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Van-Nam Huynh ∗, Yoshiteru Nakamori,

School of Knowledge Science
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Abstract

Recently, an attempt of integration between the theories of fuzzy sets and rough
sets has resulted in providing a roughness measure for fuzzy sets (Banerjee and Pal,
1996). Essentially, Banerjee and Pal’s roughness measure depends on parameters
that are designed as thresholds of definiteness and possibility in membership of the
objects to a fuzzy set. In this paper we first remark that this measure of roughness
has several undesirable properties, and then propose a parameter-free roughness
measure for fuzzy sets based on the notion of the mass assignment of a fuzzy set.
Several interesting properties of this new measure are examined. Furthermore, we
also discuss how the proposed approach is used to describe the rough approximation
quality of a fuzzy classification.
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1 Introduction

The notion of fuzzy sets aimed at mathematically modeling vague concepts
was first introduced by Zadeh in [27], in connection with the representation
and manipulation of human knowledge automatically. Formally, the theory of
fuzzy sets is a generalization of classical set theory, making use of the notion of
partial degrees of membership. Practically, the theory of fuzzy sets provides
a systematic framework for dealing with complex phenomena in describing
the behavior of systems which do not lend themselves to analysis by classical
methods based on probability theory and bivalent logic. Since its inception,
the mathematical foundation as well as extensive application of the theory to
many different areas have already been well established [11].
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After nearly twenty years since the introduction of fuzzy sets, Pawlak [17]
introduced the notion of a rough set as a new mathematical tool to deal
with the approximation of a concept in the context of incomplete information.
Basically, while a fuzzy set models the ill-definition of the boundary of a
concept often described linguistically, a rough set characterizes a concept by
its lower and upper approximations due to indiscernibility between objects
arose because of incompleteness of available knowledge. The rough set theory
is also proven to be of substantial importance in many areas of application
(cf. [16,18,20]).

Since the introduction of rough set theory, many attempts to establish the
relationships between the two theories, to compare each to the other, and to
simultaneously hybridize them have been made (e.g. [7,14,16,19,22,21,24,25]).
As an attempt in the line of integration between the two theories, Banerjee
and Pal [4] have recently proposed a roughness measure for fuzzy sets, making
use of the concept of a rough fuzzy set [7]. Although this measure of roughness
satisfies some interesting properties and has potential applications in the field
of pattern recognition as mentioned in [4]. At the same time, it also has some
undesirable properties as remarked in the following. In this paper we propose
an alternative roughness measure for fuzzy sets based on the notions of the
mass assignment of a fuzzy set and its α-cuts. Several properties of this mea-
sure are examined. We moreover discuss how to extend the notion of rough
approximation quality γ within the context considered in this paper.

The structure of the rest of this paper is as follows. Section 2 briefly introduces
necessary notions of rough sets and fuzzy sets, the mass assignment of a fuzzy
set as well as its relation to the probabilistic based semantics of a membership
function. In Section 3, after recalling the notion of a rough fuzzy set [7],
Benerjee and Pal’s approach to roughness of a fuzzy set [4] is reviewed. In
Section 4, a new roughness measure of a fuzzy set is proposed based on the
mass assignment of the fuzzy set, and several of its properties are proved.
Section 5 discusses some possible extensions of the approximation quality,
which may be used to describe the rough approximation quality of a fuzzy
classification. Finally, some concluding remarks are presented in Section 6.

2 Preliminaries

In this section we recall basic notions in the theories of rough sets and fuzzy
sets. For the purpose of this paper we confine ourselves the consideration on
only the finite version of universes of discourse.
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2.1 Rough Sets

Formally, the theory begins with the notion of an approximation space, which
is a pair 〈U,R〉, where U be a non-empty set (the universe of discourse) and
R an equivalence relation on U , i.e., R is reflexive, symmetric, and transitive.
The relation R decomposes the set U into disjoint classes in such a way that
two elements x, y are in the same class iff (x, y) ∈ R. Let denote by U/R the
quotient set of U by the relation R, and

U/R = {X1, X2, . . . , Xm}

where Xi is an equivalence class of R, i = 1, 2, . . . , m.

If two elements x, y in U belong to the same equivalence class Xi ∈ U/R, we
say that x and y are indistinguishable. The equivalence classes of R and the
empty set ∅ are the elementary sets in the approximation space 〈U,R〉.

Note that in the context of rough-set-based data analysis, the equivalence
relation in an approximation space is often interpreted via the notion of infor-
mation systems 1 . An information system with U as universe would be a triple
〈U,A, {Va}a∈A〉, where U is a set of objects, A is a set of attributes and Va the
set of attribute values for attribute a undestood as a mapping a : U → Va. It
is easily seen that each subset A of the attribute set A induces an equivalence
relation ind(A) called indiscernability relation as follows

ind(A) = {(x, y) ∈ U × U |a(x) = a(y), for all a ∈ A}

and ind(A) =
⋂

a∈A
ind(a), where ind(a) means ind({a}). If (x, y) ∈ ind(A) we

then say that the objects x and y are indiscernible with respect to attributes
from A. In other words, we cannot distinguish x from y, and vice versa, in
terms of attributes in A.

Let us return to an arbitrary approximation space 〈U,R〉. Given an arbitrary
set X ∈ 2U , in general it may not be possible to describe X precisely in 〈U,R〉.
One may characterize X by a pair of lower and upper approximations defined
as follows [17]:

R(X) =
⋃

Xi⊆X

Xi; R(X) =
⋃

Xi∩X 6=∅
Xi

That is, the lower approximation R(X) is the union of all the elementary sets
which are subsets of X, and the upper approximation R(X) is the union of all
the elementary sets which have a non-empty intersection with X. The interval

1 also called data tables, databases, attribute-value systems, etc.
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[R(X), R(X)] is the representation of an ordinary set X in the approximation
space 〈U,R〉 or simply called the rough set of X.

The lower (resp., upper) approximation R(X) (resp., R(X)) is interpreted as
the collection of those elements of U that definitely (resp., possibly) belong to
X. Further, we also define:

• a set X ∈ 2U is said to be definable (or exact) in 〈U,R〉 iff R(X) = R(X).

• for any X, Y ∈ 2U , X is said to be roughly included in Y, denoted by X
∼⊂ Y,

iff R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ).
• X and Y is said to be roughly equal, denoted by X ≈R Y, in 〈U,R〉 iff

R(X) = R(Y ) and R(X) = R(Y ).

In [18], Pawlak discusses two numerical chacracterizations of imprecision of a
subset X in the approximation space 〈U,R〉: accuracy and roughness. Accuracy
of X, denoted by αR(X), is simply the ratio of the number of objects in its
lower approximation to that in its upper approximation; namely

αR(X) =
|R(X)|
|R(X)|

where | · | denotes the cardinality of a set. Then the roughness of X, denoted
by ρR(X), is defined by subtracting the accurcy from 1:

ρR(X) = 1− αR(X) = 1− |R(X)|
|R(X)|

Note that the lower the roughness of a subset, the better is its approximation.
Further, the following observations are easily obtained:

(1) As R(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1.
(2) By convention, when X = ∅, R(X) = R(X) = ∅ and ρR(X) = 0.
(3) ρR(X) = 0 if and only if X is definable in 〈U,R〉.

In [23], Yao has interpreted Pawlak’s accuracy measure in terms of a clas-
sic distance measure based on sets, called Marczewski-Steinhaus metric [13],
which is defined by

DMZ(X, Y ) =
|X ∪ Y | − |X ∩ Y |

|X ∪ Y | = 1− |X ∩ Y |
|X ∪ Y |

Using the Marczewski-Steinhaus metric, the roughness measure of a set X in
〈U,R〉 is the distance between its lower and upper approximations. Moreover,
it would be worth noting that this metric has been also used to re-interpret
the so-called rough approximation quality γ and ascertain its statistical sig-
nificance in [8]. Related to the context of this paper, a recent survey on prob-
abilistic approaches to rough sets could be found in [26].
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2.2 Fuzzy Sets

Let U be a finite and non-empty set called universe. A fuzzy set F of U is a
mapping from U into the unit interval [0, 1]:

µF : U −→ [0, 1]

where for each x ∈ U we call µF (x) the membership degree of x in F . Practi-
cally, we may consider U as a set of objects of concern, and a crisp subset of
U represent a “non-vague” concept imposed on objects in U . Then a fuzzy set
F of U is thought of as a mathematical representation of a “vague” concept
described linguistically.

Usually in the setting of fuzzy sets, the set theoretic operations union, intersec-
tion and complement can be realized with the aid of the so-called De Morgan
triples [11], among which the system (max, min, 1−) is the most widely-used.

Given a number α ∈ (0, 1], the α-cut, or α-level set, of F is defined as follows

Fα = {x ∈ U |µF (x) ≥ α}

which is a subset of U . A strong α-cut is defined by

Fα+ = {x ∈ U |µF (x) > α}

An implication of the (max, min, 1−) system is that the set theoretic opera-
tions on fuzzy sets can be defined by those on α-cuts. However, this may be
not the case when another pair of t-norm and t-conorm is used.

In [9], a formal connection between fuzzy sets and random sets was established.
Furthermore, viewing the body of evidence as a random set [15], a fuzzy set
F is a consonant random set; the family of its α-cuts forms a nested family of
focal elements [6,7]. Note that in this case the normalization assumption of F
is imposed due to the body of evidence does not contain the empty set. Inter-
estingly, this view of fuzzy sets has been used by Baldwin in [1,2] to introduce
the so-called mass assignment of a fuzzy set with relaxing the assumption,
and to provide a probability based semantics for a fuzzy concept defined as
a family of possible definitions of the concept. These varying definitions may
be provided by a population of voters accompanied with a probability distri-
bution where each voter is asked to give a crisp definition of the concept. The
mass assignment of a fuzzy set is defined as follows.

Let F be a fuzzy subset of a finite universe U such that the range of the
membership function µF , denoted by rng(µF ), is rng(µF ) = {α1, . . . , αn},
where αi > αi+1 > 0, for i = 1, . . . , n − 1. Then the mass assignment of F ,
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denoted by mF , is a probability distribution on 2U satisfying

mF (∅) = 1− α1,mF (Fi) = αi − αi+1, for i = 1, . . . , n

with αn+1 = 0 by convention, where

Fi = {x ∈ U |µF (x) ≥ αi}

for i = 1, . . . , n. {Fi}n
i=1 (or {Fi}n

i=1 ∪ {∅} if F is a subnormal fuzzy set, i.e.
maxx∈U{µF (x)} < 1) are referred to as the focal elements of mF . The mass
assignment of a fuzzy concept is then considered as providing a probability
based semantics for membership function of the fuzzy concept. A formal con-
nection between this semantics of membership functions and the modal logic
based interpretation of fuzzy concepts has been established in [10]. The mass
assignment theory has been applied in some fields such as induction of decision
trees [3], computing with words [12], among others.

In the following we utilize this notion of the mass assignment of a fuzzy set to
introduce a new roughness measure for fuzzy sets within a given approximation
space.

3 Roughness Measure of a Fuzzy Set: Banerjee and Pal’s Approach

First, we briefly recall the notion of a rough fuzzy set and allied notions [7]
that forms the basis of a roughness measure of a fuzzy set proposed in [4].

3.1 Rough Fuzzy Sets

Given a finite approximation space 〈U,R〉. Let F be a fuzzy set in U with
the membership function µF . The upper and lower approximations R(F ) and
R(F ) of F by R are fuzzy sets in the quotient set U/R = {X1, X2, . . . , Xm}
with membership functions defined [7] by

µR(F )(Xi) = max
x∈Xi

{µF (x)}

µR(F )(Xi) = min
x∈Xi

{µF (x)}
for i = 1, . . . ,m. (R(F ), R(F )) is called a rough fuzzy set.

The rough fuzzy set (R(F ), R(F )) then induces two fuzzy sets F ∗ and F∗ in
U with membership functions are defined respectively as follows

µF ∗(x) = µR(F )(Xi) and µF∗(x) = µR(F )(Xi)
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if x ∈ Xi, for i = 1, . . . , m. That is, F ∗ and F∗ are fuzzy sets with constant
membership degree on the equivalence classes of U by R, and for any x ∈ U ,
µF ∗(x) (respectively, µF∗(x)) can be viewed as the degree to which x possibly
(respectively, definitely) belongs to the fuzzy set F [4].

Under such a view, we now define the notion of a definable fuzzy set in 〈U,R〉.
A fuzzy set F is called a definable if R(F ) = R(F ), i.e. there exists a fuzzy
set F in U/R such that µF (x) = µF(Xi) if x ∈ Xi, i = 1 . . . , m. Further, as
defined in [4], fuzzy sets F and G in U are said to be roughly equal, denoted
by F ≈R G, if and only if

R(F ) = R(G) and R(F ) = R(G)

The following proposition states fundamental properties on rough fuzzy sets
taken from [4].

Proposition 1 Let F and G be fuzzy sets in U . Then

(1) F∗ ⊆ F ⊆ F ∗,
(2) R(F ∪G) = R(F ) ∪R(G),
(3) R(F ∩G) = R(F ) ∩R(G),
(4) R(F ) ∪R(G) ⊆ R(F ∪G),
(5) R(F ∩G) ⊆ R(F ) ∩R(G),
(6) R(F c) = R(F )c, R(F )

c
= R(F c).

where fuzzy set operations union, intersection and complement are defined via
max, min and 1−, respectively.

3.2 Banerjee and Pal’s Roughness Measure

In [4], Banerjee and Pal have proposed a roughness measure for fuzzy sets in
a given approximation space. Essentially, this measure of roughness of a fuzzy
set depends on parameters that are designed as thresholds of definiteness and
possibility in membership of the objects in U to the fuzzy set.

More explicitly, let us be given a finite approximation space 〈U,R〉 and a fuzzy
set F in U . We now consider parameters α, β such that 0 < β ≤ α ≤ 1. The
α-cut (F∗)α and β-cut (F ∗)β of fuzzy sets F∗ and F ∗, respectively, are called
to be the α-lower approximation, the β-upper approximation of F in 〈U,R〉,
respectively. Then a roughness measure of the fuzzy set F with respect to
parameters α, β with 0 < β ≤ α ≤ 1, and the approximation space 〈U,R〉 is
defined by

ρα,β
R (F ) = 1− |(F∗)α|

|(F ∗)β|
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It is obvious that this definition of roughness measure ρα,β
R (·) strongly depends

on parameters α and β.

Remark 2 By the assumption made on parameters, we have

(1) 0 ≤ ρα,β
R (F ) ≤ 1.

(2) If F is such that there is a member x in each equivalence class Xi (i =
1, . . . , m) with µF (x) < α, then ρα,β

R (F ) = 1.
(3) If F is a definable fuzzy set, i.e. µF is a constant function on each equiv-

alence class Xi (i = 1 . . . , m) and α = β, then ρα,β
R (F ) = 0.

Note that while the third statement seems interesting as it says that the
measure ρα,β

R (·) inherits a property of Pawlak’s roughness measure, that is the
roughness of a definable subset is equal to 0, the second one may not be well-
justified. Furthermore, the following property of ρα,β

R (·) proved in [4] may be
also undesired, unless the support of a constant fuzzy set, i.e. its strong 0-cut,
is definable in the approximation space.

Proposition 3 If F is a constant fuzzy set, say µF (x) = δ, for all x ∈ U , then
ρα,β

R (F ) = 0, with the exception when β < δ < α, in which case ρα,β
R (F ) = 1.

Several properties of the measure ρα,β
R (·) and its potential applications in the

field of pattern recognition have been reported and mentioned in [4], and more
recently in [28].

4 A New Roughness Measure for Fuzzy Sets

In this section we introduce a parameter-free measure of roughness of a fuzzy
set that in fact is a generalization of Pawlak’s notion of roughness measure
and avoids the undesirable properties held by Banerjee and Pal’s roughness
measure as mentioned above.

Given a finite approximation space 〈U,R〉 and a normal fuzzy set F in U . As-
sume that the range of the membership function µF is rng(µF ) = {α1, . . . , αn},
where αi > αi+1 > 0, for i = 1, . . . , n − 1, and α1 = 1. Let us denote mF the
mass assignment of F defined as in the preceding section. Let

Fi = {x ∈ U |µF (x) ≥ αi}, for i = 1, . . . , n

It is of interest that if {Fi}n
=1 could be interpreted as a family of possible

definitions of the concept F , then mF (Fi) is the probability of the event “the
concept is Fi”, for each i.

Under such an interpretation, we now define the roughness measure of F with
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respect to the approximation space 〈U,R〉 as follows

ρ̂R(F ) =
n∑

i=1

mF (Fi)(1− |R(Fi)|
|R(Fi)|

) ≡
n∑

i=1

mF (Fi)ρR(Fi)

That is, the roughness of a fuzzy set F is the weighted sum of the roughness
measures of nested focal subsets which are considered as its possible defini-
tions.

Remark 4 • Clearly, 0 ≤ ρ̂R(F ) ≤ 1.
• ρ̂R(·) is a natural extension of Pawlak’s roughness measure for fuzzy sets,

i.e. if F is a crisp subset of U then ρ̂R(F ) = ρR(F ).
• F is a definable fuzzy set if and only if ρ̂R(F ) = 0.

For the sake of illustration, let us consider a very simple example depicting
the introduced notion.

Example 5 Suppose we are given an approximation space 〈U,R〉, where U =
{0, 1, 2, . . . , 10} and R is such that

U/R = {{0, 2, 4}, {1, 3, 5}, {6, 8, 10}, {7, 9}}

Let us consider a linguistic value small whose membership function is defined
by Table 1:

Table 1
The membership function of small

u 0 1 2 3 4 5 6 7 8 9 10

µsmall(u) 1 1 0.75 0.5 0.25 0 0 0 0 0 0

The approximations of the fuzzy set µsmall in 〈U,R〉 are given in Table 2.

Table 2
The approximations of the fuzzy set µsmall

{0,2,4} {1,3,5} {6,8,10} {7,9}
µsmall∗ 0.25 0 0 0

µsmall∗ 1 1 0 0

Then we obtain the mass assignment for the linguistic value small, and ap-
proximations of its focal sets given in Table 3 as follows.
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Table 3
Mass assignment for small and approximations of its focal sets

rng(µsmall) 1 0.75 0.5 0.25

smallα {0, 1} {0, 1, 2} {0, 1, 2, 3} {0, 1, 2, 3, 4}
msmall(smallα) 0.25 0.25 0.25 0.25

R(smallα) ∅ ∅ ∅ {0, 2, 4}
R(smallα) {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5} {0, 1, 2, 3, 4, 5}

Using Banerjee and Pal’s notion, we obtain

ρα,β
R (small) =





1 for α > 0.25

0.5 for 0.25 ≥ α > 0

where the constraint α ≥ β > 0 is always assumed. On the other hand, the
new measure of roughness yields

ρ̂R(small) =
∑

α∈rng(µsmall)

msmall(smallα)(1− |R(smallα)|
|R(smallα)|) = 0.875

We now need the following [7].

Lemma 6 For any α ∈ (0, 1], we have

R(F )α = R(Fα) and R(F )α = R(Fα)

Let F ∗ and F∗ be fuzzy sets induced from the rough fuzzy set (R(F ), R(F ))
as above. Denote

rng(µF∗) ∪ rng(µF ∗) = {ω1, . . . , ωp}

such that ωi > ωi+1 > 0 for i = 1, . . . , p−1. Obviously, {ω1, . . . , ωp} ⊆ rng(µF ),
and ω1 = α1 and ωp ≥ αn. Assume that ωj = αij , for j = 1, . . . , p and i1 = 1.
Then numbers in the set {ω1, . . . , ωp} makes a partition of {α1, . . . , αn}, say

{{α1, . . . , αi2−1}, . . . , {αij , . . . , αij−1}, . . . , {αip , . . . , αn}}

where the enumeration preserves strict descreasing order. With these nota-
tions, we have

Lemma 7 For any 1 ≤ j ≤ p, if there exists αi, αi′ ∈ rng(µF ) such that
ωj+1 < αi < αi′ ≤ ωj then we have Fi ≈R Fi′, and so ρR(Fi) = ρR(Fi′).
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PROOF. Indeed, since αi < αi′ we have Fi′ ⊆ Fi
2 , so R(Fi′) ⊆ R(Fi), and

R(Fi′) ⊆ R(Fi). The inverse inclusions are proved by the contrary as follows.

Assume that there exists x ∈ U such that [x]R ⊆ R(Fi) and [x]R 6⊆ R(Fi′). By
Lemma 6 we have R(Fi′) = R(F )αi′ . By definition, we get

R(Fi′) = R(F )αi′ = (F∗)αi′

It follows from [x]R 6⊆ R(Fi′) that miny∈[x]R{µF (y)} < αi′ , which implies
µR(F )([x]R) ≤ ωj+1. On the other hand, since αi 6∈ rng(µF∗) and ωj+1 < αi <
ωj we also have

R(Fi) = R(F )αi
= (F∗)αi

= (F∗)ωj

which implies µR(F )([x]R) ≥ ωj, since [x]R ⊆ R(Fi), a contradiction. An anal-
ogous argument is also applied for the remaining inclusion. Consequently, the
lemma is proved completely.

Now we can represent the roughness ρ̂R(F ) in terms of level sets of fuzzy sets
F∗ and F ∗ in the following lemma.

Lemma 8 ρ̂R(F ) =
p∑

j=1
(ωj − ωj+1)(1− |(F∗)ωj |

|(F ∗)ωj |
), where ωp+1 = 0, by conven-

tion.

PROOF. Indeed, we have

ρ̂R(F ) =
n∑

i=1
mF (Fi)(1− |R(Fi)|

|R(Fi)|)

=
n∑

i=1
mF (Fi)ρR(Fi)

=
p∑

j=1

ij+1−1∑
i=ij

mF (Fi)ρR(Fi)

=
p∑

j=1

ij+1−1∑
i=ij

mF (Fi)ρR(Fωj
)

=
p∑

j=1
(ωj − ωj+1)ρR(Fωj

)

=
p∑

j=1
(ωj − ωj+1)(1− |R(Fωj )|

|R(Fωj )|)

=
p∑

j=1
(ωj − ωj+1)(1− |R(F )ωj |

|R(F )ωj |
)

=
p∑

j=1
(ωj − ωj+1)(1− |(F∗)ωj |

|(F ∗)ωj |
)

2 Note that Fi stands for Fαi
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As mentioned in [8], by Lemma 8 it is worth noting that ρ̂R(F ) can also be
used in all three steps of modelling–learning, testing and applying a model–
because it is properly defined with the knowledge of the fuzzy set F in the
learning and testing stage, and without knowing F but its approximations in
the application stage.

Lemmas 7 and 8 are illustrated by the following example.

Example 9 Let us continue with the approximation space 〈U,R〉 and the fuzzy
set small given in Example 5. We have

rng(µsmall) = {1, 0.75, 0.5, 0.25}

By Table 2, we obtain

rng(µsmall∗) ∪ rng(µsmall∗) = {1, 0.25}

which makes a partition of rng(µsmall) as {{1, 0.75, 0.5}, {0.25}}. It is easily
to see that Table 3 illustrates for Lemma 7, and by Lemma 8 and Table 2 we
get

ρ̂R(small) = (1− 0.25)(1− (small∗)1

(small∗)1

) + 0.25(1− (small∗)0.25

(small∗)0.25

) = 0.875

which coincides with that given in Example 5.

More interestingly, we have the following proposition.

Proposition 10 If fuzzy sets F and G in U are roughly equal in 〈U,R〉, then
we have ρ̂R(F ) = ρ̂R(G).

PROOF. Assume that the ranges of the membership functions µF and µG

are
rng(µF ) = {α1, . . . , αn} and rng(µG) = {β1, . . . , βk}

respectively. Further, let us denote mF and mG the mass assignments of F
and G, respectively. By definition, F ≈R G follows R(F ) = R(G) and R(F ) =
R(G). This directly implies α1 = β1. Furthermore, we have F∗ = G∗ and
F ∗ = G∗. Clearly also, the ranges of the membership functions µF∗ and µF ∗

are subsets of the set rng(µF ). It follows by the fact F ≈R G that

rng(µF∗) = rng(µG∗) ⊆ {α1, . . . , αn} ∩ {β1, . . . , βk}

rng(µF ∗) = rng(µG∗) ⊆ {α1, . . . , αn} ∩ {β1, . . . , βk}
These immediately imply

rng(µF∗) ∪ rng(µF ∗) = rng(µG∗) ∪ rng(µG∗)
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Then Lemma 7 and Lemma 8 conclude the proof.

5 Rough Approximation Quality of a Fuzzy Classification

5.1 Extended Measures

Recall that roughness of a crisp set is defined as opposed to its accuracy. First,
in the following we will see that it is possible to make a similar correspondency
between the roughness and accuracy of a fuzzy set.

It should be noticed that if F is a subnormal fuzzy set, we have mF (∅) > 0,
and then the empty set may be also considered as a possible definition of F .
In this case, we should define the roughness measure of F as

ρ̂R(F ) =
n∑

i=1

mF (Fi)ρR(Fi) + mF (∅)ρR(∅)

which trivially turns back to the normal case above as, by convention, ρR(∅) =
0. However, we should take the case into account when once we want to con-
sider the accuracy measure instead of roughness, with the convention that
αR(∅) = 1.

Under such an observation, it is eligible to define the accuracy measure for a
fuzzy set F by

α̂R(F ) =
n∑

i=1

mF (Fi)αR(Fi)

if F is a normal fuzzy set, or

α̂R(F ) =
n∑

i=1

mF (Fi)αR(Fi) + mF (∅)αR(∅)

if F is a subnormal fuzzy set. With this definition we have

α̂R(F ) = 1− ρ̂R(F )

for any fuzzy set F in U .

In the rough set theory, the approximation quality γ is often used to evaluate
the classification success of attributes in terms of a numerical evaluation of
the dependency properties generated by these attributes.

Let us turn back to an approximation space 〈U,R〉. Assume now that there is
another partition (or, classification) C of U , say C = {Y1, . . . , Yn}. Note that,
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as mentioned above, R (or equivalently, U/R) and C may be induced respec-
tively by sets of attributes applied to objects in U . In [18] Pawlak defines two
measures to describe inexactness of approximation classifications as follows.
The first one is called the approximation accuracy of C by R defined by

αR(C) =

∑n
i=1 |R(Yi)|∑n
i=1 |R(Yi)|

(1)

which is easily represented in terms of accuracies of sets as follows

αR(C) =
n∑

i=1

|R(Yi)|∑n
i=1 |R(Yi)|

αR(Yi) (2)

That is, the approximation accuracy of a classification can be regarded as the
convex sum of accuracies of its classes.

The second measure called the approximation quality of C by R is defined by

γR(C) =

∑n
i=1 |R(Yi)|
|U | (3)

which is also represented in terms of accuracy as follows

γR(C) =
n∑

i=1

|R(Yi)|
|U | αR(Yi) (4)

In this case the measure γR(C) can be regarded as the weighted mean of the
accuracies of approximation of C by R [8].

Now let us consider a fuzzy classification FC of U instead of a crisp one C, i.e.,
FC = {Y1, . . . , Yn} is a fuzzy partition of U . This situation may come up in
a natural way when a linguistic classification must be approximated in terms
of already existing knowledge R. For example, assume that we have a per-
sonnel database given as D = PERSONNEL[ID; Name; Position; Salary],
and Position attribute induces an approximation space 〈D, ind(Position)〉.
Given a linguistic description on the attribute Salary, say ‘high’, it defines a
fuzzy set on D denoted by µhigh. Then we can measure the accuracy of the
fuzzy set µhigh, namely α̂ind(Position)(µhigh), which may express the degree of
completeness of our knowledge about the statement “Salary is high”, given
the granularity of D/ind(Position). Further, a linguistic classification, say
{low, medium, high}, may be imposed on the Salary attribute that induces
a fuzzy partition of D. Now one may want to measure a degree of depen-
dency between ‘knowledge on Salary attribute expressed linguistically’ and
‘knowledge on Position attribute’.

In such a situation, quite naturally with the spirit of our proposal in the
preceding section, one may define the accuracy and quality of approximation

14



of FC by R respectively as

α̂R(FC) =

n∑
i=1

ni∑
j=1

mYi
(Yi,j)|R(Yi,j)|

n∑
i=1

ni∑
j=1

mYi
(Yi,j)|R(Yi,j)|

(5)

and

γ̂R(FC) =
1

|U |
n∑

i=1

ni∑

j=1

mYi
(Yi,j)|R(Yi,j)| (6)

where for i = 1 . . . , n, mYi
and {Yi,j}ni

j=1 stand for the mass assignment of Yi

and the family of its focal elements, respectively.

By Lemma 7 and a simple transformation, we easily infer

ni∑
j=1

mYi
(Yi,j)|R(Yi,j)| = |Yi∗|

ni∑
j=1

mYi
(Yi,j)|R(Yi,j)| = |Y ∗

i |

where the cardinality of a fuzzy set Y ∗
i is defined as

|Y ∗
i | =

∑

x∈U

µY ∗i (x)

Therefore, we have

α̂R(FC) =

n∑
i=1
|Yi∗|

n∑
i=1
|Y ∗

i |
(7)

and

γ̂R(FC) =
1

|U |
n∑

i=1

|Yi∗| (8)

Furthermore, similar as mentioned in [18], the measure of approximation qual-
ity (also called the measure of rough dependency) γ̂R does not capture how
this partial dependency is actually distributed among fuzzy classes of FC. To
capture this information we need also the so-called precision measure π̂R(Yi),
for i = 1, . . . , k, defined by

π̂R(Yi) =
ni∑

j=1

mYi
(Yi,j)

|R(Yi,j)|
|Yi,j| (9)

which may be considered as the expected relative number of elements in Yi

approximated by R. Clearly, we have π̂R(Yi) ≥ α̂R(Yi), for any i = 1, . . . , k.
As such the two measures γ̂R and π̂R give us enough information about the
“classification power” of the knowledge R with respect to the linguistic clas-
sification FC.
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Table 4
Relation in a Relational Database

ID Degree Experience (n) Salary

1 Ph.D. 6 < n ≤ 8 63K

2 Ph.D. 0 < n ≤ 2 47K

3 M.S. 6 < n ≤ 8 53K

4 B.S. 0 < n ≤ 2 26K

5 B.S. 2 < n ≤ 4 29K

6 Ph.D. 0 < n ≤ 2 50K

7 B.S. 2 < n ≤ 4 35K

8 M.S. 2 < n ≤ 4 40K

9 M.S. 2 < n ≤ 4 41K

10 M.S. 8 < n ≤ 10 68K

11 M.S. 6 < n ≤ 8 50K

12 B.S. 0 < n ≤ 2 23K

13 M.S. 6 < n ≤ 8 55K

14 M.S. 6 < n ≤ 8 51K

15 Ph.D. 6 < n ≤ 8 65K

16 M.S. 8 < n ≤ 10 64K

On the other hand, the representations (2) and (4) may also suggest other
possible extensions of αR and γR for a fuzzy classification by

α̂R(FC) =
n∑

i=1

|R(Yi)|∑n
i=1 |R(Yi)|

α̂R(Yi) =
n∑

i=1

|Y ∗
i |∑n

i=1 |Y ∗
i |

α̂R(Yi) (10)

and

γ̂R(FC) =
n∑

i=1

|R(Yi)|
|U | α̂R(Yi) =

n∑

i=1

|Y ∗
i |
|U | α̂R(Yi) (11)

respectively. However, these extensions will not be considered in the rest of
this paper.

In the following we consider a simple example to illustrate the proposed no-
tions.

5.2 An Illustration Example

Let us consider a relation in a relational database as shown in Table 4 (this
database is a variant of that found in [5]).
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Then by the attributes Degree and Experience we obtain an approximation
space

〈U, ind({Degree,Experience})〉
where U = {1, . . . , 16}, and the corresponding partition as follows

U/ind({Degree,Experience}) = {{1, 15}, {2, 6}, {3, 11, 13, 14},
{4, 12}, {5, 7}, {8, 9}, {10, 16}}

Further, consider now for example a linguistic classification

{Low,Medium,High}

defined on the domain of attribute Salary, say [20K, 70K], with member-
ship functions of linguistic classes graphically depicted as in Fig. 1. Then
the linguistic classification induces a fuzzy partition on U whose membership
functions of fuzzy classes are shown in Table 5.

2K 2.5K 3K  3.5K 4K  4.5K 5K  5.5K 6K  6.5K 7K  
0

0.2

0.4

0.6

0.8

1

Salary

M
em

be
rs

hi
p 

gr
ad

es

Low
Medium
High

Fig. 1. A Linguistic Partition of Salary Attribute

Then approximations of the fuzzy partition induced by Salary in the ap-
proximation space defined by Degree and Experience are given in Table 6.
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Table 5
Induced Fuzzy Partition of U Based on Salary

U µLow µMedium µHigh

1 0 0 1

2 0 0.87 0.13

3 0 0.47 0.53

4 1 0 0

5 1 0 0

6 0 0.67 0.33

7 0.67 0.33 0

8 0.33 0.67 0

9 0.27 0.73 0

10 0 0 1

11 0 0.67 0.33

12 1 0 0

13 0 0.33 0.67

14 0 0.6 0.4

15 0 0 1

16 0 0 1

Table 6
The approximations of the fuzzy partition based on Salary in
〈U, ind({Degree,Experience})〉

Xi {1, 15} {2, 6} {3, 11, 13, 14} {4, 12} {5, 7} {8, 9} {10, 16}
µHigh∗ 1 0.13 0.33 0 0 0 1

µHigh∗ 1 0.33 0.67 0 0 0 1

µMedium∗ 0 0.67 0.33 0 0 0.67 0

µMedium∗ 0 0.87 0.67 0 0.33 0.73 0

µLow∗ 0 0 0 1 0.67 0.27 0

µLow∗ 0 0 0 1 1 0.33 0

Using (7) and (8) we easily obtain

α̂{Degree,Experience}(Salary) =
13.46

18.21
= 0.739

and

γ̂{Degree,Experience}(Salary) =
13.46

16
= 0.84

respectively.
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Table 7
Mass assignment for µLow and approximations of its focal sets

α 1 0.67 0.33 0.27

Lowα {4, 5, 12} {4, 5, 12, 7} {4, 5, 12, 7, 8} {4, 5, 12, 7, 8, 9}
mLow(Lowα) 0.33 0.34 0.06 0.27

R(Lowα) {4, 12} {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9}
R(Lowα) {4, 5, 12, 7} {4, 5, 12, 7} {4, 5, 12, 7, 8, 9} {4, 5, 12, 7, 8, 9}

That is we have the following partial dependency in the database

{Degree,Experience} ⇒0.84 Salary (12)

To calculate the precision measures for the fuzzy classes we need to obtain
the mass assignment for each fuzzy class and approximations of its focal sets
respectively. For example, the mass assignment of Low and approximations of
its focal sets are shown in Table 7.

Therefore, by (9) we have

π̂{Degree,Experience}(Low) = 0.878

Similarly, we also obtain

π̂{Degree,Experience}(Medium) = 0.646

π̂{Degree,Experience}(High) = 0.876

Now in order to show how the influence of, for example, attribute Experience
on the quality of approximation, let us consider the partition induced by the
attribute Degree as follows

U/ind({Degree}) = {{1, 2, 6, 15}, {3, 8, 9, 10, 11, 13, 14, 16}, {4, 5, 7, 12}}

Then we obtain approximations of the fuzzy partition induced by Salary in
the approximation space defined by Degree given in Table 8.

Thus we have

γ̂{Degree}(Salary) =
3.2

16
= 0.2

Similarly, we also easily obtain

γ̂{Experience}(Salary) =
5.06

16
= 0.316
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Table 8
The approximations of the fuzzy partition based on Salary in 〈U, ind({Degree})〉

Xi {1, 2, 6, 15} {3, 8, 9, 10, 11, 13, 14, 16} {4, 5, 7, 12}
µHigh∗ 0.13 0 0

µHigh∗ 1 1 0

µMedium∗ 0 0 0

µMedium∗ 0.87 0.73 0.33

µLow∗ 0 0 0.67

µLow∗ 0 0.33 1

As we can see, both attributes Degree and Experience are highly signifi-
cant as without each of them the measure of approximation quality changes
considerably.

6 Conclusions

This paper has proposed a new roughness measure of a fuzzy set based on
the notion of the mass assignment of a fuzzy set and its α-cuts. It is shown
that the proposed measure inherits interesting properties of Pawlak’s measure
of roughness of a crisp set and, moreover, avoids the undesired properties of
the measure proposed by Banerjee and Pal. As roughness measure is defined
as opposed to its accuracy in rough set theory, it has been shown that there
is also a similar correspondence between the roughness and accuracy of a
fuzzy set. Furthermore, some possible extensions of the so-called approxima-
tion quality, which may be used to describe the rough approximation quality
of a fuzzy classification have been suggested. It would be of interest that such
measures may support us as numerical characteristics to realize partial de-
pendency between attributes which is intuitively infered based on background
knowledge and often expressed linguistically, while such a dependency could
not be expressed in terms of traditional data dependencies. However, further
work should be done to explore the theoretical features as well as practical
implications of the introduced measures.
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