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ABSTRACT

Robust speech recognition in car environments has been an
important application and attracted great research interests
in recent years. Its performance dramatically degrades due
to various kinds of noises existing in car environments. To
deal with acoustic noises, we have proposed two noise re-
duction systems which are based on microphone array and
post-filtering. In this paper, we first describe the two noise
reduction systems previously suggested. Then, we are de-
voted to investigate the performance improvements of the
automatic speech recognition (ASR) system when the two
noise reduction systems are used as the front-end proces-
sors. The speech recognition experiments were conducted
using multi-channel car noise recordings and AURORA-2J
speech database, the recognition results are also reported.
Some discussions on the proposed noise reduction systems
are finally presented based on the experimental results.

1. INTRODUCTION

In the past several decades, hands-free speech processing
technology in car environments has been of increased re-
search interests for many applications, such asautomatic
speech recognition(ASR) system. One main problem asso-
ciated with this technology is that the signals received by the
distant microphones are severely corrupted by various kinds
of noises. Although a large number of algorithms have been
published so far [1]-[5], the problem of suppressing noise
signals and improving the performance of the speech recog-
nition systems in car environments is still very interesting
and challenging in speech signal processing field. A poten-
tial solution is to construct a practically effective and com-
putationally efficient front-end processor with the objective
of developing a robust speech recognition system in adverse
environments.

This research is conducted as a program for the “Fostering Talent in
Emergent Research Fields” in Special Coordination Funds for Promoting
Science and Technology by Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.

A variety of noise reduction algorithms for in-car appli-
cations have been reported in the literature [1]-[5]. Matas-
soni et al. [2] adopted the single-channel based schemes,
magnitude spectral subtraction and log-MMSE estimator,
to suppress the background noise. The noise-suppressed
signals were then used to do speech recognition, resulting
in the improved recognition rate. In comparison of single-
channel technique, multi-channel technique has shown sub-
stantial superiority in reducing noise due to its spatial fil-
tering capability. Zhanget al. [4] proposed a “constrained
switched adaptive beamformer” for ASR system in real car
environments. However, its relatively slow convergence rate
degrades its performance in dealing with non-stationary noise
signals in practical conditions. Moreover, Grenier evalu-
ated the performance of thegeneralized sidelobe canceller
(GSC) beamformer in car environments [3]. Further, he
pointed out that the GSC beamformer, as a front-end pro-
cessor for ASR system, is not effective in high-noise condi-
tions.

In this paper, we first show the characteristics of the
noise fields in car environments and introduce two noise
reduction algorithms based on microphone array and post-
filtering [7]-[10]. The suggested noise reduction algorithms
are then used as front-end processors for a speech recogni-
tion system to improve its robustness and recognition rate
in adverse car environments. Speech recognition results are
presented to show the effectiveness of two noise reduction
algorithms. Finally, we give some discussions on two noise
reduction systems.

2. ANALYSIS OF NOISE FIELD IN CAR
ENVIRONMENTS

To characterize a noise field, a widely used measure is the
magnitude-squared coherence(MSC) function, defined as:

Γxixj
(k, `) =

|φxixj (k, `)|2
φxixi

(k, `)φxjxj
(k, `)

, (1)
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Fig. 1. Magnitude-squared coherence function in car environment
(d = 10cm).

whereφxixj
(k, `) is the cross-spectral density between two

signalsxi(t) andxj(t); φxixi
(k, `) andφxjxj

(k, `) are the
auto-spectral densities ofxi(t) andxj(t), respectively; and
k and` are the frequency index and the frame index.

A diffuse noise field has been shown to be a reason-
able model for many practical noise environments [6]. The
theoretical MSCs of a perfect diffuse noise field against
frequency are plotted in Fig. 1, along with the measured
MSCs using real-world car noises. From Fig. 1, some
characteristics of car noise environments can be easily ob-
served: (i) car noise environment can be modelled as a dif-
fuse noise field; (ii) MSC in car conditions is a frequency-
dependent measure; (iii) noises on different microphones
are high-correlated in the low frequencies and low-correlated
in the high frequencies.

3. NOISE REDUCTION ALGORITHMS BASED ON
MICROPHONE ARRAY AND POST-FILTERING

Considering an array with 3 microphones in a noisy envi-
ronment, shown in Fig. 2, the observed signal on each mi-
crophone is composed of desired speech signal, localized
noise and non-localized noise. Here, localized noise in-
cludes noise component coming from some determinable
directions (point noise sources), eg., passenger’s interfering
speech and other passing car noise. While non-localized
noise includes noise components coming from all directions,
such as reverberated noise signals in car environments. The
objective of this research is to reduce both localized and
non-localized noises simultaneously while keeping the de-
sired speech distortionless with the goal of improving the
recognition rate and robustness of ASR systems. To im-
plement this idea, we constructed the noise reduction sys-
tems, shown in Fig. 3, which consists of localized noise
suppression and non-localized noise suppression, detailed
in the following.
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Fig. 2. Microphone array and signal model.

3.1. Localized noise suppression[7][10]

The basic idea of suppressing localized noise is first to esti-
mate the spectrum of localized noise and then to subtract it
from that of noisy observation.

To estimate localized noises, the authors have proposed
a hybrid noise estimation technique, which combines a sub-
tractive beamformer based multi-channel estimation tech-
nique and a soft-decision based single-channel estimation
technique, yielding more accurate spectral estimates for lo-
calized noises [7]. The spectrum of localized noise,N̂ c(k),
calculated by the hybrid technique, is given by:

N̂ c(k, `) =

{
N̂ c

m(k, `), not array nulls

N̂ c
s (k, `), array nulls

(2)

whereN̂ c
m(λ, ω) andN̂ c

s (λ, ω) are the estimated spectrum
for localized noise by the multi-channel technique [7] and
the single-channel technique [12], respectively. Further-
more, we presented arobust and accurate speech absence
probability(RA-SAP) estimator which makes full use of the
characteristic of the high estimation accuracy of the multi-
channel technique and considers the strong correlation of
speech presence uncertainty between adjacent frequencies
and consecutive frames [10]. This RA-SAP estimator fur-
ther enhances the estimation accuracy of this hybrid estima-
tion technique. The estimated spectrum of localized noise
is then reduced from that of the noisy observation by non-
linear spectral subtraction.

3.2. Non-localized noise suppression

To further suppress non-localized noise, we have presented
two post-filters, described in the following.

3.2.1. Post-filter 1[8][10]

This post-filter is based on theoptimally-modified log-spectral
amplitude(OM-LSA) estimator which is characterized by
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Fig. 3. Block diagram of proposed algorithms.

the following gain function [12]:

G(k, `) = GH1(k, `)1−q(k,`)G
q(k,`)
min , (3)

whereGmin, q(k, `), GH1(k, `) are a constraint constant,
thespeech absence probability(SAP) at spectral subtraction
output and the gain function of the traditional MMSE-LSA
estimator when speech is surely present defined in [11].

According to Eq. (3) and the Bayes’ rule, the perfor-
mance of this post-filter is greatly dependent on thea priori
SAP. To further improve its performance, we proposed a
new estimator for thea priori SAP based on the unchanged
coherence characteristic of the noise field at spectral sub-
traction output. Under the assumption of a diffuse noise
field, MSCs are first computed at spectral subtraction out-
put. The MSC spectra are then divided into two parts: high
frequency region with low MSCs and low frequency region
with high MSCs. In the high frequency region, the MSC
spectra are further divided intoE sub-bands and averaged
across the frequencies in each sub-band, obtaining the av-
erage MSC̄Γe(k, `) in e-th sub-band. Thea priori SAP is
calculated as: if a high averaged coherence (higher than a
thresholdTmaxe) is detected, a speech present state is de-
tected presumably; if a low averaged coherence (low than a
thresholdTmine) is detected, a speech absent state is de-
tected presumably. For the MSCs in [Tmaxe, Tmine], the
a priori SAPs are determined by the linear interpolation.
While, in the low frequency region, we calculate an aver-
age MSCΓ̄(k, `), averaged across the frequencies over the
transient frequencyft which is calculated byft = c/(2d),
wherec andd are the speed of sound and distance of mi-
crophones. Using this average MSC̄Γ(k, `), the a priori
SAPs are determined following the same ideas in the high
frequency region. The estimateda priori SAPs are incorpo-
rated into the post-filter with the purpose of improving the
noise reduction performance of this post-filter [10].

3.2.2. Post-filter 2[9]

This post-filter is developed with a hybrid structure, which
applies a modified Zelinski post-filter in the high frequen-
cies and a Wiener filter in the low frequencies, to deal with
correlated and uncorrelated noise components with the as-
sumption of a diffuse noise field [9]. Under this assump-
tion, uncorrelated noises are found in the frequencies over
the transient frequencyft. Since transient frequencies are
determined by the microphone spacings, we can determine
the different transient frequencies according to the distances
between different microphone pairs. Furthermore, the dif-
ferent transient frequencies divide the full frequency band
into some sub-bands. In each sub-band (except the lowest
sub-band), noise signals are mutually weakly correlated for
the individual frequency of interest on the microphones of
the corresponding pair sets. Thus, the spectral densities of
desired speech and noisy signal can be estimated from the
cross- and auto- spectral densities of multi-channel inputs.
Thus, the gain function of the modified Zelinski post-filter
is given by:

Gmz(k, `)=

1
|Ωm|

∑

{i,j}∈Ωm

<{φx
′
ix
′
j
(k, `)}

1
|Ωm|

∑

{i,j}∈Ωm

[
1
2

(
φx

′
ix
′
i
(k, `)+φx

′
jx
′
j
(k, `)

)], (4)

whereΩm is the microphone pair set form-th sub-band,x
′
i

is the spectral subtraction output ini-th channel.
In the low sub-band, we adopt a single-channel tech-

nique to estimate a Wiener filter. The gain function of this
Wiener filter is:

Gs(k, `) =
SNRpriori(k, `)

1 + SNRpriori(k, `)
, (5)

whereSNRpriori(k, `) is thea priori SNR, which is up-
dated in a decision-directed scheme which significantly re-
duces the residual “musical noise” as detailed in [11]. A
soft-decision based approach is used to estimate the noise
spectrum under speech presence uncertainty [12], which can
update the noise estimate even in speech active periods, im-
proving its performance in dealing with non-stationary noise.

4. EXPERIMENTS AND RESULTS

The studied noise reduction systems were used as front-end
processors for a speech recognizer. Their performance was
evaluated in terms of speech recognition rate in various car
noise environments.

Two noise reduction systems were constructed. The first,
referred to as Algorithm 1, was composed of the micro-
phone array-based localized noise suppression followed by
the post-filter 1. The second, referred to as Algorithm 2, was



composed of the microphone array-based localized noise
suppression followed by the post-filter 2. The noise reduc-
tion systems were first applied on the multi-channel noisy
input signals and outputted enhanced speech signals, which
entered the speech recognition system. Thus, the perfor-
mance improvement caused by the noise reduction systems
is evaluated based on the recognition rate.

To assess the performance of the proposed noise reduc-
tion algorithms, an equally-spaced linear array consisting of
three microphones with inter-element spacing of 10cm was
mounted above the windshield in a car. The array was about
50 cm apart from and directly in front of the driver (tar-
get speech source). The noise recordings were performed
across all channels simultaneously, which were mainly com-
posed of engine noise, high air-condition noise and the noise
coming from frication between tyres and road. The multi-
channel noise signals are first re-sampled to 8kHz before
doing experiments.

The speech data were selected from AURORA-2J database
for training and testing. The acoustic model was trained
using 8440 sentences, uttered by 55 persons. For testing,
we generated two sets of noise-corrupted data. The first
data set (Set A) involved the addition of the randomly se-
lected segments of the multi-channel car noise across 1001
test sentences in AURORA-2J at different SNR levels from
0dB to 20dB in 5dB steps. The second data set (set B)
involved the addition of the multi-channel car noise and a
secondary speakers speech (passengers interference), which
was Japanese digit /ichi/, with DOA of 60 degree to the
right, across 1101 test sentences in AURORA-2J at differ-
ent SNR levels same as above. Data set B corresponds to a
realistic context for a typical car environment where a pas-
senger is speaking.

The signals were pre-emphasized with a coefficient 0.97.
A hamming window of 32ms length with 16ms frame rate
was used. The first 12 dimensions of de-correlated log com-
pressed Mel energy spectrum was chosen (the zero-th order
coefficient was discarded). Combining with the log power
energy, we got 13 dimensional static feature vector. To-
gether with their first and second order dynamic values, 39
dimensional feature vectors were formed. The acoustic mod-
els consist of ten digits, one silence and short pause models.
Each distribution of digit has 18 states with 16 output dis-
tributions. Silence model has 5 states with 3 distributions,
and short pause model has 3 states with one distribution.
Each distribution of digit has 20 Gaussians while that of si-
lence and short pause has 36 Gaussians. Each model was
trained as a left-to-right topology with three states (without
skip among states) by using Baum-Welch algorithm with a
flat-starting embedded training. Standard Viterbi decoding
technique was used for recognition.

The recognition results for testing data sets A and B are
shown in Fig. 4 and Fig. 5, respectively. As Fig. 4 shows,

Fig. 4. Speech recognition results for testing data set A.

Fig. 5. Speech recognition results for testing data set B.

the proposed two algorithms offer high recognition rate than
the traditional algorithm (delay-and-sum beamformer fol-
lowed by the Wiener post-filter) and the noisy inputs at all
SNR levels, especially in low SNRs. In comparison of the
algorithm 1, the algorithm 2 provides much higher speech
recognition rate in all conditions. This superiority is caused
by the low speech distortion introduced by the algorithm 2
with regard to the algorithm 1, although the algorithm 1 was
proven to be able to improve the intelligibility in subjective
evaluations [10].

Concerning the recognition results shown in Fig. 5, we
can know that the proposed algorithms also demonstrate
high recognition rate at all SNRs. In this noise condition
when passenger is speaking, the recognition accuracy went
down greatly for unprocessed noisy testing data and the en-
hanced data by the traditional algorithm. While, the pro-
posed algorithms can deal with both passenger’s interfer-
ence and diffuse background noise, improving the recogni-
tion rate in this noise condition. For the comparison of the
proposed algorithms, the algorithm 2 still show better per-
formance improvements than the algorithm 1, due to the low
distortion it introduces.



5. DISCUSSIONS

The traditional noise reduction algorithm, a delay-and-sum
beamformer followed by a Wiener post-filter, does not per-
form well in car environments. This is because the delay-
and-sum beamformer (3ch) only provides very limited noise
reduction performance, and the Wiener post-filter does also
fail in the low frequencies which are high correlated, where
high noise energies are congregated. Furthermore, the very
limited noise reduction performance results in its ineffec-
tiveness in improving speech recognition rate.

The proposed algorithm 1 shows the high performance
improvements in all conditions, compared with the tradi-
tional algorithm. However, its performance is sensitive to
the implementation parameters, e.g.,Tmaxe andTmine.
The sensitive parameters dramatically degrade the noise re-
duction performance, introducing large speech distortion and
further greatly degrade the speech recognition performance.

The proposed algorithm 2 offers the highest speech recog-
nition rate among the tested algorithms. This improvement
is attributed to the fact that the algorithm 2 can deal with
all kinds of noise signals with very low speech distortion.
Moreover, its performance is also immune to the implemen-
tation parameters in practical adverse environments. The re-
liable high noise reduction performance of the algorithm 2
further results in the high recognition rate when it is used as
the front-end processor of the speech recognition system.

6. CONCLUSIONS

In this paper, we first introduced two noise reduction al-
gorithms we proposed earlier based on microphone array
and post-filtering. The main concentration was then put on
improving the performance of speech recognition systems
when the suggested algorithms were used as front-end pro-
cessors. The speech recognition results using real-world car
noise recordings show that: the proposed algorithms give
higher speech recognition rate than the traditional algorithm
at all SNRs in all noise conditions; and the algorithm 2 out-
performs the algorithm 1 in improving recognition rate of
ASR system in all tested environments. This performance
improvement can be attributed to the fact that algorithm 2
is able to deal with various kinds of noise and preserve the
speech components (low speech distortion) simultaneously.
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