

We consider L(m,j,0) as a linear function on 6, whose slope is j. Then, Y (m,z) =
maxi<;<n L(m,j,z) is a convex function. We can compute this convex function in O(N)
time using computational geometric algorithms, since it can be considered a dual problem to

construction of convex hull of points in a plane with integral z-coordinate values.
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Once we have this convex function, we can retrieve the value of Y (m,#) for given 6 in
O(log N) time using binary search.

Moreover, we can apply similar list searching technique [9, 7] so that we can retrieve the
values Y (1,6),Y(2,0),....,Y(N,0) in O(N) time.

Hence, if we give O(N?) = O(n) preprocessing time, we can give a touching oracle in
O(N) = O(y/n) time for the single-chain case. The data structure needs O(N) space.

6 Faster e-Approximation Algorithm

Although we have given an O(n?) time algorithm, there may still be situations in which
O(n?*) time is too expensive. We propose an efficient e-approximation algorithm which com-
putes an admissible object Sy such that D(So, G — So) > (1 — €) D,y (for any fixed e, with
0 <e<1)in O(e'nlog L) time. We assume that all brightness levels are integers, and L
is the total sum of the absolute values of the brightness levels. The idea of this algorithm is

similar to the one given in [19], and is based on the following lemma.

Lemma 8 Let 6* denote the optimal parameter value with which an optimal solution S; of
Q(6%) mazimizes D(Sy, S1). If 6 # 0, then an optimal solution of Q((1+ €)8*) produces an

e-approzimate solution to the problem of mazimizing D(Sp, S1).

Proof:
Let v = |S5| and Dy = D(S§, G — Sg). Then, F(v) = Dyyen/v(n —v), and (v, F'(v)) is on
the curve Cy 1 y = Dypry/2(n — x). The line Ly

Li: y=0"(x-v)+ F(v)

is the tangent line of the curve Cq at (v, F(v)), with 6° = (n — 20) D,p/2:/v(n — v).

As shown in the proof of Lemma 7, S§ maximizes Ug«. Now consider the admissible object
Sg that maximizes Ui qog«. We claim that SG is an e-approximate solution to the problem of
maximizing D(Sg, 51).

In order to prove this, we consider the lines in the (z,y)-plane whose slopes are (14 €)6*.
Among all points (z, F'(z)),z =1,2,...,n— 1, consider the one that maximizes —(1+ €)6*z +
F(z) (i.e., the one corresponding to an optimal solution of Q((1+ €)8*)). Let this point be
(v, F'(V)) (see Figure 4).

We shall show that D' = F(v')/\/v'(n — 1) is at least (1—¢€) Dy (which proves our claim).
Due to the maximality of (', F'(¢')), the point (v, F(v)) is below or on the line

Ly: y=(1+¢ef(xz -1+ F@).
Hence, the point (v/, F'(v")) is above (or on) the line
Ls: y=(04€¢0 (z—v)+ Fv).

On the other hand, the point (v, F(v)) is above the curve Cy : y = D'y/a(n — ), since

F(v) = Doy Jv(n—v) > D'\/v(n—v).
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Figure 4: Definition of three lines and three curves used in the proof of Lemma 8.

The point (v/, F(v')) on C is above Lg, and the point (v, F(v)) on Ls is above C4; hence
the curve i must intersect Ls. At an intersection point of C'; and Ls, y/\/m = D'
Thus, the minimum value r,,;, of y/DOpt\/m on the line Lg is at most D'/D,,;. We
shall show that r,,;, is at least 1 — ¢. By definition,

1 (14 €)(n —2v)

z(n—2z) 2y/v(n-v)
vrv(n—v)} | 0<a<n}

The term to be minimized in the above equation is rewritten into

Pmin = min{

(x —v)+

1 (ac(n —2)(1+¢) 2 +nv(l —¢)
2\/v(n —v) Va(n—z) Va(n—z)
1
= —————(at +bt7h).

2\/v(n —v)

Here, a = (n—v)(n+e(n—2v))/n and b = v(n—e(n—2v))/n are constants, and t = y/z/(n — ).
The minimum of at 4+ bt—1 is attained at t = \/b/a. Thus, 1, is

)

2 _ 22 _22
2vab P = AN

2\/v(n —v) n

This proves the lemma. [ |

Theorem 4 An e-approzimate solution can be computed in O(e~*nlog L) time.
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Proof: From the assumption of the integrality of g;;, |§*| satisfies 1/2 < |6*| < L, provided
that 6 # 0. We define a sequence {f;, —6,} of parameters 6 by 8§ = (1 +¢)'='/2 for 0 < [ <
|log L/log(1 + €)]. The approximation algorithm solves the parametric problem @ (;) for all
values of the above defined parameters and chooses the one that maximizes D(Sp, 51). It is
clear from Lemma 8 that such a solution is an e-approximation of our segmentation problem.
The number of parameters so generated is O(log L/log(1 + €)) = O(e 'log L). Hence, the
running time of the algorithm is O(¢7'nlog L). |

6.1 Other Approximate Solutions

If the size of the output object is approximately given, then we can solve the approximate

segmentation problem faster.

Lemma 9 Given an integer ki in [1, N], we can compute the focused image whose size is

nearest to ky in O(nlog L) time.

Proof: The binary search for 6 gives an O(nlog L) time solution straightforwardly. |

Corollary 1 Suppose we are given a subinterval I = [ky, ko] of [1, N, such that there exists a
focused image whose size is in I. Then, we can compute the admissible object maximizing the

interclass variance among all the objects whose sizes are in I in O(n(ky — ki +log L)) time.

7 Generalization to Weighted Interclass Variance

Our techniques are also applicable to a maximization problem with a function U.(So)/p(]So|)
for any constant ¢ and any concave function p(z) in the interval 0 < 2 < n. For example,
we consider the problem of maximizing the weighted interclass variance V(59, S1) = ng (¢ —
p0)? +nf (= ).

Theorem 5 If0 < a < 2, then an admissible object So mazimizing V(Sy, S1) can be computed

in O(n?) time. Its e-approzimate solution can be computed in O(e Inlog L) time.

Proof: We assume WLOG that pug > py and g = 0. Accordingly, py = —nopo/ny. Then,
Ve (S0, 81) = (g~ +(n—n0)*7?)(Uo(90))*, and \/V° (S, 81) = (\/n3_2 + (n = n0)*=?)Uo(S0)-

It is not difficult to verify that 1/\/2°=2 + (n — 2)®~2 is concave if 0 < a < 2. | |

8 Experimental Results

We have implemented our algorithms in cooperation with Dainippon Screen MFG, Kyoto |,
Japan, which manufactures intelligent printing machines. Figure 4 shows one of the examples,
where an original input image is laid above and the resulting segmented image is below. The
program accepts color images. To apply our algorithms we need to convert color informations
into monocrome intensity information. Our method for this purpose is just to add intensity

levels in three colors (red, green, and blue). Of course, this may be too simple, but it seems to
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be the best way from our experience of experiments. The results are quite satisfactory. Since
an entire image is decomposed into a sequence of small subimages which should be partitioned
into two parts, x-monotonicity is not too restricted from a practical point of view. We plan to
implement the algorithm for the segmentation using two monotone chains in the near future.
The focused image computation algorithm of Lemma 4 has already been implemented [13], and

its linear-time performance has been confirmed.

9 Discussions

In this paper, we have studied the problem of detecting an optimal connected object region
in an intensity image based on discriminant analysis. We have shown that this problem in
general is NP-hard, and presented polynomial-time algorithms for the basic case of separating
an optimal region with two z-monotone chains. To the authors’ knowledge, this is the first
computational-geometric attempt to the image segmentation problem.

An issue that needs to be pointed out is that the monotonicity of object boundaries is a
constraint that may be oversimplified to some practical applications. However, if we imagine a
small floating window over an image in which optimal monotone boundaries of objects are
computed, we may obtain a new image-filtering or edge-detection scheme with confidence

weighted by inter-cluster distance.
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