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Abstract

In this paper we present interesting relationships between the context model, modal
logic and fuzzy concept analysis. It has been shown that the context model proposed
by Gebhardt and Kruse (1993) can be semantically extended and considered as a
data model for fuzzy concept analysis within the framework of the meta-theory
developed by Resconi et al. in 1990s. Consequently, the context model provides a
practical framework for constructing membership functions of fuzzy concepts and
gives the basis for a theoretical justification of suitably use of well-known t-norm
based connectives such as min-max and product-sum rules in applications. Further-
more, an interpretation of mass assignments of fuzzy concepts within the context
model is also established.
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1 Introduction

While the real world consists of a very large number of instances of events and
continuous numeric values, people only represent and process their knowledge
in terms of abstracted concepts derived from generalization of these instances
and numeric values. The fundamental elements in human reasoning are sen-
tences normally containing vague concepts.
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The mathematical model of vague concepts was firstly introduced by Zadeh
[37] by using the notion of partial degrees of membership, in connection with
the representation and manipulation of human knowledge automatically. Since
then mathematical foundations as well as successful applications of fuzzy set
theory have already been developed [23]. However, concerning the semantics
of fuzzy sets, at present there is no uniformity in the interpretation of what
a membership grade means. Dubois and Prade [7] have explored three main
semantics for membership functions in which each semantics underlies a par-
ticular class of applications. As such, fuzzy-set-based applications became fea-
sible only when the methods of constructing membership functions of relevant
fuzzy sets were efficiently developed in given application contexts.

During the last decade, Resconi et al. [32–34] have developed a hierarchical
uncertainty metatheory based upon modal logic. In particular, they estab-
lished the usual semantics of propositional modal logic as a unifying frame-
work within which various theories of uncertainty, including the fuzzy set
theory, Dempster–Shafer theory of evidence, possibility theory, and Sugeno’s
λ-measures, can be conceptualized, compared, and organized hierarchically.
Although Resconi’s theory has shown to be very fruitful and potentially im-
portant as a unifying approach in the study of uncertainty, it is also a rather
abstract one and, hence, ones need to relate it semantically to data models in
particular application situations.

At the same time, Gebhardt and Kruse [9] have also developed a model of
vagueness and uncertainty – called the context model – that provides a formal
framework for the comparison and semantic foundation of several theories of
uncertainty such as Bayes theory, Dempster-Shafer theory, and the possibil-
ity theory. For a point of view of formal concept analysis, in [18] we have
proposed an approach to the problem of mathematical modeling of fuzzy con-
cepts based on the theory of formal concept analysis [8] and the notion of
context model [9,26]. Particularly, we introduced the notion of fuzzy concepts
within a context model and the membership functions associated with these
fuzzy concepts. It is shown that fuzzy concepts can be interpreted exactly as
the collections of α-cuts of their membership functions. While this approach
may be suitable for forming fuzzy concepts which are verbal descriptions im-
posed on quantitative individual characteristics of objects such as tall, short,
very tall, etc. It makes it difficult to form complex fuzzy concepts which may
be imposed on a combination of individual characteristics of objects, as well
as in defining composed fuzzy concepts from fuzzy concepts in different do-
mains such as tall and heavy. In [19], based on the meta-theory developed
by Resconi et al. in 1990s [32–34], we have proposed a model of modal logic
for fuzzy concept analysis from a context model. By this approach, we can
integrate context models by using a model of modal logic, and then develop
a method of calculating the expression for the membership functions of com-
posed and/or complex fuzzy concepts based on values {0, 1} corresponding
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to the truth values {F, T} assigned to a given sentence as the response of a
context considered as a possible world. It is of interest to note that fuzzy in-
tersection and fuzzy union operators by this model are truth-functional and,
moreover, they are a well-known dual pair of product t-norm and probabilistic
sum t-conorm [20].

In this paper we first explore interesting relationships between the context
model, modal logic and fuzzy concept analysis. Then we establish a mass
assignment interpretation of fuzzy concepts proposed by Baldwin [1,2] within
the context model.

The rest of this paper is organized as follows. In the next section, we briefly
present some preliminary concepts: context model, modal logic, and meta-
theory (with a short introduction to the modal logic interpretation of various
uncertainty theories). Section 3 introduces a context model for fuzzy concept
analysis and propose a model of modal logic for formulating fuzzy sets within a
context model. The mass assignment interpretation of fuzzy concepts is given
in Section 4. Finally, Section 5 presents some concluding remarks.

2 Preliminaries: Context model, Modal logic, and Meta-theory

2.1 Context Model

In the framework of fuzzy data analysis, Gebhardt and Kruse [9] have intro-
duced the context model as an approach to the representation, interpretation,
and analysis of imperfect data. The short motivation of this approach stems
from the observation that the origin of imperfect data is due to situations,
where we are not able to specify an object by an original tuple of elementary
characteristics because of incomplete information available.

A context model is defined as a triple 〈D, C,AC(D)〉, where D is a nonempty
universe of discourse, C is a nonempty finite set of contexts, and the set
AC(D) = {a|a : C → 2D} which is called the set of all vague characteristics of
D with respect to C. Let a ∈ AC(D), a is said to be contradictory (respectively,
consistent) if and only if ∃c ∈ C, a(c) = ∅ (respectively,

⋂
c∈C a(c) 6= ∅).

For a1, a2 ∈ AC(D), then a1 is said to be more specific than a2 iff for any
c ∈ C, a1(c) ⊆ a2(c).

If there is a finite measure PC on the measurable space (C, 2C), then a ∈
AC(D) is called a valuated vague characteristic of D w.r.t. PC . Then we
call a quadruple 〈D, C,AC(D), PC〉 a valuated context model. Formally, if
PC(C) = 1 the mapping a : C → 2D is a random set but obviously with a
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different interpretation within the context model. We should mention that a
formal connection between fuzzy sets and covering functions of random sets
was established in [12,13].

In Gebhardt and Kruse’s approach, each characteristic of an observed object
is described by a fuzzy quantity formed by context model [26]. It should be
emphasized that the forming of a fuzzy quantity by this approach is essentially
comparable with the creation of a membership function in fuzzy set theory
[22] and a possibility distribution in possibility theory [6], respectively. More
refinements of the context model as well as its applications could be referred
to Gebhardt and Kruse [10], Gebhardt [11].

In the connection with formal concept analysis, it is interesting to note that in
the case where C is a single-element set, say C = {c}, a context model formally
becomes a formal context in the sense of Wille (see Ganter and Wille [8])
as follows. Let 〈D, C,AC(D)〉 be a context model such that |C| = 1. Then
the triple (O,A, R), where O = D, A = AC(D) and R ⊆ O × A such that
(o, a) ∈ R iff o ∈ a(c), is a formal context. Thus, a context model can be
considered as a collection of formal contexts. Under such an observation, we
have introduced in [18] an approach to the problem of mathematical modeling
of fuzzy concepts based on the theory of formal concept analysis and the notion
of context model. Particularly, we introduced the notion of fuzzy concepts
within a context model and the membership functions associated with these
fuzzy concepts. It is of interest to note that this approach to fuzzy concepts
provides a unified interpretation for both notions of LT -fuzzy sets in the sense
of Rasiowa [31] as well as of fuzzy sets in the sense of Zadeh [37].

2.2 Modal logic

In this subsection, we briefly review the basic concepts of modal logic. Propo-
sitional modal logic [5] is an extension of classical propositional logic that adds
to the propositional logic two unary modal operators, an operator of neces-
sity, 2, and an operator of possibility, 3. Given a proposition p, 2p stands
for the proposition “it is necessary that p”, and similarly, 3p represents the
proposition “it is possible that p”. Modal logic is well developed syntactically
[5].

In [32–34], the modal logic interpretation of various uncertainty theories is
based on the fundamental semantics of modal logic using Kripke models. A
model, M, of modal logic is a triple

M = 〈W, R, V 〉,

where W, R, V denote, respectively, a set of possible worlds, a binary relation
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on W, and a value assignment function, by which truth (T ) or falsity (F ) is
assigned to each atom in each possible world, i.e.

V : W ×Q −→ {T, F},

where Q is the set of all atoms. The value assignment function is inductively
extended to all formulas in the usual way, the only interesting cases being

V (w, 2p) = T ⇔ ∀w′ ∈ W, (wRw′) ⇒ V (w′, p) = T ⇔ Rs(w) ⊆‖ p ‖M

V (w,3p) = T ⇔ ∃w′ ∈ W, (wRw′) and V (w′, p) = T ⇔ Rs(w)∩ ‖ p ‖M 6= ∅
where Rs(w) = {w′ ∈ W | wRw′}, and ‖ p ‖M= {w | V (w, p) = T}.

Relation R is usually called an accessibility relation; we say that world u is
accessible to world w when (w, u) ∈ R. If not specified otherwise, we always
assume that W is finite. It is convenient to denote W = {w1, w2, . . . , wn} and
to represent relation R by a matrix R = [rij], where

rij =

 1 if (wi, wj) ∈ R

0 if (wi, wj) /∈ R

Different systems of modal logic are characterised by different additional re-
quirements on accessibility relation R [5]. Some systems of modal logic are
depicted as shown in Table 1 (see [5]).

Table 1
Acessibility relation and axiom schemas

No condition Df3. 3p ↔ ¬2¬p

No condition K. 2(p → q) → (2p → 2q)

Serial: ∀w∃w′(wRw′) D. 2p → 3p

Reflexive: ∀w(wRw) T. 2p → p

Symmetric: ∀w∀w′(wRw′ ⇒ w′Rw) B. p → 23p

Transitive: ∀w∀w′∀w′′(wRw′ and w′Rw′′ ⇒ wRw′′) 4. 2p → 22p

Connected: ∀w∀w′(wRw′ or w′Rw) 4.3. 2(3p ∨3q) → (23p ∨23q)

Euclidean: ∀w∀w′∀w′′(w′Rw and w′Rw′′ ⇒ wRw′′) 5. 3p → 23p

2.3 Meta-theory based upon modal logic

In the context of a research program initiated by Resconi and his colleagues
[32–34,24,14,15,17], the authors have developed a hierarchical uncertainty meta-
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theory based upon modal logic. In particular, they established the usual se-
mantics of propositional modal logic as a unifying framework within which
various theories of uncertainty can be conceptualized, compared, and orga-
nized hierarchically. Within this framework, modal logic interpretations for
several theories, including the Dempster-Shafer theory, fuzzy set theory, pos-
sibility theory, and Sugeno’s λ-measures have been already proposed. These
interpretations are based on Kripke model of modal logic.

A Kripke model is given by a triple M = 〈W, R, V 〉. Moreover, Resconi et al.
have suggested to add a weighting function Ω : W → [0, 1] such that

n∑
i=1

Ω(wi) = 1

as a component of the model M. In such a way we obtain a new model of
modal logic, namely M1 = 〈W, R, V, Ω〉.

With the model M1, given a universe of discourse X we can consider propo-
sitions that are relevant to fuzzy sets have the following form

ax : “x belongs to a given set A”

where x ∈ X and A denotes a subset of X that is based on a vague concept.
Set A is then viewed as an ordinary fuzzy set whose membership function µA

is defined, for all x ∈ X, by the following formula

µA(x) =
n∑

i=1

Ω(wi)
iax

where

iax =

 1 if V (wi, ax) = T

0 otherwise

The set-theoretic operations such as complement, intersection and union de-
fined on fuzzy sets are then formulated within the model M1 based on logical
connectives NOT, AND, OR respectively (see [32,34]).

To model the interpretation of Dempster-Shafer theory of evidence in terms
of modal logic, the authors in [32,14] employed propositions of the form

eA : “A given incompletely characterized element ε is classified in set A”

where X denotes a frame of discernment, A ∈ 2X and ε ∈ X. Due to the
inner structure of these propositions, it is sufficient to consider as atomic
propositions only propositions e{x}, where x ∈ X. Propositions eA are then
defined as eA =

∨
x∈A e{x} for A 6= ∅ and e∅ =

∧
x∈X ¬e{x}.
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Furthermore, for each world wi ∈ W, it is assumed that V (wi, e{x}) = T for
one and only one x ∈ X and that the accessibility relation R is serial (see
Table 1). Then the model M1 yields the following equations for the four basic
functions in the Dempster-Shafer theory:

Bel(A) =
n∑

i=1

Ω(wi)
i(2eA), P l(A) =

n∑
i=1

Ω(wi)
i(3eA)

m(A) =
n∑

i=1

Ω(wi)
i[2eA ∧ (

∧
x∈A

3e{x})], Q(A) =
n∑

i=1

Ω(wi)
i(

∧
x∈A

3e{x})

where Bel, P l, m and Q denote the belief function, plausibility function, ba-
sic probability assignment, and commonality function in the Dempster-Shafer
theory, respectively.

In the case where a basic probability assignment m in the Dempster-Shafer
theory induces a nested family of focal elements, we obtain a special belief func-
tion called a necessity measure, along with a corresponding special plausibility
function called a possibility measure. Possibility theory is based on these two
special measures [6]. It has been shown in [24] that the accessibility relation
R of models associated with possibility theory are transitive and connected,
i.e. these models formally correspond to the modal system S4.3 (see Table 1).
The authors also showed the completeness of modal logic interpretation for
possibility theory.

3 Fuzzy concepts by context model based on modal logic

In this section we propose a context model for fuzzy concept analysis based
on modal logic. Firstly, we consider a context model for a single domain of an
attribute which can be applied to a set of objects of concern.

3.1 Single domain case

Fuzzy set was introduced as a mathematical modeling of vague concepts in nat-
ural language. Obviously, the usefulness of a fuzzy set for modeling a linguistic
label depends on the appropriateness of its membership function. Therefore,
the practical determination of an accurate and justifiable function for any
particular situation is of major concern.

Notice that the specific meaning of a vague concept in a proposition is usually
evaluated in different ways for different assessments of an entity by different
agents, contexts, etc. [35]. Let us consider the following example.
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Consider a sentence such as:“John is tall”, where “tall” is a linguistic term
of a linguistic variable, the height of people [38]. Assume that the domain
D = [0, 3m] which is associated with the base variable of the linguistic vari-
able height. Note that in the terms of fuzzy sets, we may know John’s height
but must determine to what degree he is considered “tall”. Next consider a
set of worlds W in the sense of the Kripke model in which each world evalu-
ates the sentence as either true or false. That is each world in W responds
either as true or false when presented with the sentence “John is tall”. Notice
that these worlds may be contexts, agents, persons, etc. This implicitly shows
that each world wi in W determines a subset of D given as being compati-
ble with the linguistic term tall. That is this subset represents wi’s view of
the vague concept “tall”. At this point we see that the context model intro-
duced by Kruse et al. [26] can be semantically extended and considered as a
data model for constructing membership functions of vague concepts based on
modal logic. An important principle mentioned in [35] is “we can not separate
the assessments of the entity without some loss property in the representation
of the entity itself.”

Let us consider a context model C = 〈D, C, AC(D)〉, where D is a domain
of an attribute at which is applied to objects of concern, C is a non-empty
finite set of contexts, and AC(D) is a set of linguistic terms associated with
the domain D considered now as vague characteristics in the context model.
For example, consider D = [0, 3m] which is interpreted as the domain of the
attribute height for people, C is a set of contexts such as Japanese, American,
Swede, etc., and AC(D) = { very short, short, medium, tall, more or less tall,
. . .}. Each context determines a subset of D given as being compatible with
a given linguistic term. Formally, each linguistic term can be considered as a
mapping from C to 2D. For linguistic terms such as tall and very tall, there are
two interpretations possible: it may either be meant that very tall implies tall,
i.e. that every very tall person is also tall. Or tall is an abbreviation for “tall,
but not very tall”. These two interpretations have been used in the literature
depending on the shape of membership functions of relevant fuzzy sets. The
linguistic term very tall is more specific than tall in the first interpretation,
but not in the second one.

Furthermore, we can also associate with the context model a weighting func-
tion or a probability distribution Ω defined on C. As such we obtain a valuated
context model

C = 〈D, C,AC(D), Ω〉
By this context model, each linguistic term a ∈ AC(D) may be semantically
represented by the fuzzy set A as follows

µA(x) =
∑
c∈C

Ω(c)µa(c)(x)

where µa(c) is the characteristic function of a(c). Intuitively, while each subset
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a(c), for c ∈ C, represents the c’s view of the vague concept a, the fuzzy set
A is the result of a weighted combinated view of the vague concept. Now,
we can formulate further for the set-theoretic operations on fuzzy sets by a
straightforward manner in this model. However, for the sake of a further devel-
opment in the next subsection, in the sequent we will formulate the problem
in the terms of modal logic. To this end, we now consider propositions that
are relevant to a linguistic term have the following form

ax : “x belongs to a given set A”

where x ∈ D and A denotes a subset of D that is based on a linguistic term
a in AC(D). Assume that C = {c1, . . . , cn}, we now define a model of modal
logic

M = 〈W, R, VD, Ω〉
where W = C, that is each context ci is associated with a possible world wi;
R is a binary relation on W , in this case R is the identity, i.e. each world wi

only itself is accessible; and VD is the value assignment function such that for
each world in W, by which truth (T ) or falsity (F ) is assigned to each atomic
proposition ax by

VD(wi, ax) =

 1 if x ∈ a(ci)

0 otherwise

With this background, we now define the compatible degree of any value x in
the domain D to the linguistic term a (and the set A is then viewed as an
ordinary fuzzy set) as the membership expression of truthood of the atomic
sentence ax in M as follows

µA(x) =
n∑

i=1

Ω(wi)VD(wi, ax) (1)

In the case without the weighting function Ω, the expression µA(x) can be
defined as

µA(x) =
| Wax |
| W |

=
1

n

n∑
i=1

VD(wi, ax) (2)

where Wax = {w ∈ W | VD(w, ax) = 1}, and | · | denotes the cardinality of a
set.

Similar as in [34], it is straightforward to define the set-theoretic operations
such as complement, intersection, union on fuzzy sets induced from linguistic
terms in AC(D) by the model M using logical connectives NOT, AND, and
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OR respectively. Apply Eq. (1) to the complement Ac of fuzzy set A we have

µAc(x) =
n∑

i=1

Ω(wi)VD(wi,¬ax) =
n∑

i=1

Ω(wi)(1− VD(wi, ax)) = 1− µA(x)

In addition to propositions ax, let us also consider propositions

bx : “x belongs to a given set B”

where x ∈ D and B denotes a subset of D that is based on another linguistic
term b in AC(D). Then we also have

µB(x) =
n∑

i=1

Ω(wi)VD(wi, bx) (3)

To define composed fuzzy sets A ∩ B and A ∪ B, we now apply logical con-
nectives AND, OR to propositions ax and bx as follows

µA∩B(x) =
n∑

i=1

Ω(wi)VD(wi, ax ∧ bx) (4)

µA∪B(x) =
n∑

i=1

Ω(wi)VD(wi, ax ∨ bx) (5)

It is easily seen that if a is more specific than b, we have

µA∩B(x) = min(µA(x), µB(x))

µA∪B(x) = max(µA(x), µB(x))

for any x ∈ D. This interpretation of linguistic hedges such as very, less,
etc., is in accordance with that considered in [38]. This also justifies for the
observation that linguistic terms with positive semantic consistency, the min-
max rule is more correct in applications.

Following properties of the operations ∨,∧ in classical logic, we easily obtain

µA∪B(x) = µA(x) + µB(x)− µA∩B(x) (6)

Furthermore, it follows directly by (4), (5) and (6) that

max(0, µA(x) + µB(x)− 1) ≤ µA∩B(x) ≤ min(µA(x), µB(x))

max(µA(x), µB(x)) ≤ µA∪B(x) ≤ min(1, µA(x) + µB(x))
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It should be noticed that under the constructive formulation of fuzzy sets by
this context model, fuzzy intersection and fuzzy union operations are no longer
truth-functional. Furthermore, if there is a non-trivial relationship between
contexts, we should take the relation R into account in defining of the fuzzy
set A. A solution for this is by using modal operators 2 and 3, and results in
an interval-valued fuzzy set defined as follows

µA(x) = [
n∑

i=1

Ω(wi)VD(wi, 2ax),
n∑

i=1

Ω(wi)VD(wi, 3ax)]

In the next subsection we deal with the general case where composed fuzzy sets
which represent linguistic combinations of linguistic terms of several context
models are considered.

3.2 General case

Let us consider a pair of variables x and y which may be interpreted as the
values of two attributes at1 and at2 for objects of concern, ranging on domains
D1 and D2, respectively. Let Ci = 〈Di, Ci, ACi

(Di)〉, for i = 1, 2 be context
models defined on D1 and D2, respectively.

It should be emphasized that in the framework of fuzzy data analysis, char-
acteristics (attributes) of observed objects can be considered simultaneously
in the same contexts. However, this situation may not be longer suitable for
fuzzy concept analysis. For example, let us consider two attributes Height
and Income of a set of people. Then, a set of contexts used for formulating
of vague concepts of the attribute Height may be given as in the preceding
subsection; while another set of contexts for formulating of vague concepts of
the attribute Income (like high, low, etc.), may be given as a set of kinds of
employees or a set of residential areas of employees.

In this subsection we define a unified model of modal logic for combining these
context models in order to formulate composed fuzzy sets which represent
linguistic combinations of liguistic terms from different domains.

Given two context models Ci = 〈Di, Ci, ACi
(Di)〉 defined on Di, for i = 1, 2,

respectively. A pair (x, y) ∈ D1×D2 is then interpreted as the pair of values of
two attributes at1 and at2 for objects of concern. Recall that each element in
ACi

(Di) is a linguistic term understood as a mapping from Ci → 2Di . Assume
that | Ci |= ni, for i = 1, 2.

We now define a unified Kripke model as follows

M = 〈W, R, V, Ω〉

11



where W = C1 × C2, R is the identity relation on W , and

Ω : C1 × C2 → [0, 1]

(c1
i , c

2
j) 7→ ωij = ωiωj

where the simplified notations Ω(c1
i , c

2
j) = ωij, Ω1(c

1
i ) = ωi, Ω2(c

2
j) = ωj are

used.

We should emphasize that the assumption imposed on this definition of Ω is
that each individual context model is independent to the other as the example
about attributes Height and Income just mentioned above.

For ai ∈ ACi
(Di), for i = 1, 2, we now formulate composed fuzzy sets, which

represent combinated linguistic terms like “a1 and a2” and “a1 or a2” within
model M .

For simplicity of notation, let us denote O a set of objects of concern which we
may apply for two attributes at1, at2 those values range on domains D1 and
D2, respectively. Then instead of considering fuzzy sets defined on different
domains, we can consider fuzzy sets defined only on a universal set, the set of
objects O. As such, we now consider atomic propositions of the form

ao : “An object o is in relation to a linguistic term a”

where a ∈ AC1(D1) ∪ AC2(D2) or a is a linguistic combination of linguistic
terms in AC1(D1) ∪ AC2(D2).

Notice that this constructive formulation of composed fuzzy sets is compa-
rable with the notion of the translation of a proposition ao into a relational
assignment equation introduced in [39].

3.2.1 a is a single term

Firstly we consider the case where a ∈ AC1(D1). For this case, we define the
valuation function V in M for atomic propositions ao by

V ((c1
i , c

2
j), ao) =

 1 if at1(o) ∈ a(c1
i )

0 otherwise

Then the fuzzy set A which represents the meaning of the linguistic term a is
defined in the model M as follows

µM
A (o) =

n1∑
i=1

n2∑
j=1

ωijV ((c1
i , c

2
j), ao) (7)
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Set W ′ = {(c1
i , c

2
j) ∈ C1 × C2 | V ((c1

i , c
2
j), ao) = 1}. It follows by definition of

V that W ′ = C ′
1 × C2, where C ′

1 = {c1
i ∈ C1 | at1(o) ∈ a(c1

i )}. The following
proposition is implied directly.

Proposition 1 We have
µM

A (o) = µM1
A (o)

where µM1
A (o) is represented by µM1

A (at1(o)) as in preceding subsection, here
at1(o) ∈ D1 denotes the value of attribute at1 for object o.

Similar for the case where a ∈ AC2(D2), we define the valuation function V in
M for atomic propositions ao by

V ((c1
i , c

2
j), ao) =

 1 if at2(o) ∈ a(c2
j)

0 otherwise

Obviously, we also have

Proposition 2
µM

A (o) = µM2
A (o)

where µM2
A (o) is represented by µM2

A (at2(o)) as in preceding subsection, here
at2(o) ∈ D2 denotes the value of attribute at2 for object o.

3.2.2 a is a composed linguistic term

We now consider for the case where a is a composed linguistic term which is
of the form like “a1 and a2” and “a1 or a2”, where ai ∈ ACi

(Di), for i = 1, 2.
To formulate the composed fuzzy set A corresponding to the term a in the
model M , we need to define the valuation function V for propositions ao. It
is natural to express ao by

ao =

 a1,o ∨ a2,o if a is “a1 or a2”

a1,o ∧ a2,o if a is “a1 and a2”

where ai,o, for i = 1, 2, are propositions of the form

ai,o : “An object o is in relation to a linguistic term ai.”

Consider the case where a is “a1 or a2”. Then, the valuation function V for
propositions ao is defined as follows

V ((c1
i , c

2
j), a1,o ∨ a2,o) =

 1 if at1(o) ∈ a1(c
1
i ) ∨ at2(o) ∈ a2(c

2
j)

0 otherwise
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With this notation, we are now ready to define the compatible degree of any
object o ∈ O to the composed linguistic term “a1 or a2” in the model M by

µA(o) = µA1∪A2(o) =
n1∑
i=1

n2∑
j=1

ωijV ((c1
i , c

2
j), a1,o ∨ a2,o) (8)

where A1, A2 denote fuzzy sets which represent component linguistic terms
a1, a2, respectively.

Similar for the case where a is “a1 and a2”. The valuation function V for
propositions ao is then defined as follows

V ((c1
i , c

2
j), a1,o ∧ a2,o) =

 1 if at1(o) ∈ a1(c
1
i ) ∧ at2(o) ∈ a2(c

2
j)

0 otherwise

and the compatible degree of any object o ∈ O to the composed linguistic
term “a1 and a2” in the model M is defined by

µA(o) = µA1∩A2(o) =
n1∑
i=1

n2∑
j=1

ωijV ((c1
i , c

2
j), a1,o ∧ a2,o) (9)

Notice that in the case without the weighting function Ω in the model M,
the membership expressions of composed fuzzy sets defined in (8) and (9) are
comparable with those given in [35].

Now we examine the behaviours of operators ∪,∩ in this formulation. Let us
denote by

C ′
1 = {c1

i ∈ C1 | at1(o) ∈ a1(c
1
i )}

C ′
2 = {c2

j ∈ C2 | at2(o) ∈ a2(c
2
j)}

It is easy to see that

V ((c1
i , c

2
j), (a1,o ∨ a2,o)) =

 1 if (c1
i , c

2
j) ∈ (C ′

1 × C2 ∪ C1 × C ′
2)

0 otherwise
(10)

and

V ((c1
i , c

2
j), (a1,o ∧ a2,o)) =

 1 if (c1
i , c

2
j) ∈ (C ′

1 × C ′
2)

0 otherwise
(11)
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Furthermore, we have the following representation

(C ′
1 × C2 ∪ C1 × C ′

2) = (C ′
1 × C2 ] C1 × C ′

2) \ (C ′
1 × C ′

2) (12)

where ] denotes an joint union which permits an iterative appearance of
elements.

With these notation, we have the following.

Proposition 3 For any o ∈ O, we have

µA1∩A2(o) = µA1(o)µA2(o) (13)

µA1∪A2(o) = µA1(o) + µA2(o)− µA1(o)µA2(o) (14)

PROOF. By the definition of the valuation function V and Propositions 1
and 2, it immediately implies (14) from (8) and (12). Similarly, (13) directly
follows from (9).

Expressions (13) and (14) show that fuzzy intersection and fuzzy union opera-
tors by this model are truth-functional, and, moreover, they are a well-known
dual pair of product t-norm and probabilistic sum t-conorm [20]. This justifies
for the situation when linguistic terms belong to different universes of dis-
course, for example Tall and High Income, there is no constraint of semantic
consistency between them, and reflecting such independence, the product-sum
rule is appropriate in applications. We should also note that for the purpose
of finding new operators for using in the fuzzy expert system shell FLOPS,
the authors in [4] have used elementary statistical calculations on binary data
for the truth of two fuzzy propositions to present new t-norm and t-conorm
for computing the truth of AND, and OR propositions. Interestingly, their t-
norm and t-conorm are also reduced to product t-norm and probabilistic sum
t-conorm in the case where the sample correlation coefficient equals to 0.

4 Fuzzy sets by context model and Mass assignments

In this section we establish a mass assignment interpretation of fuzzy con-
cepts within the context model. The mass assignment for a fuzzy concept was
firstly introduced by Baldwin [1,2] and can be interpreted as a probability
distribution over possible definitions of the concept. These varying definitions
may be provided by a population of voters where each is asked to give a crisp
definition of the concept.
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Let F be a fuzzy subset of a finite universe U such that the range of the
membership function µF is {y1, . . . , yn}, where yi > yi+1 > 0, for i = 1, . . . , n−
1. Then the mass assignment of F , denoted by mF , is a probability distribution
on 2U satisfying mF (∅) = 1− y1, mF (Fi) = yi − yi+1, for i = 1, . . . , n− 1, and
mF (Fn) = yn, where Fi = {u ∈ U |µF (u) ≥ yi}, for i = 1, . . . , n. {Fi}n

i=1

are referred to as the focal elements of mF . The mass assignment of a fuzzy
concept is then considered as providing a probabilistic based semantics for
membership function of the fuzzy concept. Furthermore, mass assignment of
fuzzy sets have been applied in some fields such as induction of decision trees
[3], computing with words [27,28], and fuzzy logic [29].

Given a context model C = 〈D, C,AC(D), Ω〉. Assume a ∈ AC(D) and µA

denotes the fuzzy set induced from a as defined by (1) in the preceding section.
The weighting function Ω can be extended to 2C as a probability measure by

Ω(X) =
∑
c∈X

Ω(c), for any X ∈ 2C

Denote {ω1, . . . , ωk} the range of Ω defined on 2C such that ωi > ωi+1 > 0,
for i = 1, . . . , k − 1. Clearly, ω1 = 1.

Set Ci = {X ∈ 2C |Ω(X) = ωi}, for i = 1, . . . , k. We now define {Ai}k
i=1

inductively as follows
A1 =

⋂
c∈C

a(c)

Ai = Ai−1 ∪
⋃

X∈Ci

⋂
c∈X

a(c), for i > 1

Let s be the least number such that As 6= ∅.

Obviously, As ⊂ As+1 ⊂ . . . ⊂ Ak. If a is consistent then we have s = 1. In
this case let us define m : 2D −→ [0, 1] by

m(E) =

 ωi − ωi+1 if E = Ai

0 otherwise

where, by convention, ωk+1 = 0.

In the case where s > 1, i.e. that a is not consistent, we define m : 2D −→ [0, 1]
by

m(E) =


1− ωs if E = ∅

ωi − ωi+1 if E = Ai and i > s

0 otherwise

Clearly, in both cases m is a probability distribution over 2D with {Ai}k
i=s is

a nested family of focal elenments of m. Consequently, the following holds
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Proposition 4 We have m = mµA
, where mµA

denotes the mass assignment
of the fuzzy set µA in the sense of Baldwin as defined above.

PROOF. Assume a ∈ AC(D) and µA denotes the fuzzy set induced from a
as defined by (1). Equivalently, for any x ∈ D, we have

µA(x) =
∑
c∈C

Ω(c)µa(c)(x)

where µa(c) is the characteristic function of a(c). As such the range of the
membership function µA is a subset of {ω1, . . . , ωk}, the range of Ω defined on
2C with ωi > ωi+1 > 0, for i = 1, . . . , k− 1. More particularly, the range of µA

is {ωs, . . . , ωk} with s being defined as above.

Now it is sufficient to prove that Ai is exactly ωi-cut of the fuzzy set µA, for
i = s, . . . , k. Indeed, as denoted previously, for each i = s, . . . , k, we have
Ci = {X ∈ 2C |Ω(X) = ωi}. This follows by the definition of ωi’s that for each
X ∈ Ci and x ∈ ∩

c∈X
a(c), we obtain

µA(x) =
∑
c∈C

Ω(c)µa(c)(x) =
∑
c∈X

Ω(c)µa(c)(x) = ωi

Thus we have µA(x) = ωi for only x’s those belong to the set ∪
X∈Ci

∩
c∈X

a(c).

Consequently, by the definition of Ai’s as above, it follows that Ai is exactly
ωi-cut of the fuzzy set µA. This concludes the proof.

On the other hand, for a ∈ AC(D), it naturally generates a mass distribution
ma over 2D defined as follows

ma(E) = Ω({c ∈ C|a(c) = E}), for any E ∈ 2D

In this case, if the mass assignment for a fuzzy concept could be interpreted
as a probability distribution over possible definitions of the concept, it would
seem desirable that the natural mass distribution ma coincides with the mass
assignment of the fuzzy set µA induced by a up to a permutation of C. How-
ever, this is not generally the case. Actually, due to the additive property
imposed on Ω, we have the following.

Proposition 5 Given a context model C = 〈D, C,AC(D), Ω〉, and a ∈ AC(D).
Assume that µA is the fuzzy set induced from a as defined by (1). Then
ma = mµA

if and only if the family {a(c)|c ∈ C} forms a nested family of
subsets in D.

PROOF. (⇒): This part follows directly from the definitions of ma and mµA
.
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(⇐): Assume that {a(c)|c ∈ C} is a nested family of subsets in D. Let

{a(c)|c ∈ C} = {Ai}n
i=1

with A1 ⊂ A2 ⊂ . . . ⊂ An. We now show that ma(Ai) = mµA
(Ai), for any

i = 1, . . . , n. Clearly, for each i = 1, . . . , n, Ai is the αi-cut of the fuzzy set µA

with αi being defined as follows

αi =
n∑

j=i

mµA
(Aj) (15)

On the other hand, we have

µA(x) =
∑
c∈C

Ω(c)µa(c)(x)

for any x ∈ D. Thus, it follows from the assumption {a(c)|c ∈ C} = {Ai}n
i=1

that, for any x ∈ Ai \ Ai−1,

αi = µA(x) =
n∑

j=i

∑
c∈C:a(c)=Aj

Ω(c) =
n∑

j=i

ma(Aj) (16)

From (15) and (16) it easily implies that ma(Ai) = mµA
(Ai), for any i. This

completes the proof.

5 Conclusions

Interesting relationships between context model, modal logic and fuzzy con-
cept analysis have been explored in this paper. As is well-known, the two
following important problems should be taken into account in most fuzzy set
based applications. The first problem is how to construct efficiently member-
ship functions of fuzzy sets in a given particular application. This one has been
studied by many distinguished fuzzy scholars including Turksen [36], Pedrycz
[30], Klir [25] among others. The second problem is how to use suitably connec-
tives in the fuzzy setting. As observated from practical applications of fuzzy
sets, if fuzzy sets of interest model linguistic terms with positive semantic con-
sistency, for example Tall and Very Tall, the min-max rule is more correct.
In the other hand, when linguistic terms belong to different universes of dis-
course, for example Tall and High Income, there is no constraint of semantic
consistency between them, and reflecting such independence, the product-
sum rule is appropriate in applications. As such, if context model provides a
semantic interpretation of forming fuzzy concepts, it gives a theoretical justi-
fication for appropriate use of t-norm based connectives such as min-max and
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product-sum rules in practical applications, as well. Furthermore, this paper
also established an interpretation of mass assignments of fuzzy concepts within
the context model.
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