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Dedicated to the memory of Willem Johannes Blok

Abstract. Substructural logics have received a lot of attention in recent years from the

communities of both logic and algebra. We discuss the algebraization of substructural log-

ics over the full Lambek calculus and their connections to residuated lattices, and establish

a weak form of the deduction theorem that is known as parametrized local deduction the-

orem. Finally, we study certain interpolation properties and explain how they imply the

amalgamation property for certain varieties of residuated lattices.

Keywords: Substructural logic, pointed residuated lattice, algebraic semantics, parame-

trized local deduction theorem, interpolation.

1. Introduction

The Gentzen system FL of full Lambek calculus is obtained from the
Gentzen system LJ for intuitionistic propositional logic by removing three
structural rules: the rules of exchange, weakening and contraction. The
study of substructural logics (over FL) has been developed extensively in
the last decade and close relations between substructural logics over FL and
subvarieties of the variety FL of pointed residuated lattices have been ob-
served. In fact, every substructural logic L over FL determines a subvariety
V(L) and, conversely, every subvariety V of FL determines a substructural
logic L(V). Moreover, the maps V and L are mutually inverse dual isomor-
phisms between the lattice of substructural logics over FL and the lattice of
subvarieties of the variety FL.

Although the etymology of the name “substructural logics” refers to
sequent calculi that lack some of the structural rules, the first concrete de-
finition was given in [40] by the second author and includes logics that are
axiomatic extensions of such systems. In particular, substructural logics in-
clude classical, intuitionistic, multi-valued, basic, relevant and (fragments
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of) linear logic. Extending ideas in [40], we introduce the deducibility re-
lation ⊢L associated with a substructural logic L, which turns out to be a
finitary, substitution invariant consequence relation in the sense of algebraic
logic. Moreover, we show that, for every substructural logic L, the relation
⊢L is algebraizable in the sense of Blok and Pigozzi [7] and the subvariety
V(L) of FL is the equivalent algebraic semantics for ⊢L.

Connections of congruences of residuated lattices to their convex nor-
mal subalgebras have been studied by Blount and Tsinakis [12] and also by
Jipsen and Tsinakis [28]. Additionally, Blok and Pigozzi [7] explore the
connection between deductive filters of algebraizable consequence relations
and congruence relations of the equivalent algebraic semantics. Our inves-
tigation is based on these two studies. In particular, we give a number of
characterizations of deductive filters and describe their generation process.

As an application of our analysis, we obtain a concrete form of a para-
metrized local deduction theorem in the sense of [15] for all substructural
logics, and a local deduction theorem for commutative substructural logics,
i.e. logics that have the exchange rule.

We use the algebraization result and the local deduction theorem to
derive a number of important logical consequences. In the last section, we
establish some basic results on various forms of the interpolation property
for certain substructural logics, and the amalgamation property for some
varieties of residuated lattices, by applying our version of the local deduction
theorem to the work of Czelakowski and Pigozzi [16] on abstract algebraic
logic.

The above results suggest that the study of substructural logics is quite
fertile and promising when developed in close connection with universal al-
gebra and algebraic logic. In fact, we expand our research in this direction
in our second paper on substructural logics [21], where we develop a com-
prehensive study of Glivenko-type theorems for substructural logics.

2. Pointed residuated lattices

For a language L of connectives, or operation symbols, (and constants)
we identify formulas and terms over L and denote them by letters like
φ, ψ, χ, σ or t, s, u, v depending on whether they are used in a logical or alge-
braic context; we denote the set of all formulas over L by FmL. Note that
the formulas over L form an algebra FmL, which is known as the absolutely
free algebra of type L.

We say that an algebra A over L, or L-algebra for brevity, satisfies the
equation s ≈ t, in symbols A |= s ≈ t, if A satisfies (∀x̄)(s(x̄) ≈ t(x̄)), where
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x̄ is the sequence of variables in the terms s and t. If E is a set of equations,
Mod(E) denotes the class of algebras that satisfy all equations in E. For
every term t, the term operation induced by t on A is denoted by tA. For
basic definitions and results in universal algebra, see [11].

A residuated lattice-ordered monoid, or residuated lattice, is an algebra
A = 〈A,∧,∨, ·, \, /, 1〉 such that 〈A,∧,∨〉 is a lattice, 〈A, ·, 1〉 is a monoid,
and multiplication is residuated with respect to the order by the division
operations \, /; i.e., for all a, b, c ∈ A,

a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c.

A pointed residuated lattice, or FL-algebra, A = 〈A,∧,∨, ·, \, /, 1, 0〉 is an al-
gebra such that 〈A,∧,∨, ·, \, /, 1〉 is a residuated lattice and 0 is an arbitrary
element of A.

Residuated lattices were introduced in the late 30’s by M. Ward and R.
P. Dilworth, see [46], in a more restrictive sense than the one we consider
here. These algebras, in their restricted form and in the augmented type
of pointed residuated lattices have been studied extensively in the context
of logic under the same name; see, for example, [26], [34]. For an introduc-
tion to connections of pointed residuated lattices and related structures to
substructural logic, see [40].

The structure theory of residuated lattices, in the general sense that we
consider here, was studied only recently by K. Blount and C. Tsinakis [12].
For a survey on residuated lattices, motivation and further references, see
[28]; for additional results and a list of examples, see also [18]. A growing
literature in the subject includes [30], [4], [19], [45], [9], [10], [23], [5], [24],
[20].

We adopt the convention that in a (pointed) residuated-lattice term
multiplication has priority over the division operations, which have prior-
ity over the lattice operations. So, for example, we write x/yz ∧ u\v for
[x/(yz)] ∧ (u\v). We use t ≤ s to denote both the equality t = t∧ s and the
equation t ≈ t ∧ s, depending on whether t, s are elements of a residuated
lattice or terms. It is easy to see that the equality s = t holds in a residuated
lattice iff the inequality 1 ≤ s\t ∧ t\s holds.

The opposite top of a (pointed) residuated lattice term t is defined in-
ductively on the complexity of t. For all terms s, t, we define 1op = 1,
0op = 0, (s · t)op = t · s, (s\t)op = t/s, (t/s)op = s\t, (s ∧ t)op = t ∧ s, and
(s∨t)op = t∨s. Essentially, the opposite of a term is its “mirror image”. We



4 N. Galatos and H. Ono

extend the definition to equations, by (s ≈ t)op = (top ≈ sop), and to met-
alogical statements in the obvious way. Note that (s ≤ t)op = (top ≥ sop).
Examples of mutually opposite equations can be seen in each statement of
the following lemma.

Lemma 2.1. Residuated lattices satisfy the following identities:

1. x(y ∨ z) ≈ xy ∨ xz and (y ∨ z)x ≈ yx ∨ zx;

2. x\(y ∧ z) ≈ (x\y) ∧ (x\z) and (y ∧ z)/x ≈ (y/x) ∧ (z/x);

3. x/(y ∨ z) ≈ (x/y) ∧ (x/z) and (y ∨ z)\x ≈ (y\x) ∧ (z\x);

4. (x/y)y ≤ x and y(y\x) ≤ x;

5. x(y/z) ≤ (xy)/z and (z\y)x ≤ z\(yx);

6. (x/y)/z ≈ x/(zy) and z\(y\x) ≈ (yz)\x;

7. x\(y/z) ≈ (x\y)/z;

8. x/1 ≈ x ≈ 1\x;

9. 1 ≤ x/x and 1 ≤ x\x;

10. x ≤ y/(x\y) and x ≤ (y/x)\y;

11. y/((y/x)\y) ≈ y/x and (y/(x\y))\y ≈ x\y;

12. x/(x\x) ≈ x and (x/x)\x ≈ x;

13. (z/y)(y/x) ≤ z/x and (x\y)(y\z) ≤ x\z.

Multiplication is order preserving, and the division operations are order pre-
serving in the numerator and order reversing in the denominator. Moreover,
if a residuated lattice has a least element ⊥, then it has a greatest element
⊤, as well, and ⊤ = ⊥/⊥ = ⊥\⊥.

The proofs of statements (1)-(9) and of the remark concerning the bounds
can be found in [12]. The proof of the remaining statements is left to the
reader.

Proposition 2.2. [28], [12] An algebra of the appropriate type is a (pointed)
residuated lattice iff it satisfies the lattice equations, the monoid equations
and the following equations

x(x\z ∧ y) ≤ z, (y ∧ z/x)x ≤ z
y ≤ x\(xy ∨ z), y ≤ (z ∨ yx)/x.



Algebraization, PLDT and interpolation for substructural logics over FL. 5

Consequently, the class RL of residuated lattices and the class FL of
pointed residuated lattices are varieties. We denote their subvariety lattices
by S(RL) and S(FL), respectively.

A (pointed) residuated lattice is called commutative, if its monoid reduct
is commutative; i.e., if it satisfies the identity xy ≈ yx. It is called integral,
if its lattice reduct has a top element and the latter coincides with the mul-
tiplicative identity 1; i.e., if it satisfies x ≤ 1. Finally, it is called contractive,
if it satisfies the identity x ≤ x2. It is easy to see that in a residuated lattice
commutativity is equivalent to x/y ≈ y\x; in this context we write x → y
for x\y.

3. Substructural logics and algebraization

In this section, we define substructural logics and prove that varieties
of pointed residuated lattices constitute equivalent algebraic semantics for
their deducibility relations in the sense of [7]. Substructural logics and their
deducibility relations have not been explicitly defined before, except for a
brief discussion in [40], despite the fact that the term has been used in many
places in an informal way.

3.1. Substructural logics and their deducibility relations

Let L = {∧,∨, ·, \, /, 1, 0} be the language of pointed residuated lattices.
By FL we denote both the full Lambek sequent calculus over L, given by
the rules and axioms in Figure 1, as well as the set of formulas provable in
it; see below. The definition of FL appeared for the first time in [36].

A particular instance of each of the following rules is obtained by replac-
ing the lower case letters of the (Greek) alphabet by formulas and the upper
case letters by finite sequences of formulas. Note that for every sequent
Γ ⇒ α the right-hand side α consists of a single formula and the left-hand
side Γ is a finite, possibly empty, sequence of formulas.

Note that (instances of) sequents Γ ⇒ α can be identified with pairs
(Γ, α) and (instances of) rules of inference can be identified with pairs (S, s),
where S ∪ {s} is a set of sequents. Nevertheless, we follow the standard
notation with the separator ⇒ and the fraction notation.

As usual, a proof in FL of a sequent s from a set of sequents S is a
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α⇒ α (id)
Γ ⇒ α Σ, α,Π ⇒ δ

Σ,Γ,Π ⇒ δ
(cut)

Γ, α, β,Σ ⇒ δ

Γ, α · β,Σ ⇒ δ
(· ⇒)

Γ ⇒ α Σ ⇒ β

Γ,Σ ⇒ α · β
(⇒ ·)

Γ ⇒ α Π, β,Σ ⇒ δ

Π, β/α,Γ,Σ ⇒ δ
(/⇒)

Γ, α⇒ β

Γ ⇒ β/α
(⇒ /)

Γ ⇒ α Π, β,Σ ⇒ δ

Π,Γ, α\β,Σ ⇒ δ
(\ ⇒)

α,Γ ⇒ β

Γ ⇒ α\β
(⇒ \)

Γ, α,Σ ⇒ δ

Γ, α ∧ β,Σ ⇒ δ
(∧1 ⇒)

Γ, β,Σ ⇒ δ

Γ, α ∧ β,Σ ⇒ δ
(∧2 ⇒)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(⇒ ∧)

Γ, α,Σ ⇒ δ Γ, β,Σ ⇒ δ

Γ, α ∨ β,Σ ⇒ δ
(∨ ⇒)

Γ ⇒ α
Γ ⇒ α ∨ β

(⇒ ∨1)
Γ ⇒ β

Γ ⇒ α ∨ β
(⇒ ∨2)

Γ,Σ ⇒ δ

Γ, 1,Σ ⇒ δ
(1 ⇒)

⇒ 1
(⇒ 1)

Figure 1. The Gentzen system FL.

finite sequence of sequents s1, . . . , sn = s such that, for every i, si is in S,
or it is an instance of an axiom of FL, or there is a subset S0 of the set
{s1, . . . , si−1} such that (S0, si) is an instance of one of the rules of FL.
Note that substitution instances of elements of S that are not already in S
cannot be used in the proof. We usually present proofs in a tree arrangement,
called a proof tree, where the nodes are sequents labeled by rules. The tree
in Figure 2 demonstrates a proof of α(β∨γ) ⇒ αβ∨αγ from the empty set.

If there is a proof in FL of s from S, we say that s is deducible, or provable,
in FL from S and we write S ⊢FL s. If Φ ∪ {ψ} is a set of formulas, we
write Φ ⊢FL ψ for {( ⇒ φ) | φ ∈ Φ} ⊢FL ( ⇒ ψ); note the position of ‘FL’
as a superscript or subscript in ⊢FL and ⊢FL. The relation ⊢FL is called the
external consequence relation associated with ⊢FL, see [1].
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α ⇒ α (id) β ⇒ β
(id)

α, β ⇒ αβ
(· ⇒)

α, β ⇒ αβ ∨ αγ
(⇒ ∨1)

α ⇒ α (id) γ ⇒ γ
(id)

α, γ ⇒ αγ
(· ⇒)

α, γ ⇒ αβ ∨ αγ
(⇒ ∨2)

α, β ∨ γ ⇒ αβ ∨ αγ
(∨ ⇒)

α(β ∨ γ) ⇒ αβ ∨ αγ
(· ⇒)

Figure 2. A proof in FL.

A consequence relation ⊢ on a set A is a subset of P(A) × A such that,
for all subsets Φ ∪ Ψ ∪ {φ, ψ, χ} of A,

• if φ ∈ Φ, then Φ ⊢ φ (we use infix notation for ⊢) and

• if Φ ⊢ ψ, for all ψ ∈ Ψ, and Ψ ⊢ χ, then Φ ⊢ χ.

The set Thm(⊢) = {φ ∈ A | ∅ ⊢ φ} is called the set of theorems of ⊢. A
consequence relation on a set A is called finitary, if for all subsets Φ ∪ {φ}
of A, if Φ ⊢ φ, then there exists a finite subset Φ0 of Φ such that Φ0 ⊢ φ.
A consequence relation on FmL is called substitution invariant, if for all
sets Φ ∪ {φ} of formulas and all substitutions σ over FmL, if Φ ⊢ φ, then
σ[Φ0] ⊢ σ(φ). The notion of substitution invariance can be extended to
consequence relations over Fm2

L in a natural way.

It is easy to see that ⊢FL is a finitary and substitution invariant conse-
quence relation on FmL. Moreover, ⊢FL is a consequence relation on the set
of sequents over FmL; the relation ⊢FL will be discussed in detail in [22].

A subset F of an L-algebra A is said to be a deductive filter of A with
respect to a consequence relation ⊢ on FmL, if for every set of formulas
Φ ∪ {φ} such that Φ ⊢ φ and for every homomorphism f : FmL → A,
f [Φ] ⊆ F implies f(φ) ∈ F . The deductive filters of FmL with respect to
⊢ are called theories of ⊢. For more on consequence relations and deductive
filters, see [17] and [7].

A substructural logic (over FL) is a theory of ⊢FL, i.e. a set of formulas
closed under ⊢FL, that is closed under substitution. Equivalently, a sub-
structural logic is the set of theorems of an axiomatic extension of ⊢FL. In
Section 4 we provide alternative descriptions of deductive filters and, conse-
quently, of substructural logics; see Corollary 4.5.

We say that a substructural logic L is axiomatized over FL by a set of
formulas Φ, if L is the smallest substructural logic containing Φ. It is easy
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to see that the set of all substructural logics forms a lattice, which we denote
by SL.

For a set of formulas Φ ∪ {φ}, we write Φ ⊢L φ for Φ ∪ L ⊢FL φ.

Lemma 3.1. Let L be a substructural logic and Φ∪Ψ∪{ψ} a set of formulas.

1. The relation ⊢L is a finitary, substitution invariant consequence rela-
tion.

2. If Φ is finite, then Φ,Ψ ⊢L ψ iff
∧

Φ,Ψ ⊢L ψ, where
∧

Φ denotes the
conjunction of all the (finitely many) formulas of Φ.

3. If Φ is finite, then Ψ ⊢L φ, for all φ ∈ Φ, iff Ψ ⊢L

∧
Φ.

Proof. (1) follows easily from the definition.

Note that if Φ is a finite set of formulas, then by repeated applications
of (∧1 ⇒) and (∧2 ⇒) we obtain ⊢FL

∧
Φ ⇒ φ, for all φ ∈ Φ. By the cut

rule, we have
∧

Φ ⊢FL φ, so
∧

Φ ⊢L φ, for all φ ∈ Φ.

Moreover, it is clear by (⇒ ∧) that, for all formulas φ, ψ, we have
{φ, ψ} ⊢FL φ∧ψ. By repeated applications of this fact we obtain Φ ⊢L

∧
Φ.

(2) and (3) follow easily from the above facts and (1).

If a consequence relation satisfies condition (2) of the previous lemma, it
is called conjunctive.

The relation ⊢L is called the deducibility relation of the substructural
logic L. Note that L and ⊢L are mutually definable, since L = Thm(⊢L)
and Φ ⊢L φ iff Φ ∪ L ⊢FL φ. The relations of the form ⊢L, where L

is a substructural logic, can be abstractly characterized as the axiomatic
extensions of ⊢FL, i.e. the substitution invariant consequence relations that
are minimal with respect to containing ⊢FL and {∅} × Φ, for some set of
formulas Φ.

In our definition of a (substructural) logic we deviate from the notion of
logic in the setting of Abstract Algebraic Logic (AAL). In AAL a logic or
deductive system is a pair S = (FmL,⊢S), where L is an algebraic language,
FmL is the algebra of formulas over L and ⊢S is a substitution invariant
consequence relation on FmL; see [7] or [17]. Nevertheless, the difference
between the two conflicting definitions is not essential, because substructural
logics L (in our sense) are in bijective correspondence to deductive systems,
or logics (in the sense of AAL), S = (FmL,⊢S), where ⊢S is an axiomatic
extension of ⊢FL, via the maps L 7→ SL = (FmL,⊢L) and S 7→ Thm(⊢S).
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In other words we can think of a substructural logic over FL either as a set
of formulas or as a consequence relation/deductive system.

Note that, if L is a substructural logic, then ⊢L is different than the
internal relation ⊢I

L
associated with L, which is defined by ψ1, ψ2, . . . , ψn ⊢I

L

φ iff {( ⇒ χ) | χ ∈ L} ⊢FL (ψ1, ψ2, . . . , ψn ⇒ φ) or, equivalently, if the
sequent ψ1, ψ2, . . . , ψn ⇒ φ is provable in the system obtained from FL

by adding the sequents of the form ⇒ χ, for all χ ∈ L; the relation ⊢I
L

was
introduced in [1] and was also considered in [42]. Note that ψ1, ψ2, . . . , ψn ⊢I

L

φ iff ⊢L ψ1ψ2 · · ·ψn\φ; hence the relations ⊢L and ⊢I
L

are different (for
example, {φ, ψ} ⊢L φ ∧ ψ and {φ, ψ} 6⊢I

L
φ ∧ ψ), but they have the same

theorems, i.e. ⊢L φ iff ⊢I
L
φ. Observe that ⊢I

L
is not a consequence relation.

The relation ⊢w
L

, also introduced in [42], coincides with ⊢L in the special
cases considered in [42]. It follows from our analysis in the remainder of the
paper that ⊢L is the appropriate relation for the study of the connections
between substructural logics and residuated lattices.

Consider the following structural rules and axiom. They are called ex-
change, contraction, weakening and 0-weakening, respectively.

Γ, α, β, Σ ⇒ δ

Γ, β, α, Σ ⇒ δ
(e)

Γ, α, α, Σ ⇒ δ

Γ, α, Σ ⇒ δ
(c)

Γ, Σ ⇒ δ

Γ, α, Σ ⇒ δ
(ℓw)

0 ⇒ δ
(0w)

We denote the combination of (ℓw) and (0w) by (w) and we write (i)
for (ℓw). We denote the sequent calculi obtained from FL by adding one or
more of the rules (e), (c), (w) and (i), by attaching corresponding subscripts
e, c, w, i to FL. For example FLew is obtained by adding (e), (ℓw) and (0w)
to FL.

A substructural logic L is called integral, if φ\(1∧φ) ∈ L, for every φ; it is
called contractive, if φ\φ2 ∈ L, for every φ; finally, it is called commutative,
if φψ\ψφ ∈ L, for every φ, ψ. If a logic is integral and 0\φ ∈ L, for every
φ, we say that L has weakening. It is easy to see that a logic is integral,
contractive, commutative or has weakening, iff it contains the logic FLi,
FLc, FLe or FLw, respectively.

Various substructural logics have been investigated, most of which are
integral and commutative. Classical propositional logic, intuitionistic logic,
 Lukasiewicz many-valued logic, Hájek basic logic, relevant logic and the
multiplicative additive fragment of linear logic are examples of commutative
substructural logics over FL.
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3.2. Algebraization

For every class K of pointed residuated lattices and for every set K
of formulas over L, let L(K) = {φ ∈ FmL | K |= 1 ≤ φ} and V(K) =
FL ∩ Mod({1 ≤ φ | φ ∈ K}); recall that 1 ≤ φ is short for 1 ≈ 1 ∧ φ.
Moreover, if Φ is a set of formulas over L and E is a set of equations over
L, we define the set of equations Eq(Φ) = {1 ≤ φ | φ ∈ Φ}, and the set
of formulas Fm(E) = {t\s ∧ s\t | (t ≈ s) ∈ E}. Let s ≈ t and si ≈ ti,
i ∈ I, be equations in the language of FL, x̄ the sequence of variables in
them and K a subclass of FL. Following [7], we say that s ≈ t is a K-
consequence of E = {si ≈ ti | i ∈ I}, in symbols E |=K s ≈ t, iff, for all
A ∈ K and every valuation ā of x̄ in A, if A |= si(ā) = ti(ā), for all i ∈ I,
then A |= s(ā) = t(ā). In particular, when E is finite,

E |=K s ≈ t iff K |= (∀x̄)(
∧

i∈I si(x̄) = ti(x̄) ⇒ s(x̄) = t(x̄)).

It is easy to see that |=K is a finitary, substitution preserving consequence
relation on Fm2

L.

The notion of equivalence of two consequence relations is defined in [6];
see also [25]. We omit the general definition of equivalence, but we note
that a finitary and substitution invariant consequence relation ⊢ on FmL is
equivalent to a finitary |=K for some class K of algebras iff there is a finite set
{δi(x) ≈ ǫi(x) | i ∈ I} of unary equations, called the defining equations, and
a finite set {∆j(x, y) | j ∈ J} of binary connectives, called the equivalence
formulas, such that for all sets of formulas Φ ∪ {φ, ψ},

• Φ ⊢ ψ iff {δi(φ) ≈ ǫi(φ) |φ ∈ Φ, i ∈ I} |=K δk(ψ) ≈ ǫk(ψ), for all k ∈ I,
and

• φ ≈ ψ =||=K {δi(∆j(φ, ψ)) ≈ ǫi(∆j(φ, ψ)) | i ∈ I, j ∈ J}

If ⊢ is equivalent to |=K for some class K of algebras, then ⊢ is called
algebraizable and K is called an equivalent algebraic semantics for ⊢.

Theorem 3.2. The consequence relation ⊢FL is algebraizable with defining
equation 1 ≈ x∧1 and equivalence formula x\y∧y\x. An equivalent algebraic
semantics for ⊢FL is the variety FL of pointed residuated lattices.

Proof. We assume familiarity with the terminology and the results in [7].
To show that ⊢FL is algebraizable, given that it is finitary and substitution
invariant, it suffices to check the conditions of Theorem 4.7 of [7]. It is easy
to see that for φ∆ψ = φ\ψ ∧ ψ\φ we have ⊢FL φ∆φ; φ∆ψ ⊢FL ψ∆φ;
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φ∆ψ,ψ∆χ ⊢FL φ∆χ; and φ1 ∆φ2, ψ1 ∆ψ2 ⊢FL (φ1 ⋆ ψ1) ∆(φ2 ⋆ ψ2), for
all ⋆ ∈ {∧,∨, ·, \, /} and all φ, ψ, χ ∈ FmL. Moreover, for δ(x) = 1 and
ε(x) = x ∧ 1, we have φ ⊣⊢FL δ(φ) ∆ ε(φ). So, ⊢FL is algebraizable with
defining equation 1 ≈ x ∧ 1 and equivalence formula x\y ∧ y\x.

Theorem 2.17 of [7] provides an axiomatization for the equivalent alge-
braic semantics of an algebraizable deductive system. The axiomatization in
the case of ⊢FL consists of the following quasiequations: 1 ≈ 1 ∧ x\x ∧ x\x;
1 ≈ 1 ∧ φ1, . . . , 1 ≈ 1 ∧ φn implies 1 ≈ 1 ∧ φ, for all rules of inference
〈{φ1, . . . φn}, φ〉; and 1 ≈ 1 ∧ x\y ∧ y\x implies x ≈ y.

It is easy to check that all these quasiequations are true in FL. Con-
versely, one can show that all axioms of FL follow from this list. To see this
observe that, for all terms s, t ∈ FmL, if s ⇒ t and t ⇒ s are provable in
FL, then ⇒ s\t∧t\s is also provable, so ⊢FL s\t∧t\s. Thus, the equivalent
algebraic semantics satisfies 1 ≈ 1∧ s\t∧ t\s and, by the last quasiequation
in the list, it satisfies s ≈ t, as well. So, the proof amounts to checking that
s ⇒ t and t ⇒ s are provable in FL, for every axiom s ≈ t of FL.

Statements 3 and 4 of the following theorem can be proved via a standard
Tarski-Lindembaum algebra construction argument and they provide a stan-
dard and inverse completeness theorem for substructural logics. They also
follow immediately from Theorem 3.4, which is a standard and inverse strong
completeness theorem, in the sense that it deals with deductions rather than
theorems.

Theorem 3.3.

1. For every K ⊆ FL, L(K) is a substructural logic and for every K ⊆
FmL, V(K) is a subvariety of FL.

2. The maps L : S(FL) → SL and V : SL → S(FL) are mutually
inverse, dual lattice isomorphisms.

3. If a substructural logic L is axiomatized relative to FL by a set of
formulas K, then the variety V(L) is axiomatized relative to FL by
the set of equations Eq(K).

4. If a subvariety V of FL is axiomatized relative to FL by a set of
equations E, then the substructural logic L(V) is axiomatized relative
to FL by the set of formulas Fm(E).

5. A substructural logic is commutative, integral or contractive iff the
corresponding variety is.
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Theorem 3.4. For every substructural logic L over FL, its deducibility
relation ⊢L is algebraizable and V(L) is an equivalent algebraic semantics
for it. In particular,

1. if Σ ∪ {φ} is a subset of FmL and L is a substructural logic, then

Σ ⊢L φ iff Eq(Σ) |=V(L) 1 ≤ φ, and

2. if E ∪ {t ≈ s} is a set of equations in L and V is a subvariety of FL,
then

E |=V t ≈ s iff Fm(E) ⊢L(V) t\s ∧ s\t.

Proof. By Corollary 4.9 of [7], every extension of ⊢FL is also algebraizable
with the same equivalence formula and defining equation. By Corollary 2.17
of [7], the equivalent algebraic semantics of a substructural logic L axioma-
tized relative to FL by a set Σ of formulas is axiomatized relative to FL by
the equations Eq(Σ). The translation is obviously onto the subvarieties of
FL. Then, (2) follows from Corollary 2.9 of [7].

4. Filter generation and the deduction theorem

In this section we prove some of the properties of deductive filters and
explore the connections between them and congruence relations, convex nor-
mal subalgebras and convex normal submonoids. Moreover, we describe the
generation process of deductive filters and use it to obtain a form of the
deduction theorem, called parametrized local deduction theorem, that holds
for all substructural logics.

4.1. Deductive filters

Let A be an algebra of the type of pointed residuated lattices and F a
subset of A. Recall that F is deductive filter of A relative to ⊢FL if, for all
homomorphisms f : FmL → A and for all subsets Φ ∪ {φ} of FmL such
that Φ ⊢FL φ, f [Σ] ⊆ F implies f(φ) ∈ F . Also, recall that a theory of ⊢FL

is a deductive filter of FmL relative to ⊢FL. By FL we denote the Gentzen
system introduced in the previous section, as well as the set of theorems of
⊢FL.

If A is an algebra of the type of (pointed) residuated lattices, we set
FL(A) = {t(ā) | t ∈ FL, ā ∈ Aα(t)}, where α(t) is the arity of the term t.
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Lemma 4.1. Let A be an algebra of the type of (pointed) residuated lattices.
If a subset F of A is a deductive filter of A relative to ⊢FL and x, y ∈ A,
then

(fl) FL(A) ⊆ F .
(mpℓ) If x, x\y ∈ F , then y ∈ F .
(adju) If x ∈ F , then x ∧ 1 ∈ F .
(pn) If x ∈ F , then y\xy, yx/y ∈ F .

Proof. (fl) is clear from the definition of a deductive filter. For (mpℓ), it
suffices to show that φ, φ\ψ ⊢FL ψ, for all φ, ψ ∈ FmL; i.e. that there is a
proof of the sequent ⇒ ψ in FL from the sequents ⇒ φ and ⇒ φ\ψ.

⇒ φ

⇒ φ\ψ

φ⇒ φ
(id)

ψ ⇒ ψ
(id)

φ, φ\ψ ⇒ ψ
(\ ⇒)

φ⇒ ψ
(cut)

⇒ ψ
(cut)

Likewise, we verify the rules (adju) and (pn).

Note that theories of ⊢FL are deductive filters of FmL, so theories are
closed under the rules (fl), (mpℓ), (adju) and (pn). Conversely, to establish
that a rule is satisfied by all deductive filters, it is enough to establish that
the rule is satisfied by all theories; i.e. it is enough to consider only one
algebra of the type of residuated lattices: the absolutely free algebra FmL

and its deductive filters (namely the theories). We choose to state the results
in the more general setting of algebras of the type of (pointed) residuated
lattices and deductive filters, rather than for FmL and theories, because we
wish to apply them to residuated lattices.

Lemma 4.2. Let A be an algebra of the type of (pointed) residuated lattices
and F a deductive filter of A relative to a consequence relation that satisfies
(fl), (mpℓ), (adju) and (pn). Then, F is closed under the following rules,
where x, y, z ∈ A.
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(tr ℓ) If x\y, y\z ∈ F , then x\z ∈ F .
(n) If x ∈ F and y ∈ A, then (x\y)\y, y/(y/x) ∈ F .
(npℓ) If x ∈ F and y\(x\z) ∈ F , then y\z ∈ F .
(npr) If x ∈ F and (z/x)/y ∈ F , then z/y ∈ F .
(sym) For all x, y ∈ A, x/y ∈ F iff y\x ∈ F .
(p) If x, y ∈ F , then xy ∈ F .
(adj ) If x, y ∈ F , then x ∧ y ∈ F .
(pnu) If x ∈ F and z ∈ A, then z\xz ∧ 1, zx/z ∧ 1 ∈ F .
(upm) If x ∧ y ∈ F , then x, y ∈ F .
(mpr) If x, y/x ∈ F , then y ∈ F .
(nu) If x ∈ F and y ∈ A, then (x\y)\y ∧ 1, y/(y/x) ∧ 1 ∈ F .
(u) 1 ∈ F .

Proof. (tr ℓ): Note that (y\z)\[(x\y)\(x\z)] ∈ FL(A) ⊆ F . If x\y, y\z ∈
F , then two applications of (mpℓ) yield x\z ∈ F .

(n): If x ∈ F , then, (x\y)\[x(x\y)] ∈ F , by (pn). Moreover, we have
{(x\y)\[x(x\y)]}\[(x\y)\y] ∈ FL(A), so (x\y)\y ∈ F , by (mpℓ). The oppo-
site formula is in F by a similar argument.

(npℓ): If x ∈ F , then (x\z)\z ∈ F , by (n). Consequently, we have
[y\(x\z)]\(y\z) ∈ F , by (mpℓ), since [(x\z)\z]\{[y\(x\z)]\(y\z)} ∈ FL(A).
On the other hand, we have {[y\(x\z)]\(y\z)}\(y\z) ∈ F , by (n), since
y\(x\z) ∈ F . Thus, we obtain y\z ∈ F , by (mpℓ). The proof of (npr) is
similar.

(sym): Note that (y/(x\y))/x ∈ FL(A), so, if x\y ∈ F , then y/x ∈ F ,
by (npr). For the converse direction we use (npℓ) and x\[(y/x)\y] ∈ F .

(p): If x ∈ F , then y\xy ∈ F , by (pn). If, moreover, y ∈ F , then xy ∈ F ,
by (mpℓ).

(adj ): If x, y ∈ F , then x∧1, y∧1 ∈ F , by (adju). So, (x∧1)(y∧1) ∈ F ,
by (p). Since (x ∧ 1)(y ∧ 1)\(x ∧ y) ∈ FL(A), we have x ∧ y ∈ F , by (mpℓ).

(pnu) follows from (pn) and (adju). (upm) follows from (mpℓ) and the
fact that (x ∧ y)\y ∈ FL(A). (mpr) follows from (mpℓ) and (sym). (nu)
follows from (n) and (adju). Finally, (u) follows from (fl).

Theorem 4.3. Let A be an algebra of the type of (pointed) residuated lat-
tices. A subset F of A is a deductive filter of A relative to ⊢FL iff it is closed
under the rules (fl), (mpℓ), (adju) and (pn).

Proof. For every sequent s = (ψ1, ψ2, . . . , ψn ⇒ φ), we define fm(s) =
(ψ1ψ2 · · ·ψn)\φ. In our forthcoming paper [22] it is shown that for every set
of sequents S∪{s}, we have S ⊢FL s iff fm[S] ⊢FL fm(s); actually we show



Algebraization, PLDT and interpolation for substructural logics over FL. 15

that the two consequence relations ⊢FL and ⊢FL are equivalent. The proof
of the theorem is an easy consequence of this result.

Here we give a different proof. We show that any finitary and substitu-
tion invariant consequence relation ⊢ on FmL that satisfies the rules (fl),
(mpℓ), (adju) and (pn) is algebraizable with defining equation 1 ≈ x∧ 1 and
equivalence formula x\y ∧ y\x, and that an equivalent algebraic semantics
for ⊢ is the variety FL of pointed residuated lattices. It follows then, by
Theorem 3.2, that ⊢ = ⊢FL.

As in the proof of Theorem 3.2, we need to show that for φ∆ψ =
φ\ψ ∧ ψ\φ and for all φ, ψ, χ ∈ FmL we have ⊢ φ∆φ; φ∆ψ ⊢ ψ∆φ;
φ∆ψ,ψ∆χ ⊢ φ∆χ; and φ1 ∆φ2, ψ1 ∆ψ2 ⊢ (φ1 ⋆ψ1) ∆(φ2 ⋆ψ2), for all ⋆ ∈
{∧,∨, ·, \, /}. Moreover, we need to show that, for δ(x) = 1 and ε(x) = x∧1,
we have φ ⊣⊢ δ(φ) ∆ ε(φ).

In the following, we often refer to formulas and claim that they are
provable in FL, i.e. they are theorems of ⊢FL. To show the provability of φ
it is enough to construct a proof of ⇒ φ in FL as in Figure 2.

We assume that ⊢ satisfies the following rules:
(fl) If ⊢FL φ, then ⊢ φ. (mpℓ) φ, φ\ψ ⊢ ψ.
(adju) φ ⊢ φ ∧ 1. (pn) φ ⊢ ψ\φψ and φ ⊢ ψφ/ψ.

By Lemma 4.2, ⊢ satisfies all the rules stated in it. Note that ⊢FL

φ\φ ∧ φ\φ, so ⊢ φ\φ ∧ φ\φ, by (fl).

Moreover, ⊢ (φ\ψ∧ψ\φ)\(ψ\φ∧φ\ψ), by (fl), so φ\ψ∧ψ\φ ⊢ ψ\φ∧φ\ψ,
by (mpℓ).

We have φ\ψ ∧ ψ\φ ⊢ φ\ψ, and ψ\χ ∧ χ\ψ ⊢ ψ\χ, by (upm). So,
φ\ψ∧ψ\φ, ψ\χ∧χ\ψ ⊢ φ\χ, by (tr ℓ). Likewise, φ\ψ∧ψ\φ, ψ\χ∧χ\ψ ⊢ χ\φ,
so φ\ψ ∧ ψ\φ, ψ\χ ∧ χ\ψ ⊢ φ\χ ∧ χ\φ, by (adj ).

Note that ⊢FL [1\(φ∧1)∧ (φ∧1)\1]\(φ∧1) and ⊢FL (φ∧1)\[1\(φ∧1)∧
(φ∧1)\1]. So, 1\(φ∧1)∧(φ∧1)\1 ⊣⊢ φ∧1, by (fl) and (mpℓ). Moreover, φ ⊣⊢
φ∧1, by (adj ), (upm) and the fact that ⊢ 1. Thus, 1\(φ∧1)∧(φ∧1)\1 ⊣⊢ φ.

Observe that if φ1, ψ1 ⊢ χ1 and φ2, ψ2 ⊢ χ2, then φ1∧φ2, ψ1∧ψ2 ⊢ χ1∧χ2,
by (adj ) and (upm). We will use this fact to reduce the work in half in the
following proofs.

For ⋆ = ∧, we have ⊢ (φ1\φ2)\[(φ1∧ψ1)\φ2] and ⊢ (φ1\φ2)\[(φ1∧ψ1)\ψ1],
by (fl), so φ1\φ2 ⊢ (φ1 ∧ ψ1)\φ2 and φ1\φ2 ⊢ (φ1 ∧ ψ1)\ψ1, by (mpℓ),
and φ1\φ2 ⊢ (φ1 ∧ ψ1)\φ2 ∧ (φ1 ∧ ψ1)\ψ1, by (adj ). On the other hand, ⊢
[(φ1∧ψ1)\φ2∧(φ1∧ψ1)\ψ1]\[(φ1∧ψ1)\(φ2∧ψ1)], by (fl), so (φ1∧ψ1)\φ2∧(φ1∧
ψ1)\ψ1 ⊢ (φ1∧ψ1)\(φ2∧ψ1), by (mpℓ). Thus, φ1\φ2 ⊢ (φ1∧ψ1)\(φ2∧ψ1). A
similar argument shows that ψ1\ψ2 ⊢ (φ2∧ψ1)\(φ2∧ψ2). So, φ1\φ2, ψ1\ψ2 ⊢
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(φ1∧ψ1)\(φ2∧ψ2), by (tr ℓ). By the argument of the previous paragraph, we
get φ1\φ2∧φ2\φ1, ψ1\ψ2∧ψ2\ψ1 ⊢ (φ1∧ψ1)\(φ2∧ψ2)∧ (φ2∧ψ2)\(φ1∧ψ1).

For ⋆ = ·, by (fl), we have ⊢ (φ1\φ2)\(ψ1φ1\ψ1φ2), so, by (mpℓ), we
obtain φ1\φ2 ⊢ ψ1φ1\ψ1φ2. On the other hand ⊢ (ψ2/ψ1)\(ψ2φ2/ψ1φ2),
by (fl), so ψ2/ψ1 ⊢ ψ2φ2/ψ1φ2, by (mpℓ). By (sym), we have ψ1\ψ2 ⊢
ψ1φ2\ψ2φ2; hence, φ1\φ2, ψ1\ψ2 ⊢ ψ1φ1\ψ2φ2, by (tr ℓ).

For ⋆ = \, we have ⊢ (φ1\φ2)\[(ψ1\φ1)\(ψ1\φ2)], by (fl), so φ1\φ2 ⊢
(ψ1\φ1)\(ψ1\φ2), by (mpℓ). Moreover, ⊢ (ψ2\ψ1)\[(ψ2\φ2)/(ψ1\φ2)], by
(fl), so using (mpℓ) we have ψ2\ψ1 ⊢ (ψ2\φ2)/(ψ1\φ2) and, by (sym),
ψ2\ψ1 ⊢ (ψ1\φ2)\(ψ2\φ2). Thus, φ1\φ2, ψ2\ψ1 ⊢ (ψ1\φ1)\(ψ2\φ2), by (tr ℓ).

We leave the verification of the cases ⋆ = ∨ and ⋆ = / to the reader.

So, ⊢ is algebraizable with defining equation 1 ≈ x ∧ 1 and equivalence
formula x\y ∧ y\x. To show that FL is the equivalent algebraic seman-
tics of ⊢, we proceed exactly as in the last two paragraphs of the proof of
Theorem 3.2.

Corollary 4.4. A subset F of FmL is a theory of ⊢FL iff
(fl) FL ⊆ F .
(mpℓ) If φ, φ\ψ ∈ F , then ψ ∈ F .
(adju) If φ ∈ F , then φ ∧ 1 ∈ F .
(pn) If φ ∈ F , then ψ\φψ, ψφ/ψ ∈ F .

It is possible to reduce FL in (fl) to a finite list of axioms (axiom
schemata rather). This provides a Hilbert-style presentation of the con-
sequence relation ⊢FL; substructural logics are axiomatic extensions of this
Hilbert system. In [22], the Hilbert system is further refined into a system
that enjoys the strong separation property.

Consequently, we have the following description of substructural logics
(c.f. [40]):

Corollary 4.5. A set of formulas L is a substructural logic iff it is closed
under substitution and the rules (fl), (mpℓ), (adju) and (pn).

A deductive filter F of an algebra A of the type of (pointed) residuated
lattices is called integral, if x\(1 ∧ x) ∈ F , for every x ∈ A; it is called
contractive, if x\x2 ∈ F , for every x ∈ A; finally, it is called commutative, if
xy\yx ∈ F , for every x, y ∈ A. Note that this definition agrees with the one
for substructural logics on page 9.

Lemma 4.6. Let A be an algebra of the type of (pointed) residuated lattices.
Condition (pn) for a subset F of A to be a deductive filter can be replaced
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by either (n), or (sym), or both of (npℓ) and (npr). Moreover, the combi-
nation of conditions (adju) and (pn) can be replaced by (pnu). Among the
conditions in the definition of an deductive filter, (pn) is redundant, if F is
commutative, and (adju) is redundant, if F is integral.

Proof. In the proof of Lemma 4.2 we showed that, under the assumption
of (fl), (mpℓ) and (adju), condition (sym) follows from the conjunction of
(npℓ) and (npr), that conditions (npℓ) and (npr) follow from (n), and that
condition (n) follows from (pn). We will show that, under the same assump-
tions, (pn) follows from (sym). Since x\(xy/y) ∈ FL(A) ⊆ F , if x ∈ F then
xy/y ∈ F by (mpℓ). By (sym), we have y\xy ∈ F . Likewise, we show that
yx/y ∈ F , when x ∈ F .

Assume that conditions (fl), (mpℓ) and (pnu) hold. We will show that
conditions (adju) and (pn) hold as well. If x ∈ F , then z\xz ∧ 1 ∈ F , by
(pnu). Moreover, (z\xz ∧ 1)\(z\xz) ∈ FL(A), so, (z\xz) ∈ F , by (mpℓ).
Additionally, if x ∈ F , then 1\x1∧1 ∈ F , by (pnu). Since (1\x1∧1)\(x∧1) ∈
FL(A), we have x ∧ 1 ∈ F , by (mpℓ).

If F is commutative, then we have zx\xz ∈ F . So, x\(z\xz) ∈ F by
(mpℓ), since (zx\xz)\[x\(z\xz)] ∈ FL(A) ⊆ F . If x ∈ F , then z\xz ∈ F ,
by (mpℓ). Thus F satisfies (pn).

If F is integral, then x\(x ∧ 1) ∈ F . So, x ∧ 1 ∈ F , by (mpℓ). Thus, F
satisfies (adju).

We will now concentrate in the case where A is a (pointed) residuated
lattice. Under this assumption, condition (fl) for a subset F of A to be a
deductive filter is equivalent to the stipulation that, for all x ∈ A,

(upu) if 1 ≤ x, then x ∈ F .

To see this, recall that t ∈ FL iff 1 ≤ t holds in all pointed residuated lattices.
Also, let t be a term such that 1 ≤ t holds in all (pointed) residuated lattices,
and ā an element of an appropriate power of A. Then, 1 ≤ t(ā) is true in
A; hence, if we assume (upu), then t(ā) ∈ F . Conversely, assume (fl) holds
and 1 ≤ a, for some a ∈ A. For t = (1∧x)\x, the equation 1 ≤ t holds in all
(pointed) residuated lattices and t(a) = a. So, a = t(a) ∈ FL(A) ⊆ F . In
[44], C. van Alten discusses deductive filters of integral residuated lattices.

Additionally, (upm) takes the form

(up) if x ∈ F and x ≤ y, then y ∈ F .

Note that in every (pointed) residuated lattice A, its positive part A+ =
{a ∈ A | 1 ≤ a} is the least deductive filter of A. Moreover, a (pointed)
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residuated lattice is commutative, integral or contractive iff its positive part
is iff every deductive filter of A is.

Lemma 4.7. If A is a (pointed) residuated lattice and F a subset of A,
then F is a deductive filter of A iff it satisfies one of the following sets of
conditions.

1. Conditions (u), (up), (mpℓ) and (pnu),

2. Conditions (u), (up), (mpℓ), (adju) and (n),

3. Conditions (u), (up), (p) and (pnu),

4. Conditions (u), (up), (p), (adju) and (pn).

Among the last list of conditions, (pn) is redundant, if A is commutative;
(adju) is redundant, if A is integral; (p) is redundant, if A is contractive.

Proof. To show that (upu) is equivalent to the combination of (u) and (up),
it suffices to show that (up), follows from (upu), under the assumption of
(mpℓ). If we assume that x ∈ F and x ≤ y, then 1 ≤ x\y; hence x\y ∈ F , by
(upu). By (mpℓ), we obtain y ∈ F . Consequently, in the setting of (pointed)
residuated lattices, (fl) is equivalent to the combination of (u) and (up),
under the assumption of (mpℓ).

By Lemma 4.6, (pnu) is equivalent to the combination of (adju) and (pn),
so a deductive filter is defined by conditions (u), (up), (mpℓ) and (pnu). By
the same lemma, (pnu) is equivalent to the combination of (adju) and (n).
We will show that under the assumption of (u), (up) and (pnu), conditions
(mpℓ) and (p) are equivalent. If x, x\y ∈ F , then x(x\y) ∈ F , by (p). Since
x(x\y) ≤ y, we have y ∈ F , by (up). Conversely, it was shown in the proof
of Lemma 4.6, that (p) follows from (mpℓ) and (pn). Since (pn) follows from
(pnu), by the same lemma, we obtain the converse implication.

Moreover, under the assumption of (u), (up) and (p), condition (pnu)
is equivalent to the combination of (adju) and (pn). Indeed, the backward
direction requires no assumptions. Moreover, note that, by Lemma 4.6, the
combination of (adju) and (pn) follows from (p), under the assumption of
(mpℓ) and of (fl). We have seen that, under our hypothesis, (mpℓ) follows
from (p) and (fl) follows from (u) and (up).

Note that if A is commutative, integral or contractive, then every deduc-
tive filter of A has these properties. Therefore, the last part of the lemma
follows from the corresponding part of Lemma 4.6.
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4.2. Convex normal subalgebras and submonoids, congruences

and deductive filters

Let A be a (pointed) residuated lattice. For a, x ∈ A, we define the left
conjugate λa(x) = a\xa∧1 and the right conjugate ρa(x) = ax/a∧1 of x with
respect to a. An iterated conjugate of x is a composition γa1

(γa2
(. . . γan(x))),

where n is a positive integer, a1, a2, . . . , an ∈ A and γai
∈ {λai

, ρai
}, for all

i ∈ {1, 2, . . . , n}. We denote the set of all iterated conjugates of elements of
X ⊆ A by Γ(X). A subset X of A is called normal, if for all x ∈ X and
a ∈ A, λa(x), ρa(x) ∈ X. It is called convex, if for all x, z ∈ X and y ∈ A,
x ≤ y ≤ z implies y ∈ X. A set X is said to be an order filter of A, if
X = ↑X, where ↑X = {a ∈ A | x ≤ a, for some x ∈ X}. For every subset
X of A, we define the sets

X ∧ 1 = {x ∧ 1 | x ∈ X},
∆(X) = {x ∧ (x\1) ∧ 1 | x ∈ X},
Π(X) = {x1x2 · · ·xn | n ≥ 1, xi ∈ X} ∪ {1},
Ξ(X) = {a ∈ A | x ≤ a ≤ x\1, for some x ∈ X} and
Ξ−(X) = {a ∈ A | x ≤ a ≤ 1, for some x ∈ X}.

Note that the negative part A− = {a ∈ A | a ≤ 1} of A is closed under
multiplication and it contains 1, so it is a submonoid of A. If A is a pointed
residuated lattice, we denote its 0-free residuated lattice reduct by Ar. If A

is a residuated lattice, we set Ar = A.

Theorem 4.8. For every (pointed) residuated lattice A, the following prop-
erties hold.

1. If S is a convex normal subalgebra of Ar, M a convex normal in A

submonoid of A−, θ a congruence on A and F a deductive filter of A,
then

(a) Sm(M) = Ξ(M), Sc(θ) = [1]θ and Sf (F ) = Ξ(F−) are convex
normal subalgebras of Ar,

(b) Ms(S) = S−, Mc(θ) = [1]−θ and Mf (F ) = F− are convex, normal
in A submonoids of A−,

(c) Θs(S) = {(a, b) | a\b ∧ 1, b\a ∧ 1 ∈ S}, Θm(M) = {(a, b) | a\b ∧
1, b/a ∧ 1 ∈ M} and Θf (F ) = {(a, b) | a\b, b\a ∈ F} are congru-
ences on A.

(d) Fs(S) = ↑S, Fm(M) = ↑M , and Fc(θ) = ↑[1]θ are deductive
filters of A.
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Moreover, the deductive filters, as well as the congruence relations and
the convex normal submonoids, of A and Ar are identical.

2. The convex, normal subalgebras of Ar, the convex, normal in A sub-
monoids of A− and the deductive filters of A form lattices, denoted by
CNS(Ar), CNM(A) and Fil(A), respectively. All these lattices are
isomorphic to the congruence lattice Con(A) of A via the appropriate
pairs of maps defined above.

3. If X is a subset of A− and Y is a subset of A, then

(a) the convex, normal in A submonoid M(X) of A− generated by X
is equal to Ξ−ΠΓ(X).

(b) The convex, normal subalgebra S(Y ) of A generated by Y is equal
to ΞΠΓ∆(Y ).

(c) The deductive filter F (Y ) of A generated by Y is equal to ↑ΠΓ(Y ∧
1) = ↑ΠΓ(Y ).

(d) The congruence Θ(P ) on A generated by a set of pairs P is equal
to Θm(M(P ′)), where P ′ = {a\b ∧ b\a ∧ 1 | (a, b) ∈ P}.

Proof. The parts of (1) and (2) that do not refer to deductive filters, as
well as (3a) and (3b) are shown in [12]; see also [28]. Moreover, it follows
from Theorem 3.4 and from Theorem 5.1 and Lemma 5.2 of [7] that for
every (pointed) residuated lattice A, the maps F 7→ Θf (F ) and θ 7→ Fθ =
{a ∈ A | 1 θ 1 ∧ a} are mutually inverse lattice isomorphisms between the
lattices Fil(A) and Con(A). It is immediate that Fθ = Fc(θ). Therefore,
the remaining parts of (1) and (2) will follow, if we show that the proposed
maps are indeed the compositions of the isomorphisms already established.

We will show that Sf (F ) = Sc(Θf (F )). If a ∈ Sc(Θf (F )) then a Θf (F )
1, so a\1, 1\a ∈ F . Hence a, 1/a ∈ F , by (sym). Since 1 ∈ F , we get
x = a ∧ 1/a ∧ 1 ∈ F−, by (adj ). Obviously, x ≤ a; also a ≤ (1/a)\1 ≤ x\1.
Thus, a ∈ Sf (F ). Conversely, if a ∈ Sf (F ), then x ≤ a ≤ x\1, for some
x ∈ F−. So, a ∈ F , by (up), and 1/(x\1) ≤ 1/a. Since, x ≤ 1/(x\1), we
have x ≤ 1/a and 1/a ∈ F , by (up). Thus both a\1 and 1\a are in F .
Hence, a ∈ [1]Θf (F ).

Mf (F ) = Ms(Sf (F )) follows from the fact that F− = (Ξ(F−))−. Indeed,
a ∈ (Ξ(F−))−, iff a ≤ 1 and x ≤ a ≤ 1/x for some x ∈ F−, iff a ∈ F−.

To show that Fs(S) = Fc(Θs(S)), note that a ∈ Fc(Θs(S)) iff 1 Θs(S)
1 ∧ a iff 1\(1 ∧ a) ∧ 1, (1 ∧ a)\1 ∧ 1 ∈ S iff 1 ∧ a ∈ S iff a ∈ ↑S. An identical
argument shows that Fm(M) = Fc(Θm(M)).
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Also, note that congruence relations do not change under the expansion
of the language by a constant. So, the congruences of a pointed residuated
lattice coincide with the congruences of its 0-free residuated-lattice reduct.

(3c) We will first show that F (Y ) = F (Y ∧ 1). If y ∈ Y , then y ∧ 1 ≤ y,
so y ∈ ↑(Y ∧ 1) ⊆ F (Y ∧ 1). Hence, F (Y ) ⊆ F (Y ∧ 1). Conversely, if y ∈ Y ,
then y ∧ 1 ∈ F (Y ), so Y ∧ 1 ⊆ F (Y ). Thus, F (Y ∧ 1) ⊆ F (Y ).

By (1b), (F (Y ∧ 1))− is a convex, normal in A submonoid of A− and
contains Y ∧1. So, it contains M(Y ∧1); hence M(Y ∧1) ⊆ F (Y ∧1). Since
F (Y ∧ 1) is increasing, we have ↑M(Y ∧ 1) ⊆ F (Y ∧ 1). On the other hand,
↑M(Y ∧1) is a deductive filter, by (1d), and it contains Y ∧1, so it contains
F (Y ∧ 1). Thus, F (Y ∧ 1) = ↑M(Y ∧ 1) = ↑Ξ−ΠΓ(Y ∧ 1) = ↑ΠΓ(Y ∧ 1),
by (3a). Consequently, F (Y ) = ↑ΠΓ(Y ∧ 1).

If x ∈ ↑ΠΓ(Y ), then it is greater or equal to a product of conjugates of
elements yi of Y . This product is in turn greater or equal to the product
of the same conjugates of the elements yi ∧ 1; so, x ∈ ↑ΠΓ(Y ∧ 1). Thus,
ΠΓ(Y ) ⊆ ↑ΠΓ(Y ∧ 1). Conversely, if x ∈ ↑ΠΓ(Y ∧ 1), then it is greater
or equal to a product of conjugates of elements yi ∧ 1, where yi ∈ Y . Note
that yi ∧ 1 is the left conjugate of yi by 1, so x is greater or equal to a
product of conjugates of the elements yi; i.e., x ∈ ↑ΠΓ(Y ). Consequently,
↑ΠΓ(Y ) = ↑ΠΓ(Y ∧ 1).

(3d) First we will show that Θ(P ) = Θ(P ′ × {1}). For every congruence
θ on A, and every a, b ∈ A, if a θ b, then (a\b ∧ 1) θ (b\b ∧ 1) = 1.
Likewise, b\a ∧ 1 θ 1, so a\b ∧ b\a ∧ 1 θ 1. Conversely, if a\b ∧ b\a ∧ 1 θ 1,
then since a\b ∧ b\a ∧ 1 ≤ a\b ∧ 1 ≤ 1 and the congruence blocks of θ are
convex (θ is a lattice congruence), we have a\b ∧ 1 θ 1; so, a(a\b ∧ 1) θ a.
Since a(a\b ∧ 1) ≤ a(a\b) ∧ a ≤ b ∧ a ≤ a, we get a ∧ b θ a. Likewise,
we have a ∧ b θ b, so a θ b. Thus, for every congruence θ on A, and
every a, b ∈ A, (a, b) ∈ θ iff (a\b ∧ b\a ∧ 1, 1) ∈ θ. Consequently, for every
(a, b) ∈ P , we have (a\b ∧ b\a ∧ 1, 1) ∈ Θ(P ). So, P ′ × {1} ⊆ Θ(P ); hence
Θ(P ′ × {1}) ⊆ Θ(P ). Conversely, for every (a, b) ∈ P , we have (a, b) ∈
Θ(P ′ × {1}), since (a\b ∧ b\a ∧ 1, 1) ∈ Θ(P ′ × {1}). So, P ⊆ Θ(P ′ × {1});
hence Θ(P ) ⊆ Θ(P ′ × {1}).

Finally, we will prove that for every subset X of A−, Θ(X × {1}) =
Θm(M(X)). If x ∈ X, then x/1 ∧ 1 = x, 1/x ∧ 1 = 1 ∈ M(X), so (x, 1) ∈
Θm(M(X)). Consequently, X × {1} ⊆ Θm(M(X)), hence Θ(X × {1}) ⊆
Θm(M(X)). Conversely, if (a, b) ∈ Θm(M(X)), then a/b ∧ 1, b/a ∧ 1 ∈
M(X) = Ξ−ΠΓ(X), so p ≤ a/b and q ≤ b/a, for some p, q ∈ ΠΓ(X). Thus,
pb ≤ a, qa ≤ b, so pqa ≤ pb ≤ a. On the other hand since every element of
X is congruent to 1 modulo Θ(X×{1}), every conjugate and every product
of conjugates of elements of X is congruent to 1. In particular, p, q and pq
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are congruent to 1. So, (pqa, a), (pb, b) ∈ Θ(X × {1}). Since pqa ≤ pb ≤ a,
we have (a, b) ∈ Θ(X × {1}).

It is worth mentioning that the the relations established between pointed
residuated lattices and FL can be transferred verbatim to relations between
residuated lattices and FL+, the system obtained from FL by removing the
constant 0 from the language.

4.3. Parametrized local deduction theorem

By combining the algebraization result of the previous section with the
result on filter generation, we provide a specific form of a parametrized local
deduction theorem for substructural logics. This theorem, together with the
algebraization, connects algebraic arguments with logical derivations, and
thus has many important ramifications, as it can be seen in the next section
as well as in our second paper on substructural logics [21]. In the following
theorem, we give preference to \ over /; nevertheless, the result can be stated
also in terms of the other division connective.

Theorem 4.9. If Σ ∪ ∆ ∪ {φ} is a subset of FmL and L is a substructural
logic, then

Σ,∆ ⊢L φ iff Σ ⊢L (
∏n

i=1 γi(ψi))\φ,

for some non-negative integer n, iterated conjugates γi and ψi ∈ ∆, i < n.
If L is commutative, then

Σ,∆ ⊢L φ iff Σ ⊢L (
∏n

i=1(ψi ∧ 1)) → φ,

for some non-negative integer n,and ψi ∈ ∆, i < n.

Proof. Assume that Σ = {ψj | j ∈ J}, ∆ = {ψi | i ∈ I} and K = I ∪ J .
Then, Σ,∆ ⊢L φ iff {1 ≈ ψk∧1 |k ∈ K} |=V(L) 1 ≈ φ∧1, by Theorem 3.4(1).
Let FV(L) be the free algebra in V(L). By general Universal Algebra con-
siderations, the last statement is equivalent to the fact that (1, φ ∧ 1) is in
the congruence of FV(L) generated by the set {(1, ψk ∧ 1) | k ∈ K}; here we
identify terms with their equivalence classes in the free algebra. Using Theo-
rem 4.8(3d), this is the case if and only if (1, φ∧1) ∈ Θm(M({ψk∧1|k ∈ K})),
which is the case, by Theorem 4.8(1c), if and only if φ∧1 is in the convex nor-
mal submonoid of FV(L) generated by {ψk ∧ 1 |k ∈ K}. By Theorem 4.8(3a)
this is equivalent to the fact that in FV(L) we have

∏n
m=1 γm(ψkm

) ≤ φ, for
some non-negative integer n, some iterated conjugates γm, 1 ≤ m ≤ n, and
some km ∈ K, where 1 ≤ m ≤ n.
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Note that if a, b are elements of a residuated lattice, then b(b\ab∧1) ≤ ab;
i.e. bλb(a) ≤ ab. This allows us to rearrange the order of the factors in
a product, at the cost of replacing some factors by iterated conjugates of
them, to obtain a product less than or equal to the original. In the present
case the insertion of additional iterated conjugates and the fact that the
resulting product is less than or equal to the original one do not create
any problem. Therefore, continuing the sequence of equivalences, we obtain
FV(L) |=

∏n1

m=1 γ
′
m(ψim)

∏n2

l=1 γ
′′
l (ψjl

) ≤ φ, for some non-negative integers
n1, n2, some iterated conjugates γ′m, 1 ≤ m ≤ n1, γ′′l , 1 ≤ l ≤ n2, some im,
1 ≤ m ≤ n1, in some finite subset I0 of I and some jl, 1 ≤ l ≤ n2, in some
finite subset J0 of J . Using the fact that

∏n1

m=1 γ
′
m(ψim)

∏n2

l=1 γ
′′
l (ψjl

) ≤ φ is
equivalent to

∏n2

l=1 γ
′′
l (ψjl

) ≤ (
∏n1

m=1 γ
′
m(ψim))\φ and working as before we

obtain Σ ⊢L (
∏n1

m=1 γ
′
m(ψim))\φ.

For the commutative case, note that if a, b are elements of a residuated
lattice, then a∧1 ≤ b\ab∧1 = λb(a) and a∧1 ≤ ρb(a); hence, a∧1 ≤ γ(a), for
every iterated conjugate γ. Therefore, any product of conjugates is bounded
from below by a product of simple conjugates of the form λ1(a) = a∧ 1.

If we set ∆ = {ψ} in the preceding theorem, we see that substructural
logics have a parametrized local deduction theorem (PLDT), in the sense of
Czelakowski and Dziobiak. These two authors prove that protoalgebraic log-
ics, and hence algebraizable logics also, have a PLDT; therefore, substruc-
tural logics have a PLDT, by Theorem 3.4. The proof for protoalgebraic
logics is not constructive, but Theorem 4.9 shows a concrete form of PLDT
for substructural logics.

It is noted in Theorem 4.9 that under the assumption of commutativity a
local deduction theorem (LDT), that is a form of the PLDT without parame-
ters, can be shown to hold. Recall that a consequence relation ⊢ over a set of
formulas Fm has a LDT iff there exists a family P of sets P (x, y) of formulas
over two variables x, y, such that for all T ∪ {φ, ψ} ⊆ Fm, T ∪ {φ} ⊢ ψ iff
T ⊢ P (φ, ψ), for some P (x, y) ∈ P. Actually, a LDT in the form given in
Theorem 4.9 holds under conditions weaker that commutativity; for exam-
ple it holds for the logic corresponding to the variety axiomatized relative
to FL by the equation (x ∧ 1)ny ≈ y(x ∧ 1)n, for any fixed positive integer
n; for further remarks on the LDT for substructural logics, see Corollary 5.7
and [18]. For more on the PLDT and LDT, see [15], [14] and [8].

In particular, if L is commutative and integral, then we obtain the fa-
miliar form:

Σ, ψ ⊢L φ iff Σ ⊢L ψ
n → φ, for some non-negative integer n.
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We also note that if L is commutative and contractive, then the ψi ∈ ∆
in the LDT of Theorem 4.9, can be taken to be distinct.

Theorem 4.9 is a generalization of various LDT’s for particular substruc-
tural logics; see chapter 2, section 3.2 of [42] and section 4.3 of [43].

5. Interpolation

In this section, we discuss the interpolation property for substructural
logics. We consider various types of interpolation properties and we describe
their connections. As a corollary we obtain the amalgamation property for
some varieties of residuated lattices.

We say that a substructural logic L has the interpolation property, or
just IP for short, if for all formulas φ, ψ, whenever ⊢L φ\ψ, there exists a
formula σ such that

1. ⊢L φ\σ and ⊢L σ\ψ, and

2. V ar(σ) ⊆ V ar(φ) ∩ V ar(ψ),

where V ar(φ) denotes the set of propositional variables in φ. A formula σ
that satisfies conditions (1) and (2) is called an interpolant of φ\ψ.

A substructural logic L has the deductive interpolation property, or just
DIP for short, if for all formulas φ, ψ, whenever φ ⊢L ψ, there exists a
formula σ such that

1. φ ⊢L σ and σ ⊢L ψ, and

2. V ar(σ) ⊆ V ar(φ) ∩ V ar(ψ).

The DIP is called turnstile interpolation property, by Madarasz [31] and
interpolation property for deducibility, by Maksimova [32].

Note that if a substructural logic satisfies the standard deduction theo-
rem, that is if φ ⊢L ψ iff ⊢L φ\ψ, for all φ, ψ, then DIP is equivalent to IP.
For example, superintuitionistic logics fall in this class.

A substructural logic L has the strong deductive interpolation property,
or just SDIP for short, if for all sets of formulas Γ ∪ Σ ∪ {ψ}, if Γ,Σ ⊢L ψ,
then there exists a set of formulas ∆ such that

1. Γ ⊢L δ, for all δ ∈ ∆ and ∆,Σ ⊢L ψ, and

2. V ar(∆) ⊆ V ar(Γ) ∩ V ar(Σ ∪ {ψ}).
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The SDIP is called Maehara interpolation property in [16] and GINT
in [35]. Note that the interpolant set ∆ in the SDIP can be chosen to be
a singleton in the case of substructural logics, because ⊢L is finitary and
conjunctive; see Lemma 3.1. More generally, each modification of the SDIP,
obtained by stipulating that some of the sets Γ, Σ or ∆ are finite or single-
tons, is equivalent to the SDIP. Moreover, any of the above modifications
that assumes that Σ is empty is equivalent to DIP.

Lemma 5.1.

1. If a substructural logic has the SDIP then it has the DIP, as well.

2. For commutative substructural logics the converse is also true. In gen-
eral, the converse holds for any substructural logic with a LDT.

Proof. (1) In view of the preceding remark, DIP is a special case of SDIP
for Γ = {φ} and Σ = ∅.

(2) Let L be a commutative substructural logic that has the DIP and
let Γ,Σ ⊢L ψ. By the local deduction theorem, we have Γ ⊢L (

∏n
i=1(σi ∧

1)) → ψ, for some σi ∈ Σ. By Lemma 3.1(1) and (2), there is a finite
subset Γ0 of Γ such that

∧
Γ0 ⊢L (

∏n
i=1(σi ∧ 1)) → ψ. By the DIP, there

exists a formula σ such that
∧

Γ0 ⊢L σ; σ ⊢L (
∏n

i=1(σi ∧ 1)) → ψ; and
V ar(σ) ⊆ V ar(

∧
Γ0) ∩ V ar(

∏n
i=1(σi ∧ 1)) → ψ). So, we have Γ ⊢L σ;

σ,Σ ⊢L ψ; and V ar(σ) ⊆ V ar(Γ) ∩ V ar(Σ ∪ {ψ}).

It is clear from the proof above that (1) holds if ⊢L is a finitary and
conjunctive consequence relation, and that (2) holds under the additional
assumption that ⊢L admits a LDT; see also [16], p. 211.

Lemma 5.2. If a commutative substructural logic has the IP, then it has the
SDIP.

Proof. Assume that L is a commutative substructural logic that has the IP;
by the preceding lemma, it suffices to show that L has the DIP. If φ ⊢L ψ,
then, by the local deduction theorem (Theorem 4.9), there exists a non-
negative integer n such that ⊢L (φ∧1)n → ψ. So, by the IP, there exists a σ
such that ⊢L (φ∧1)n → σ, ⊢L σ → ψ and V ar(σ) ⊆ V ar((φ∧1)n)∩V ar(ψ).
Consequently, there exists a σ such that φ ⊢L σ, σ ⊢L ψ and V ar(σ) ⊆
V ar(φ) ∩ V ar(ψ).

A subvariety V of FL has the congruence extension property, CEP for
brevity, if, for every A ∈ V, every subalgebra B of A and for every congru-
ence θ on B, there exists a congruence θ′ on A such that θ′ ∩B2 = θ.
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Recall that a variety V has the amalgamation property, AP for brevity, if
whenever A,B,C are in V and f : A → B, g : A → C are embeddings, then
there exists an algebra D in V and embeddings f ′ : B → D, g′ : C → D

such that f ′ ◦ f = g′ ◦ g.

A subvariety V of FL has the equational interpolation property, EqIP for
brevity, if for every set of equations G∪ S ∪ {ε}, whenever G,S |=V ε, there
exists a set of equations D such that

1. G |=V δ, for all δ ∈ D and D,S |=V ε, and

2. V ar(D) ⊆ V ar(G) ∩ V ar(S ∪ {ε}).

Our definition of EqIP is essentially the same as the one considered
in [47]. The additional assumption that the set of terms on the common
variables of G and S ∪ {ε} is non-empty is satisfied in our case, because of
the existence of constants in the language, and is omitted from our definition.
Note that [29] and [3] consider a different notion, which is equivalent to the
algebraic formulation of our DIP.

Lemma 5.3. [47] A class of algebras has the EqIP iff it has the AP and the
CEP.

The following is a direct consequence of the algebraization theorem and
the definitions.

Lemma 5.4. A substructural logic L has the SDIP iff V(L) has the EqIP.

Corollary 5.5. A substructural logic L has the SDIP iff V(L) has the CEP
and the AP.

In [35] two properties, ROB* and limited GINT, both weaker than EqIP
are introduced. The ROB* property is shown to be equivalent to AP and
limited GINT is shown to be equivalent to CEP. In view of the algebraization
theorem, it is natural to introduce the following two properties for logics,
RP and ExIP, that correspond to ROB* and limited GINT.

A substructural logic L has the Robinson property, RP for brevity, if
for all sets of formulas Γ ∪ Σ ∪ {φ}, if Γ,Σ ⊢L φ implies Σ ⊢L φ, under
the assumption that Γ ⊢L ψ iff Σ ⊢L ψ, for all ψ such that V ar(ψ) ⊆
V ar(Γ) ∩ V ar(Σ ∪ {φ}). The RP is called ordinary interpolation property
OIP in [16].
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A substructural logic L has the extension interpolation property, ExIP
for brevity, if for all sets of formulas Γ ∪ Σ ∪ {ψ}, if Γ,Σ ⊢L ψ, then there
exists a set ∆ of formulas such that

1. Γ ⊢L δ, for all δ ∈ ∆ and ∆,Σ ⊢L ψ, and

2. V ar(∆) ⊆ V ar(Σ ∪ {ψ}).

The property ExIP is introduced in [16]. Note that the corresponding prop-
erty, limited GINT, given in [35] demands that V ar(Σ ∪ {ψ}) ⊆ V ar(Γ).
Nevertheless, this assumption can be omitted, since we can add ‘dummy’
assumptions of the form p\p to Γ, for all p ∈ V ar(Σ∪{ψ})−V ar(Γ), and ob-
tain a set Γ′ that can substitute Γ, and that satisfies V ar(Σ∪{ψ}) ⊆ V ar(Γ′)
and Γ′,Σ ⊢L ψ.

The following is a consequence of Lemma 5.3, Lemma 5.4 and results in
[35].

Corollary 5.6. A substructural logic L has the SDIP iff it has both the RP
and the ExIP.

From [8] and [16] we have the following.

Corollary 5.7. A substructural logic L has the ExIP iff L has a LDT iff
V(L) has the CEP.

We can summarize the relations, modulo algebraization, of the various
properties we discussed as follows.

EqIP ⇔ AP + CEP ⇔ SDIP ⇔ DIP + LDT
AP ⇔ ROB* ⇔ RP

CEP ⇔ ExIP ⇔ LDT

Theorem 5.8. If L is a commutative substructural logic, then the following
conditions are equivalent.

1. L has the SDIP.

2. L has the DIP.

3. L has the RP.

4. V(L) has the AP.

Consequently, if L is commutative and has the IP, then V(L) has the AP.
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Note that the preceding theorem holds for all algebraizable, conjunctive
consequence relations that have a LDT.

If b is any subset of {e, c,w, i}, the logic FLb is called basic substructural
logic. For example, FLw, FLec and FL are basic substructural logics. There
is a total of ten such logics because FLecw = FLcw, FLeci = FLci and
FLi ⊆ FLw. If L is any of the basic substructural logics, the positive
fragment L+ of L is defined as the logic on the 0-free fragment of the language
axiomatized by the axioms and rules of the Gentzen system of L that do not
involve 0 (essentially, it applies only to (0w)). Note that FLw

+ = FLi
+.

We attach the prefixes I, C and K to varieties of (pointed) residuated
lattices to denote their subvarieties axiomatized by x ≤ 1, xy ≈ yx and
x ≤ x2, respectively. For example, KCRL = RL ∩ Mod(x ≤ x2, xy ≈ yx) =
V(FL+

ec).

Theorem 5.9. Every basic substructural logic and every positive fragment
of such a logic, except for FLc and FLc

+, has the IP. Consequently, the
varieties CFL, CRL, KCRL and CIRL have the AP.

Proof. The fact that the logics have the IP can be shown by Maehara’s
method; see [38] for more details.

T. Kowalski obtained the above result for FLew and CIRL in his un-
published draft, and H. Takamura extended the technique and obtained the
result for FLe and CFL.

Proposition 5.10. The properties IP and SDIP are independent.

Proof. We first show that the IP does not imply the SDIP. It follows from
Theorem 5.9 that FLw has the IP. On the other hand, V(FLw) = IFL does
not have the CEP; [18] contains a 5-element integral pointed residuated
lattice that does not have the CEP. By Lemma 5.3 and Lemma 5.4, FLw

does not have the SDIP.
To see that DIP does not imply the IP, let MV be  Lukasiewicz’ infinite-

valued logic; see [13]. Recall that V(MV) is generated by the commutative
pointed residuated lattice with underlying set the interval of real numbers
[0, 1], under the usual order, where ab = max{0, a + b − 1} and a → b =
min{1, 1− a+ b}. It is easy to see that ⊢MV (p∧¬p) → (q∨¬q), where p, q
are distinct propositional variables and ¬p = p→ 0, but the formula has no
interpolants. On the other hand, MV has the AP, see [33], so it has the DIP.
In particular, for the example under discussion, i.e., for p ∧ ¬p ⊢MV q ∨ ¬q
we have p∧¬p ⊢MV 0, because ⊢MV (p∧¬p)2 → 0 , and 0 ⊢MV q ∨¬q.
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