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Abstract

This paper proposes a model for the parametric representation of linguistic hedges
in Zadeh’s fuzzy logic. In this model each linguistic truth value, which is generated
from a primary term of the linguistic truth variable, is identified by a real number
r depending on the primary term. It is shown that the model yields a method of
efficiently computing linguistic truth expressions accompanied with a rich algebraic
structure of the linguistic truth domain, namely De Morgan algebra. Also, a fuzzy
logic based on the parametric representation of linguistic truth values is introduced.

Key words: Linguistic hedges, linguistic variable, distributive lattice, De Morgan
algebra, fuzzy logic, approximate reasoning

1 Introduction

In 1970s, L. Zadeh introduced and developed the theory of approximate rea-
soning based on the notions of linguistic variable and fuzzy logic [19–23].
Informally, by a linguistic variable we mean a variable whose values are words
in a natural or artificial language. For example, Age is a linguistic variable
whose values are linguistic such as young, old, very young, very old, quite
young, more or less young, not very young and not very old, etc. As is well-
known, the values of a linguistic variable are generated from primary terms
(e.g., young and old in the case of linguistic variable Age) by various linguistic
hedges (e.g., very, more or less, etc.) and connectives (e.g., and, or, not).
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In Zadeh’s view of fuzzy logic, the truth-values are linguistic, e.g., of the
form “true”, “very true”, “more or less true”, “false”, “possible false”, etc.,
which are expressible as values of the linguistic variable Truth, and the rules
of inference are approximate rather than exact. In this sense, approximate
reasoning (also called fuzzy reasoning) is, for the most part, qualitative rather
than quantitative in nature, and almost all of it falls outside of the domain
of applicability of classical logic (see Zadeh [2,22,23]). The primary aim of
the theory of approximate reasoning is to mimic human linguistic reasoning
particularly in describing the behaviour of human-centered systems.

Throughout this paper, by a fuzzy logic we mean a fuzzy logic in the sense
of Zadeh, that is, its truth-values are linguistic values of the linguistic truth
variable, which are represented by fuzzy sets in the interval [0, 1].

According to Zadeh’s rule for truth qualification [23], a proposition such as
“Lucia is very young” is considered as being semantically equivalent with the
proposition “Lucia is young is very true”. This semantic equivalence rela-
tion plays an important role in approximate reasoning. In fuzzy set based
approaches to fuzzy reasoning [7,22,23,2], the primary linguistic truth-values
such as true and false are correspondingly assigned to fuzzy sets defined over
the interval [0, 1], which are designed to interpret the meaning of these primary
terms. The composite linguistic truth-values are then computed by using the
following procedure:

• Linguistic hedges 1 , for example very and more or less, are defined as unary
operators on fuzzy sets, for example CON, DIL, respectively;

• The logic connectives such as and, or, not and if . . . then are defined gen-
erally as operators such as t-norm, t-conorm, negation, and implication
respectively.

As is well known, one of inherent problems in a model of fuzzy reasoning
is that of linguistic approximation, i.e., how to name by a linguistic term a
resulted fuzzy set of the deduction process. This depends on the shape of the
resulted fuzzy set in relation with the primary fuzzy sets and the operators.

Based on two characteristics of linguistic variables introduced by Zadeh (namely,
the context-independent meaning of linguistic hedges and connectives, and
the universality of linguistic domains), and the meaning of linguistic hedges in
natural language, Nguyen and Wechler [15,16] proposed an algebraic approach
to the structure of linguistic domains (term-sets) of linguistic variables. It is
shown in [12–14] that the obtained structute is rich enough for the investi-
gation of some kinds of fuzzy logic. Furthermore, the approach also provides
a possibility for introducing methods of linguistic reasoning that allow us to
handle linguistic terms directly, and hence, to avoid the problem of linguistic

1 also called linguistic modifiers [6].
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Fig. 1. Membership functions of truth-values by Lascio’s model

approximation [10,11].

It is of interest that in [6], Lascio et al. have proposed a model for repre-
sentation of linguistic terms satisfying the hypotheses imposed on linguistic
hedges introduced by Nguyen and Wechler [15]. In their model, each linguistic
term of a linguistic variable is characterised by three parameters and can be
identified by only a positive real number. It is shown that the set of liguistic
terms of the linguistic truth variable in Lascio’s model exhibited interesting
semantic properties justified by intuitive meaning of linguistic hedges, which
were axiomatically formulated in the terms of hedge algebras [15]. However,
going back to the membership function representation, Lascio’s model does
not give a good interpretation at the intuitive level on logical basis behind the
shape of membership functions of linguistic truth values (see Fig. 1).

It is important to note that in the conventional approach to fuzzy reasoning,
fuzzy logic, which a method of fuzzy reasoning bases on, can be viewed as a
fuzzy extension of a underlying multi-valued logic (i.e., base logic), in which
the truth-values are fuzzy sets of the truth-value set of the base logic (see,
e.g., [2,22,23]). Although membership functions of primary terms such as true
or false are defined subjectively, it will be natural to hope that a fuzzy logic
should meet the base logic at the limited cases. For example, for membership
function of the unitary truth-value u-true [23], that is µu-true(v) = v for
v ∈ [0, 1], and the linguistic hedge very defined by CON operation, we have
veryntrue tends to Absolutely true as n tends to infinity, where Absolutely true
is identified with 1 as a nonfuzzy truth-value, see Fig. 2. Unfortunately, this
is not the case for Lascio’s model, again see Fig. 1.

In this paper, we introduce a new representation model for linguistic terms
of the linguistic truth variable in fuzzy logic. In this model, each linguistic
truth value generated from a primary term of the linguistic truth variable is
identified by a real number r depending on the primary term. It will be shown
that the model not only satisfies the interesting semantic properties justified
by intuitively meaning of linguistic hedges as Lascio’s model, but also meets
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Fig. 2. Membership functions of unitary truth-values [4,23]

in the special cases the well-known models in the literature.

The paper is organised as follows. In Section 2, we briefly present some pre-
liminary notions on linguistic variables, the fuzzy set based interpretation of
linguistic hedges, as well as the related work in the literature. A new rep-
resentation model for linguistic terms of the linguistic truth variable will be
introduced in Section 3. The model allows to represent two ordered sets of
linguistic terms generated from two primary terms true and false; each lin-
guistic truth value is associated with a real number depending on the primary
term from which it is generated. Section 4 introduces a fuzzy logic based on
this model in comparison with the models already known in literature. Finally,
some concluding remarks will be given in Section 5.

2 Preliminaries

2.1 Linguistic variables

In this subsection, we briefly recall the notion of linguistic variables and the
fuzzy set theoretic interpretation of linguistic hedges introduced by Zadeh in
1970s. More details can be referred to [5,19–21,23].

Formally, a linguistic variable is characterised by a quintuple (X , T (X ), U,R,M),
where:

X is the name of the variable such as age variableAge, truth variable Truth, etc.;

T (X ) denotes the term-set of X , that is, the set of linguistic values of the
linguistic variable X ;

U is a universe of discourse of the base variable;
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Fig. 3. Hierarchical structure of the linguistic variable Age

R is a syntactic rule for generating linguistic terms of T (X );

M is a semantic rule assigning to each linguistic term a fuzzy set on U.

As an illustration, we consider an example of a linguistic variable Age, i.e. X =
Age, taken from [20]. The term-set T (X ) is represented as follows

T (Age) = {young, very young, not young, very very young, not very young,. . . ,
old, very old, not old,. . . , not very young and not very old,. . . , extremely
young,. . . , more or less young, . . . }.

The universe of discourse for Age may be taken to be the interval U = [0, 100],
with the base variable u ranging over U . Then, a linguistic value of Age, for
example, young is viewed as a name of a fuzzy set of U which is designed
to define the meaning of young. That is, the meaning of the linguistic value
young is characterized by its compatibility function c : U → [0, 1], with c(u)
representing the compatibility of a numerical age u with the label young.
For example, the compatibilities of the numerical ages 20, 25, 30, and 35
with young may be 1, 0.9, 0.8, and 0.6, respectively. As such, the meaning
of a linguistic value can be regarded as the membership function of a fuzzy
restriction on the values of the base variable u. Fig. 3 sketches the above
mentioned relationships [24,25].

Typically, the values of a linguistic variable such as Age are built up of one
or more primary terms such as young and old, with one being an antonym
of the other, together with a set of linguistic hedges, such as very, more or
less, quite, extremely, etc., and connectives which allow a composite linguistic
value to be generated from primary terms.

Assume that the meaning of a linguistic value X is defined by the membership
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function µX(u) of U , then linguistic hedges very, more or less, slightly are
constructed by mathematical representations as follows [18].

Concentration: very X = CON(X), where µCON(X)(u) = (µX(u))2;

Dilation: more or lessX = DIL(X), where µDIL(X)(u) = (µX(u))0.5;

Intensification: denote by INT(X), and

µINT(X)(u) =

 2(µX(u))2 if 0 ≤ µX(u) ≤ 0.5,

1− 2(1− µX(u))2 if 0.5 ≤ µX(u) ≤ 1.

And the hedge slightly may be defined by one of the following expressions

slightly X = NORM(X andnot veryX),

slightly X = INT(NORM(plusX andnot veryX)),

slightly X = INT(NORM(plusX andnot plus veryX)),

where NORM is the operation of normalization and plus is an artificial hedge
defined by

µNORM(X)(u) = (sup
U
µX(u))−1µX(u), and µplusX(u) = (µX(u))1.25.

A more detailed discussion of linguistic hedges from a fuzzy set theoretic point
of view can be found in [5,18].

A linguistic variable is called to be a Boolean linguistic variable provided that
its values are Boolean expressions in variables of the form Xp, hXp, X or hX,
where h is a linguistic hedge or a string of linguistic hedges, Xp is a primary
term and hX is the name of a fuzzy set resulting from acting with h on X. For
example, in the case of the linguistic variable Age whose term-set is defined
previously, the term not very young and not very old is of this form with
h = very, Xp = young and Xp′ = old. Similarly, it is also the case for the
term very very young, here h = very very and Xp = young. It was shown in
[20] that we can construct a context-free grammar for generating the term-set
of a Boolean linguistic variable.

2.2 Mathematical representation of linguistic hedges in fuzzy logic

In the conventional approach to fuzzy logic, each primary linguistic truth
value such as true or false is semantically assigned by a fuzzy set in the in-
terval [0, 1]. A well known form of membership function of true is defined by
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µtrue(u) = u for u ∈ [0, 1], and the membership function of false is defined
by µfalse(u) = µtrue(1− u) for u ∈ [0, 1]. Linguistic hedges are then defined as
operators on these primary fuzzy sets to form fuzzy sets for composite linguis-
tic truth values. For example, linguistic hedges such as very and more or less
(or, fairly [1]) are mainly modeled as CON and DIL operators, respectively,
[1,8,22,25]. However, the definition of a linguistic hedge as order of the power
of a truth value true or false as in [1,8,22] suffers from an intuitive criterion
when applied infinitely to linguistic hedges [6,15]. For example, it is intuitively
agreed that true is more true than (very)napproximately true, for any natural
number n. Then it should be intuitively suitable if (very)napproximately true
tends to true as n tends to infinity. However, when we interpret very as the
CON operator, we get both (very)napproximately true and (very)ntrue tend
to Abs. true as n tends to infinity. This causes a discrepancy between the in-
tuitive utilization made in natural language of linguistic truth values and the
mathematical representation obtained using CON and DIL operators.

To cancel the above mentioned discrepancy, Lascio et al. have proposed in [6]
a model for representation of linguistic hedges, within which each linguistic
value of the truth linguistic variable is characterized by three parameters and
can be identified by a positive real number n. It was shown that the set of
liguistic terms of the linguistic truth variable in this model exhibited interest-
ing semantic properties justified by intuitively meaning of linguistic hedges,
which were axiomatically formulated by Nguyen and Wechler in [15] in the
terms of hedge algebras.

To represent the meaning of linguistic values of the linguistic truth variable,
Lascio et al. introduced the following characteristic function, for n ∈ R+,

µn(u) =

 min(1, nu) for 0 ≤ u ≤ 0.5,

min(1,−n(u− 1)) for 0.5 ≤ u ≤ 1.

Note that they utilized only this function for a generic linguistic term of the
linguistic truth variable irrespective of a linguistic value generating from true
or false. This is essentially different from conventional approaches to fuzzy
logic in the literature. For n→∞, and n = 0 the model yields the values
Absolutely true and Absolutely false, respectively. Consequently, Absolutely
true and Absolutely false are identified by the following membership functions
(see Fig. 1):

µAbs. true(u) = 1, for any u ∈ [0, 1];

µAbs. false(u) = 0, for any u ∈ [0, 1];

which are designed to interpret as the truth values unknown and undefined,
respectively, in [20].

It should be emphasized that in this model, it is impossible to define the
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special value unknown (also called undecided) which has been considered
to be important in fuzzy logic [1,20]. To overcome these drawbacks while still
maintaining interesting semantic properties of linguistic hedges, an alternative
model for the representation of linguistic values of the Boolean linguistic truth
variable is introduced in the next section.

3 A new model for the representation of the linguistic truth values

In this section we first define two families of parametric membership functions
of linguistic truth values generated from two primary terms true and false,
respectively. Then we examine an algebraic structure of the obtained linguistic
truth space via the so-called semantically ordering relation. Also, we introduce
a concept of the converse of a give linguistic hedge based on the specific relation
introduced in [8]. As we will see in Section 4, this concept can be used in
defining another kind of negation in a fuzzy logic.

3.1 Parametric membership function of linguistic truth values

In our model, each linguistic truth value is represented by a parametric mem-
bership function defined on the interval [0, 1]. This parameter depends on the
primary term from which the linguistic truth value is generated by applying
linguistic hedges.

Consider the Boolean linguistic truth variable Truth with two primary terms
true and false. Let us denote by σ a linguistic hedge or a string of linguistic
hedges. We now define the membership function of a linguistic value σtrue as
follows

µσtrue : [0, 1] −→ [0, 1]

u 7−→ µσtrue(u) = max(0, (1− n)−1(u− n))
(1)

for n ∈ (−∞, 1). Similarly, we further define the membership function of a
linguistic value σfalse by

µσfalse : [0, 1] −→ [0, 1]

u 7−→ µσfalse(u) = max(0,m−1(m− u))
(2)

for m ∈ (0,∞).

It is of interest that with these definitions, we obtain the membership functions
of some special linguistic truth values as follows (see Fig. 4)
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Fig. 4. A space of parametric membership functions

- true, with µtrue(u) = u, when n = 0;

- Absolutely true, when n→1;

- false, with µfalse(u) = 1− u, when m = 1;

- Absolutely false when m→0;

- unknown when n→−∞, and m→∞,

which are the same as considered in [1,2,4,8,20].

Formulation (1) (respectively, (2)) states that an infinite number of hedges
can be generated for the linguistic truth value true (respectively, false) by
a parametric family of membership functions. Let us denote by V the set of
all linguistic truth values generated from (1) and (2) including the limited
elements Absolutely true, unknown, Absolutely false.

3.2 An algebraic structure of the linguistic truth space

To analyse the meaning characteristic of the linguistic truth space, we consider
the specific relationship between linguistic truth values as considered in [8].
We note that in our model, when 0 < n < 1 (respectively, −∞ < n <
0), the linguistic value σtrue is more (respectively, less) specific than the
truth value true. This is because of when 0 < n < 1, µσtrue(u) < µtrue(u),
and when −∞ < n < 0, µσtrue(u) > µtrue(u). Similarly, when 0 < m < 1
(respectively, 1 < m < ∞), the linguistic value σfalse is more (respectively,
less) specific than the truth value false. It can be seen that when n approaches
1 (respectively, −∞), the linguistic value σtrue is the most (respectively, the
least) specific case with respect to the truth value true. A similar situation is
also for the parameter m. That is, the more truth (falsity) a linguistic value
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Fig. 5. The ordered relation in the linguistic truth space

is, the more specific a linguistic value becomes.

This specific relation can be determined through the areas under the mem-
bership functions defined as follows:

Sσtrue =

1∫
0

µσtrue(u)du, and Sσfalse =

1∫
0

µσfalse(u)du.

Then, σtrue (respectively, σfalse) is more specific than σ′true (respectively,
σ′false) if Sσtrue < Sσ′true (respectively, Sσfalse < Sσ′false).

It should be worthwhile now to note that the specific relation defines an or-
dered relation, denoted by ≤s, on the linguistic truth space, which is com-
pletely compatible with the so-called semantically ordering relation defined in
[13], as follows

σ′true ≤s σtrue ⇔ Sσtrue ≤ Sσ′true,

σ′false ≤s σfalse ⇔ Sσ′false ≤ Sσfalse.

We also note that due to the semantic characteristic of true and false, we
define σ′false ≤s σtrue for any σ and σ′. Particularly, this order is fully
characterized by the natural order defined on the spaces of parameters as
depicted in Fig. 5.

At this point, it is easily seen that the following holds.

Theorem 1 The structure (V,≤s) is a completely distributive lattice with
Abs. true and Abs. false as the unit and zero elements, respectively.

Let us denote by ∨, and ∧ the operations join and meet, respectively, in this
lattice, and write V = (V,∨,∧,≤s).

For special cases, we have Strue = Sfalse = 0.5, SAbs. true = SAbs. false = 0, and
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Sunknown = 1. Moreover, for the linguistic values generated from true, we have

Sσtrue =


1−n

2
for 0 < n < 1

1− 1
2(1−n)

for −∞ < n < 0
(3)

With the same calculation for the linguistic values generated from false, we
obtain

Sσfalse =


m
2

for 0 < m < 1

1− 1
2m

for 1 < m <∞
(4)

It should be emphasized that Nafarieh and Keller in [8] also proposed a similar
calculation but they defined the parameter n as an order of the power of a
linguistic truth value true.

Now we discuss the problem of how to define the parameter of the antony-
mous label of a given linguistic truth value in our model. Without loss of
generality, consider a linguistic truth value σtrue with its parameter nσtrue.
The antonymous label of σtrue is the value σfalse, which is called the contra-
dictory element in [16], and the parameter mσfalse may be defined such that
the following holds

Sσtrue = Sσfalse (5)

Under such a condition, it follows directly from (3) and (4) that

nσtrue = 1−mσfalse (6)

That is, we have an interesting one-to-one correspondence between the pa-
rameter of a linguistic truth value with that of its antonym. Consequently, we
have

µσfalse(u) = µσtrue(1− u) (6′)

which may be suitable to intuitive meaning of an antonymous label. For ex-
ample, let us define 2 ntrue = 0, nvery true = 0.5, and nfairly true = −1. Then we
obtain mfalse = 1,mvery false = 0.5, and mfairly false = 2, and the membership
functions of these linguistic truth values are illustrated in Fig. 6.

We now define a negation operation, denoted by ¬, in V via (6) and (6′). This
means that the negation of a linguistic truth value is defined by its antonymous
linguistic truth value. This negation operation can be derived in V , and so we
write

V = (V,∨,∧,¬,≤s).

Some fundamental properties of this operation is listed in the following propo-
sition. The proof is easily followed.

2 The hedge fairly is considered to have the same meaning as more or less in [1]
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Fig. 6. A linguistic truth space

Proposition 2 The following statements hold in V.

(i) ¬¬x = x, for any x ∈ V ;

(ii) x ≤s y iff ¬y ≤s ¬x, for any x, y ∈ V ;

(iii) ¬true = false, ¬false = true;

(iv) ¬unknown = unknown;

(v) ¬Abs. true = Abs. false, ¬Abs. false = Abs. true.

Furthermore, we have the following

Theorem 3 V is a De Morgan algebra 3 .

Proof. By Theorem 1 and (i) of Proposition 2, it is sufficient to prove the triple
(∨,∧,¬) forms a De Morgan triple [9]. Indeed, for any x, y ∈ V, we have the
following possibilities:

(a) both x and y are generated from true, with the associated parameters nx
and ny, respectively.

(b) both x and y are generated from false, with the associated parameters
mx and my, respectively.

(c) x is generated from true and y is generated from false, with the associ-
ated parameters nx and my, respectively.

(d) x is generated from false and y is generated from true, with the associ-
ated parameters mx and ny, respectively.

For the case (a), we have

m¬(x∨y) = 1−max(nx, ny) = min(1− nx, 1− ny) (7)

3 Also named Soft algebra [9]
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On the other hand, we also have

m(¬x∧¬y) = min(m¬x,m¬y) = min(1− nx, 1− ny) (7′)

It implies by (7) and (7′) that m¬(x∨y) = m(¬x∧¬y), and hence,

¬(x ∨ y) = (¬x ∧ ¬y) (8)

that we desire. By an analogous argument, we also obtain the equality (8)
for the case (b). The remain cases follows directly from the definitions of the
relation ≤s and the negation ¬.

By duality, we also obtain the equality

¬(x ∧ y) = (¬x ∨ ¬y) (9)

The qualities (8) and (9) mean that the triple (∨,∧,¬) is a De Morgan triple.
This completes the proof. 2

It is worth to mention that the algebra V includes the 3-valued  Lukasiewicz
algebra {Abs. false, unknown,Abs. true} as its subalgebra.

3.3 A concept of converse of linguistic hedges

Firstly, we recall that in [1,8] linguistic hedges are identified by orders of
powers of the primary linguistic truth value. For example,

µ(very)ktrue(u) = [µtrue(u)]2
k

µ(very)kfalse(u) = [µfalse(u)]2
k

µ(fairly)ktrue(u) = [µtrue(u)]
1

2k

µ(fairly)kfalse(u) = [µfalse(u)]
1

2k

(10)

for any k = 0, 1, . . . ,∞.

Although it was not presented explicitly in [1], we easily see that the following
hold

S(very)ktrue = S(very)kfalse

S(fairly)ktrue = S(fairly)kfalse

S(very)ktrue = 1− S(fairly)ktrue

S(very)kfalse = 1− S(fairly)kfalse

(11)
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for any k = 0, 1, . . . ,∞. The first two equations in (11) are consistent with
(5) that is used to define the parameter of the antonymous label of a given
linguistic truth value. By (10) we mean that there is an one-to-one correspon-
dence between values (very)ktrue and (fairly)ktrue (and also, (very)kfalse
and (fairly)kfalse) as that between parameters 2k and 1

2k , as well as equations
in (11) are satisfied.

Under such an observation, we now introduce a concept of the converse of a
given linguistic hedge via the specific relation mentioned above.

Given a linguistic hedge σ, and σXp is a linguistic truth value generated from
Xp by means of σ, where Xp is true or false. Then another linguistic hedge
σ′ is said to be converse to σ and vice versa if and only if the following holds

SσXp = 1− Sσ′Xp (12)

For example, in Baldwin’s model [1], (very)k is converse to (fairly)k and vice
versa, for k = 1, 2 . . . , We also note that this concept of converse is a special
case of that introduced by Nguyen and Wechler in [15].

It should be of interest that the relationship defined by (12) gives an intuitive
meaning of the concepts of positive and negative [6,15,16] of linguistic hedges
with respect to a linguistic truth value to which they are applied directly. For
example, very strengthens the positive meaning of true, while fairly weakens
its positive meaning.

We are now ready to establish one-to-one correspondences between parameters
of linguistic truth values exhibited the above property of hedges. For this
purpose, we define the following mappings

ψ : (−∞, 1) −→ (−∞, 1)

n 7−→ ψ(n) = n
n−1

χ : (0,∞) −→ (0,∞)

m 7−→ χ(m) = 1
m

which establish, respectively, one-to-one correspondences between (0, 1) and
(−∞, 0) (for parameter n), and between (0, 1) and (1,∞) (for parameter m).

With this notation, we easily obtain

SE[n] = 1− SE[ψ(n)], and SE[m] = 1− SE[χ(m)] (12′)

where E[p] stands for the linguistic truth value associated with parameter p.
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Table 1
Different values of parameters n, m and respective linguistic truth values

n Linguistic value m Linguistic value

1 Absolutely true 0 Absolutely false
3
4 very very true 1

4 very very false
1
2 very true 1

2 very false

0 true 1 false

−1 fairly true 2 fairly false

−3 fairly fairly true 4 fairly fairly false

−∞ unknown ∞ unknown

As an illustration, let us define

n(very)ktrue =
k∑
i=1

1

2i
= 1− 1

2k
, and m(very)kfalse = 1− n(very)ktrue =

1

2k
.

Then we have the parameters associated respectively with linguistic truth
values (fairly)ktrue and (fairly)kfalse as follows

n(fairly)ktrue =

∑k
i=1

1
2i∑k

i=1
1
2i − 1

= 1− 2k, and m(fairly)kfalse = 2k.

It follows by formulae (3) and (4) that S(very)ktrue = 1 − S(fairly)ktrue and
S(very)kfalse = 1−S(fairly)kfalse. Thus, (very)k is converse to (fairly)k and vice
versa, for k = 1, 2 . . . . Table 1 shows some special cases for different values of
n and m for truth values generated from true and false, respectively, as well
as the accepted linguistic translations of these parametric values.

In the next section, we utilize this reverse property of linguistic hedges in
defining another kind of negation in a fuzzy logic.

4 A fuzzy logic based on the parametric representation of linguistic
truth values

In this section we introduce a fuzzy logic based on the parametric representa-
tion of linguistic truth values proposed in the preceding section.

For simplicity of notation, let us denote N = (−∞, 1), and M = (0,∞),
which are designed as domains of parameters n and m, respectively. Denote
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Vt (respectively, Vf ) the set of linguistic truth values generated from true
(respectively, false) by means of linguistic hedges.

Let us define logical operations in the linguistic truth space. If we let v(P )
represent the linguistic truth value of a proposition P then for propositions P
and Q, the definitions of conjunction, disjunction, negation, implication are
given by

v(P andQ) =



E[mv(Q)] if v(P ) ∈ Vt and v(Q) ∈ Vf
E[mv(P )] if v(Q) ∈ Vt and v(P ) ∈ Vf
E[min(nv(P ), nv(Q))] if v(P ),v(Q) ∈ Vt
E[min(mv(P ),mv(Q))] if v(P ),v(Q) ∈ Vf

(13)

v(P orQ) =



E[nv(P )] if v(P ) ∈ Vt and v(Q) ∈ Vf
E[nv(Q)] if v(Q) ∈ Vt and v(P ) ∈ Vf
E[max(nv(P ), nv(Q))] if v(P ),v(Q) ∈ Vt
E[max(mv(P ),mv(Q))] if v(P ),v(Q) ∈ Vf

(14)

v(notP ) =

E[1− nv(P )] if v(P ) ∈ Vt
E[1−mv(P )] if v(P ) ∈ Vf

(15)

v(P → Q) =



E[max(mv(notP ),mv(Q))] if v(P ) ∈ Vt and v(Q) ∈ Vf
E[max(nv(notP ), nv(Q))] if v(Q) ∈ Vt and v(P ) ∈ Vf
E[nv(Q)] if v(P ),v(Q) ∈ Vt
E[nv(notP )] if v(P ),v(Q) ∈ Vf

(16)

We note that the parameters 1 − nv(P ) and 1 − mv(P ) in equation (15) are
strictly in relation with (6), i.e. that 1− nv(P ) ∈M, and 1−mv(P ) ∈ N . As a
consequence of above definitions of logical connectives and operators defined
in the algebra V , we have the following.

Theorem 4 The operators ∧,∨, and ¬ in V model exactly logical connectives
conjunction, disjunction, and negation, respectively, in the fuzzy logic defined
above. More particularly,

v(P andQ) = v(P )∧v(Q), v(P orQ) = v(P )∨v(Q), v(notP ) = ¬v(P ).

For example, let v(P ) = very true, nv(P ) = 0.5, and v(Q) = fairly false,
mv(Q) = 2 as defined in the previous section, moreover, by (6) we obtain
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mv(notP ) = 0.5, and nv(notQ) = −1. Then, we have

v(P andQ) = E[mv(Q)] = fairly false, by (13)

v(P orQ) = E[nv(P )] = very true, by (14)

v(notP ) = E[1− nv(P )] = E[mv(notP )] = very false, by (15) and (6)

v(notQ) = E[1−mv(Q)] = E[nv(notQ)] = fairly true, by (15) and (6)

v(P → Q) = E[max(mv(notP ),mv(Q))] = E[mv(Q)] = fairly false, by (16)

v(notP → Q) = E[nv(not notP )]

= E[1−mv(notP )] = E[nv(P )] = very true, by (6) and (16).

This example shows the same result as those obtained in [6]. Now, to compare
with Baldwin’s model proposed in [1], as in previous section, let us define

n(very)ktrue =
k∑
i=1

1

2i
= 1− 1

2k
, and m(very)kfalse = 1− n(very)ktrue =

1

2k
,

for k = 1, 2, . . . . By correspondences ψ and χ at the end of Section 3, we
obtain the parameters associated respectively with linguistic truth values
(fairly)ktrue and (fairly)kfalse as follows

n(fairly)ktrue = 1− 2k, and m(fairly)kfalse = 2k.

Hence, it follows that

n(very)ktrue = 1− 1
2k −→ 1 as k −→∞

m(very)kfalse = 1
2k −→ 0 as k −→∞

n(fairly)ktrue = 1− 2k −→ −∞ as k −→∞

m(fairly)kfalse = 2k −→ ∞ as k −→∞

Consequently, we obtain

(very)ktrue −→ Abs. true as k −→∞

(very)kfalse −→ Abs. false as k −→∞

(fairly)ktrue −→ unknown as k −→∞

(fairly)kfalse −→ unknown as k −→∞

Further, Table 2 is followed easily by using the definitions of conjunction and
disjunction, and is easily extended to include other linguistic truth values. The
above limited expressions and Table 2 show that our model is compatible with
that proposed by Baldwin in [1].
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Table 2
A reduced linguistic truth table for conjunction and disjunction

v(P ) v(Q) v(P andQ) v(P orQ)

false false false false

false true false true

true false false true

true true true true

unknown true unknown true

unknown false false unknown

unknown unknown unknown unknown

unknown Abs. false Abs. false unknown

unknown Abs. true unknown Abs. true

true very true true very true

true fairly true fairly true true

false very true false very true

false fairly true false fairly true

Abs. true false false Abs. true

Abs. false true Abs. false true

Abs. true Abs. false Abs. false Abs. true

We now establish basic linguistic truth expressions associated with respective
parameters as follows.

(i) n(very)ktrue =
∑k
i=1

1
2i = 1− 1

2k , for k = 1, . . . ,∞.

k 1 2 3 4

Truth value very true (very)2true (very)3true (very)4true

n(very)ktrue
1
2

3
4

7
8

15
16

(ii) m(very)kfalse = 1
2k , for k = 1, . . . ,∞.

k 1 2 3 4

Truth value very false (very)2false (very)3false (very)4false

m(very)kfalse
1
2

1
4

1
8

1
16
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(iii) n(fairly)ktrue = 1− 2k, for k = 1, . . . ,∞.

k 1 2 3 4

Truth value fairly true (fairly)2true (fairly)3true (fairly)4true

n(fairly)ktrue −1 −3 −7 −15

(vi) m(fairly)kfalse = 2k, for k = 1, . . . ,∞.

k 1 2 3 4

Truth value fairly false (fairly)2false (fairly)3false (fairly)4false

m(fairly)kfalse 2 4 8 16

To close this section, as mentioned in the previous section, we now discuss
how to use the relationship established by (12) to define a further operation,
denoted by ∼, via correspondences ψ and χ. Let v(P ) be the linguistic truth
value of a proposition P , we define

∼ v(P ) =

E[χ(m¬v(P ))] if v(P ) ∈ Vt
E[ψ(n¬v(P ))] if v(P ) ∈ Vf

(17)

With this definition, we have

∼∼ v(P ) = v(P ); ∼ true = false; ∼ false = true.

Recall that in the conventional approach to fuzzy logic [1,22], there are also
possible two forms of negation. Particularly, the truth value of the proposition
(notP ) is defined by

µv(notP )(u) = µv(P )(1− u), for any u ∈ [0, 1] (18)

while the truth value (not v(P )) is given by

µnotv(P )(u) = 1− µv(P )(u), for any u ∈ [0, 1] (19)

It is easily seen that the operator ¬ in our model is fully compatible with that
defined by (18). We now show that the operator ∼ defined by (17) gives the
same result as that computed by (19) in [1]. As a simple illustration, using
computed results in (i − vi) and the definition of mappings ψ, χ, we easily
establish the result as shown in Table 3.

Comparison the obtained result in Table 3 with that given in [1, Table 4] may
allow us to use ∼ as another kind of negation in our model. Note that the
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Table 3
A reduced linguistic truth table for ¬ and ∼

v(P ) ¬v(P ) ∼ v(P )

true false false

fairly true fairly false very false

very true very false fairly false

(very)2 true (very)2 false (fairly)2 false

Abs. true Abs. false

Abs. false Abs. true

unknown unknown

false true true

fairly false fairly true very true

very false very true fairly true

(very)2 false (very)2 true (fairly)2 true

computed result in [1] is only obtained after a step of linguistic approxima-
tion, while our model gives directly the result without any step of linguistic
approximation.

5 Conclusions

A new model for parametric representation of linguistic truth values has been
proposed in this paper. It has been shown that our model is superior to the
existing models under several intuitive criteria both algebraically and compu-
tationally. We know that every deductive system in classical or non-classical
logic always determines an algebra in a certain class of abstract algebras of
the same category of the corresponding algebra of truth values [17]. An inter-
esting point is that the proposed model not only yields an efficient method
for computing linguistic truth expressions without a step of linguistic approx-
imation, but also accompanies with a rich algebraic structure of the linguistic
truth domain, namely De Morgan algebra. This may allow us to examine some
characteristics of fuzzy linguistic logic through the algebraic structure of the
linguistic truth domain. Furthermore, the model proposed in this paper can be
also extended to an arbitrary linguistic variable with the shape of triangular
and trapezoidal membership functions of primary fuzzy sets. These problems
as well as a method of approximate reasoning based on this approach are being
the subject of our further work.
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