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Abstract

In this paper, we discuss a framework for weighted combination of classifiers for word
sense disambiguation (WSD). This framework is essentially based on Dempster-
Shafer theory of evidence (Shafer, 1976) and ordered weighted averaging (OWA)
operators (Yager, 1988). We first determine various kinds of features which could
provide complementarily linguistic information for the context, and then combine
these sources of information based on Dempster’s rule of combination and OWA op-
erators for identifying the meaning of a polysemous word. We experimentally design
a set of individual classifiers, each of which corresponds to a distinct representation
type of context considered in the WSD literature, and then the discussed combi-
nation strategies are tested and compared on English lexical samples of Senseval-2
and Senseval-3.

Key words: Computational linguistics, Classifier combination, Word sense
disambiguation, OWA operator, Evidential reasoning.

1 Introduction

The issue of automatic disambiguation of word senses has been an interest and
concern since the 1950s, and is still one of the most important open problems in
natural language processing (NLP) [24]. Roughly speaking, word sense disam-
biguation involves the association of a given word in a text or discourse with a
particular sense among numerous potential senses of that word. As mentioned
in [11], this is an “intermediate task” necessarily to accomplish most NLP
tasks such as grammatical analysis and lexicography in linguistic studies, or



machine translation, man-machine communication, message understanding in
language understanding applications. Besides these applications, WSD may
also have potential uses in other applications involving data and knowledge
engineering such as information retrieval, information extraction and text min-
ing [1]. More particularly, in information retrieval (IR), the ambiguity has to
be resolved in some queries; for example, given the query “depression”, should
the system return documents about illness, weather systems, or economics?
Though current IR systems do not use explicitly WSD and rely on the user typ-
ing enough context in the query in order to only retrieve documents relevant
to the intended sense (e.g. “tropical depression”), early experiments suggested
that reliable IR would require at least 90% disambiguation accuracy for ex-
plicit WSD to be of benefit [28]. In addition, WSD has been more recently
shown to improve cross-lingual IR and document classification [3,4,31]. On
the other hand, in information extraction and text mining, WSD is required
for the accurate analysis of text in many applications. For instance, an intelli-
gence gathering system might require the flagging of all the references illegal
drugs, rather than medical drugs. More generally, the Semantic Web requires
automatic annotation of documents according to a reference ontology: all tex-
tual references must be resolved to the right concepts and event structures in
the ontology (see [5]). Named-entity classification, co-reference determination,
and acronym expansion can also be cast as WSD problems for proper names.
WSD is only beginning to be applied in these areas.

Since its inception, many approaches have been proposed for WSD in the lit-
erature (see [11] for a survey). During the last two decades, many supervised
machine learning algorithms have been used for this task, including Naive
Bayesian (NB) model, decision trees, exemplar-based model, support vector
machines, maximum entropy models, etc. On the other hand, as observed in
studies of pattern recognition systems, although one could choose one of learn-
ing systems available based on the analysis of an experimental assessment of
these to hopefully achieve the best performance for the pattern recognition
problem at hand, the set of patterns misclassified by them would not neces-
sarily overlap [14]. This means that different classifiers may potentially offer
complementary information about patterns to be classified. In other words,
features and classifiers of different types complement one another in classifica-
tion performance. This observation highly motivated the interest in combining
classifiers during the recent years, with particularly application to WSD as
in [6,7,10,12,15,27,32].

As is well-known, there are basically two classifier combination scenarios. In
the first scenario, all classifiers use the same representation of the input pat-
tern, while in the second scenario, each classifier uses its own representation
of the input pattern. An important application of combining classifiers in
the second scenario is the possibility to integrate physically different types
of features. In addition, an important issue in combining classifiers is what
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combination strategy should be used to derive a consensus decision. In [14],
the authors proposed a common theoretical framework for combining classi-
fiers which leads to many commonly used decision rules used in practice. This
framework has been also applied to the problem of WSD in [17,20]. In this
paper 1 , we focus on the combination of classifiers according to the second
scenario with the discussion being put in the context of WSD. Particularly,
we discuss a framework for weighted combination of classifiers in which each
individual classifier uses a distinct representation of objects to be classified.
This framework is based on Dempster-Shafer (DS) theory of evidence [29] and
OWA operators [33].

In [2], Al-Ani and Deriche have proposed a new technique for combining clas-
sifiers using DS theory, in which different classifiers correspond to different
feature sets. In their approach, the distance between the output classification
vector provided by each single classifier and a reference vector is used to es-
timate basic probability assignments (BPAs). These BPAs are then combined
making use of Dempster’s rule of combination to obtain a new output vector
that represents the combined confidence in each class label. Different from
their approach, we directly use the output classification vectors of individ-
ual classifiers to define the corresponding BPAs, making use of the discount
operation in DS theory and then combine the resulted BPAs to obtain the
final BPA for making the decision of classification. More particularly, we first
consider various ways of using context in WSD as distinct representations of a
polysemous word under consideration, and then all these representations are
used jointly to identify the meaning of the target word. On the one hand,
various ways of using the context could be considered as providing different
information sources to identify the meaning of the target word. Moreover,
each of these information sources does not by itself provide 100% certainty
as a whole piece of evidence for identifying the sense of the target. Then by
considering the problem as that of weighted combination of evidence for de-
cision making, we formulate a general rule of classifier combination based on
DS theory of evidence [29], adopting a probabilistic interpretation of weights.
This interpretation of weights seems to be appropriate when defining weights
in terms of the accuracy of individual classifiers.

On the other hand, by considering each representation of the context as in-
formation inspired by a semantics or syntactical criterion for the purpose of
word sense identification, we can apply OWA operators for aggregating multi-
criteria to form an overall decision function considered as the fuzzy majority
based voting strategy. It should be worth mentioning that the use of OWA
operators in classifier combination has been studied, for example, in [16]. In
this paper, however, we use OWA operators for classifier fusion in their seman-

1 This paper is a revised, unified and substantially expanded version of the papers
presented at MLDM’2005 [18] and RSFDGrC’2005 [19].
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tic relation to linguistic quantifiers so that we could provide a framework for
combining classifiers, which also yields several commonly used decision rules
but without some strong assumptions made in the work by Kittler et al. [14].

Experimentally, we design a set of individual classifiers, each of which corre-
sponds to a distinct representation type of context considered in the WSD
literature, and then the proposed combination strategies are experimentally
tested on English lexical samples of Senseval-2 and Senseval-3. The rest of this
paper is organized as follows. In Section 2, we will recall basic notions from
Dempster-Shafer theory of evidence and OWA operators. Section 3 devotes
to the theoretical framework for combining classifiers in WSD based on these
theories. Then an experimental study will be conducted in Section 4. Finally,
Section 5 presents some concluding remarks.

2 Preliminaries

In this section we briefly review basic notions of DS theory of evidence and
OWA operators.

2.1 Dempster-Shafer Theory of Evidence

In DS theory, a problem domain is represented by a finite set Θ of mutually
exclusive and exhaustive hypotheses, called frame of discernment [29]. In the
standard probability framework, all elements in Θ are assigned a probability.
And when the degree of support for an event is known, the remainder of the
support is automatically assigned to the negation of the event. On the other
hand, in DS theory mass assignments are carried out for events as they know,
and committing support for an event does not necessarily imply that the
remaining support is committed to its negation. Formally, a basic probability
assignment (BPA, for short) is a function m : 2Θ → [0, 1] verifying

m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is com-
mitted exactly to A, given the available evidence. A subset A ∈ 2Θ with
m(A) > 0 is called a focal element of m. A BPA m is called to be vacuous if
m(Θ) = 1 and m(A) = 0 for all A 6= Θ.

Two evidential functions derived from the basic probability assignment m are
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the belief function Belm and the plausibility function Plm, defined as

Belm(A) =
∑

∅6=B⊆A

m(B), and Plm(A) =
∑

B∩A6=∅
m(B)

The difference between m(A) and Belm(A) is that while m(A) is our belief
committed to the subset A excluding any of its proper subsets, Belm(A) is
our degree of belief in A as well as all of its subsets. Consequently, Plm(A)
represents the degree to which the evidence fails to refute A. Note that all the
three functions are in an one-to-one correspondence with each other.

Two useful operations that play a central role in the manipulation of belief
functions are discounting and Dempster’s rule of combination [29]. The dis-
counting operation is used when a source of information provides a BPA m,
but one knows that this source has probability α of reliability. Then one may
adopt (1− α) as one’s discount rate, which results in a new BPA mα defined
by

mα(A) = αm(A), for any A ⊂ Θ (1)

mα(Θ) = (1− α) + αm(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by (m1 ⊕m2) (also called the orthogonal sum of m1 and
m2), defined as follows

(m1 ⊕m2)(∅) = 0,

(m1 ⊕m2)(A) = 1
1−κ

∑
B∩C=A

m1(B)m2(C)
(3)

where

κ =
∑

B∩C=∅
m1(B)m2(C) (4)

Note that the orthogonal sum combination is only applicable to such two BPAs
that verify the condition κ < 1.

2.2 OWA Operators

The notion of OWA operators was first introduced in [33] regarding the prob-
lem of aggregating multi-criteria to form an overall decision function. A map-
ping

F : [0, 1]n → [0, 1]

5



is called an OWA operator of dimension n if it is associated with a weighting
vector W = [w1, . . . , wn], such that 1) wi ∈ [0, 1] and 2)

∑
i wi = 1, and

F (a1, . . . , an) =
n∑

i=1

wibi

where bi is the i-th largest element in the collection a1, . . . , an.

OWA operators provide a type of aggregation operators which lay between
the “and” and the “or” aggregation. As suggested by Yager [33], there exist at
least two methods for obtaining weights wi’s. The first approach is to use some
kind of learning mechanism. That is, we use some sample data, arguments
and associated aggregated values and try to fit the weights to this collection
of sample data. The second approach is to give some semantics or meaning
to the weights. Then, based on these semantics we can directly provide the
values for the weights. In the following we use the semantics based on fuzzy
linguistic quantifiers for the weights.

The fuzzy linguistic quantifiers were introduced by Zadeh in [36]. According
to Zadeh, there are basically two types of quantifiers: absolute, and relative.
Here we focus on the relative quantifiers typified by terms such as most, at
least half, as many as possible. A relative quantifier Q is defined as a mapping
Q : [0, 1] → [0, 1] verifying Q(0) = 0, there exists r ∈ [0, 1] such that Q(r) = 1,
and Q is a non-decreasing function. For example, the membership function of
relative quantifiers can be defined [9] as

Q(r) =





0 if r < a

r−a
b−a

if a ≤ r ≤ b

1 if r > b

(5)

with parameters a, b ∈ [0, 1].

Then, Yager [33] proposed to compute the weights wi’s based on the linguistic
quantifier represented by Q as follows:

wi = Q
(

i

n

)
−Q

(
i− 1

n

)
, for i = 1, . . . , n. (6)

3 Weighted Combination Of Classifiers For WSD

Consider a pattern recognition problem where pattern w is to be assigned to
one of the M possible classes c1, c2, . . . , cM . Let us also assume that we have
R classifiers corresponding to R distinct representations of the given pattern,
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denoted by f1, f2, . . . , fR. Now, in order to utilize all the available information
to make a decision on the classification, it is essential to consider all the
representations of the pattern simultaneously and, according to the Bayesian
theory [14], then the pattern w should be assigned to class cj provided the a
posteriori probability of that class is maximum, i.e.

j = arg max
k

P (ck|f1, . . . , fR) (7)

Begin with the decision rule (7), under the conditional independence assump-
tion of the representations used and the assumption that the posterior class
probabilities computed by the respective classifiers do not deviate greatly from
the prior ones, the authors in [14] developed a theoretical framework for com-
bining classifiers which leads to many commonly used decision rules used in
practice. At the same time, the authors also conceded that these assumptions
seem to be unrealistic in many situations. Particularly, to our opinion, these
assumptions are difficult to be accepted and verified in the context of WSD. In
the following, we will focus on a framework for combining classifiers in WSD
based on the DS theory and OWA operators. This framework also interestingly
yields many commonly used decision rules for WSD but without the strong
assumptions mentioned above.

3.1 WSD with Multi-Representation of Context

Given a polysemous word w, which may have M possible senses (classes): c1,
c2,. . . , cM , in a context C, the task is to determine the most appropriate sense
of w. Generally, context C can be used in two ways [11]: in the bag-of-words
approach, the context is considered as words in some window surrounding
the target word w; in the relational information based approach, the context
is considered in terms of some relation to the target such as distance from
the target, syntactic relations, selectional preferences, phrasal collocation, se-
mantic categories, etc. As such, for a target word w, we may have different
representations of context C corresponding to different views of context. As-
sume we have such R representations of C, say f1, . . . , fR, serving for the aim
of identifying the right sense of the target w. Clearly, each fi can be also con-
sidered as a semantical representation of w. Each representation fi of context
has its own type depending on which way context is used.

Now let us assume that we have R classifiers, each representing the context
by a distinct set of features. The set of features fi, which is considered as a
representation of context C of the target w, is used by the i-th classifier (see
Fig. 1). Due to the interpretation of fi’s and the role of context in WSD, quite
naturally, we shall assume that the individual models corresponding to dif-
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w

Representation1 – f1

RepresentationR – fR

1-st Classifier

R-th Classifier

∑

Combiner

Fig. 1. A Scheme of Multi-Classifier Combination

ferent representations of context are independent. Furthermore, assume that
each i-th classifier (expert) is associated with a weight αi, 0 ≤ αi ≤ 1, reflect-
ing the relative confidence in or importance of the classifier. In the following
we will show that different semantic views of representations fi associated with
various interpretations of corresponding weights αi lead to numerous classifier
combination schemes serving for identifying the sense of the target w.

3.2 DS Theory Based Combination Scheme

Given a target word w in a context C and S = {c1, c2, . . . , cM} is the set of its
possible senses. Using the vocabulary of DS theory, S can be called the frame
of discernment of the problem. As mentioned above, various ways of using
the context could be considered as providing different information sources to
identify the meaning of the target word. Each of these information sources does
not by itself provide 100% certainty as a whole piece of evidence for identifying
the sense of the target. Formally, we have the available information for making
the final decision on the sense of w given as follows

• R probability distributions P (·|fi) (i = 1, . . . , R) on S,
• the weights αi of the individual information sources (i = 1, . . . , R) 2 .

From the probabilistic point of view, we may straightforwardly think of the
combiner as a weighted mixture of individual classifiers defined as

P (ck) =
1∑
i αi

R∑

i=1

αiP (ck|fi), for k = 1, . . . , M (8)

2 Note that the constraint
∑

i αi = 1 does not need to be imposed.
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Then the target word w should be naturally assigned to the sense cj according
to the following decision rule

j = arg max
k

P (ck) (9)

However, by considering the problem as that of weighted combination of ev-
idence for decision making, we now formulate a general rule of combination
based on DS theory. To this end, we first adopt a probabilistic interpretation
of weights. That is, the weight αi (i = 1, . . . , R) is interpreted as reliable
probability of the i-th classifier. This interpretation of weights seems to be
especially appropriate when defining weights in terms of the accuracy of indi-
vidual classifiers.

Under such an interpretation of weights, the piece of evidence represented by
P (·|fi) should be discounted at a discount rate of (1 − αi). This results in a
BPA mi defined by

mi({ck}) = αiP (ck|fi) , pi,k, for k = 1, . . . , M (10)

mi(S) = 1− αi , pi,S (11)

mi(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (12)

That is, the discount rate of (1 − αi) should not be distributed to anything
else than S, the whole frame of discernment.

We are now ready to formulate our belief on the decision problem by aggre-
gating all pieces of evidence represented by mi’s in the general form of the
following

m =
R⊕

i=1

mi (13)

where m is a BPA and ⊕ is a combination operator in general.

By applying different combination operations for ⊕, we may have different
aggregation schemes for obtaining the BPA m which models our belief for
making the decision on the sense of w. Therefore, we must also deal with the
problem of how to make a decision based on m. As m does not in general
provide a unique probability distribution on S, but only a set of compatible
probabilities bounded by the belief function Belm and the plausibility function
Plm. Consequently, individual classes in S can no longer be ranked according
to their probability. Fortunately, based on the Generalized Insufficient Rea-
son Principle as stated in [30], we may define a probability function Pm on S
derived from m for the purpose of decision making via the so-called pignistic
transformation. That is, as in the two-level language of the so-called trans-
ferable belief model [30], the aggregated BPA m itself representing the belief
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is obtained based on the available evidence at the credal level, and when a
decision must be made, the belief at the credal level induces the probability
function Pm for decision making.

3.2.1 The Discounting-and-Orthogonal Sum Combination Strategy

As discussed above, we consider each P (·|fi) as the belief quantified from the
information source fi and the weight αi as a “degree of trust” of fi supporting
the identification for the sense of w as a whole. As mentioned in [29], an obvious
way to use discounting with Dempster’s rule of combination is to discount all
BPAs P (·|fi) (i = 1, . . . , R) at corresponding rates (1 − αi) (i = 1, . . . , R)
before combining them.

Thus, Dempster’s rule of combination now allows us to combine BPAs mi

(i = 1, . . . , R) under the independent assumption of information sources for
generating the BPA m, i.e. ⊕ in (13) is the orthogonal sum operation.

Note that, by definition, focal elements of each mi are either singleton sets
or the whole set S. It is easy to see that m also verifies this property if
applicable. Interestingly, the commutative and associative properties of the
orthogonal sum operation with respect to a combinable collection of BPAs
mi (i = 1, . . . ,M) and the mentioned property essentially form the basis for
developing a recursive algorithm for calculation of the BPA m [34]. This can
be done as follows.

Let I(i) = {1, . . . , i} be the subset consisting of first i indexes of the set
{1, . . . , R}. Assume that mI(i) is the result of combining the first i BPAs mj,
for j = 1, . . . , i. Let us denote

pI(i),k , mI(i)({ck}), for k = 1, . . . ,M (14)

pI(i),S , mI(i)(S) (15)

With these notations and (10)–(11), the key step in the combination algorithm
is to inductively calculate pI(i+1),k (k = 1, . . . ,M) and pI(i+1),S as follows

pI(i+1),k =
1

κI(i+1)

[pI(i),kpi+1,k + pI(i),kpi+1,S + pI(i),Spi+1,k] (16)

pI(i+1),S =
1

κI(i+1)

(pI(i),Spi+1,S) (17)

for k = 1, . . . , M, i = 1, . . . , R − 1, and κI(i+1) is a normalizing factor defined
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by

κI(i+1) =


1−

M∑

j=1

M∑

k=1
k 6=j

pI(i),jpi+1,k


 (18)

Finally, we obtain m as mI(R). For the purpose of decision making, we now
define a probability function Pm on S derived from m via the pignistic trans-
formation as follows

Pm(ck) = m({ck}) +
1

M
m(S) for k = 1, . . . , M (19)

and we have the following decision rule:

j = arg max
k

Pm(ck) (20)

It would be interesting to note that an issue may arise with the orthogonal
sum operation, and is in using the total probability mass κ associated with
conflict as defined in the normalization factor. Consequently, applying it in
an aggregation process may yield counterintuitive results in the face of signif-
icant conflict in certain situations as pointed out in [37]. Fortunately, in the
context of the weighted combination of classifiers, by discounting all P (·|fi)
(i = 1, . . . , R) at corresponding rates (1 − αi) (i = 1, . . . , R), we actually
reduce conflict between the individual classifiers before combining them.

3.2.2 The Discounting-and-Averaging Combination Strategy

In this strategy, instead of using Dempster’s rule of combination after discount-
ing P (·|fi) at the discount rate of (1 − αi), we apply the averaging operation
over BPAs mi (i = 1, . . . , R) to obtain the BPA m defined by

m(A) =
1

R

R∑

i=1

mi(A) (21)

for any A ∈ 2S . By definition, we get

m({ck}) =
1

R

R∑

i=1

αiP (ck|fi), for k = 1, . . . ,M (22)

m(S) = 1−
∑R

i=1 αi

R
, 1− α (23)

m(A) = 0,∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (24)
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Note that the probability mass unassigned to individual classes but the whole
frame of discernment S, m(S), is the average of discount rates. Therefore, if
instead of allocating the average discount rate (1 − α) to m(S) as above, we
use it as a normalization factor and easily obtain

m({ck}) =
1∑
i αi

R∑

i=1

αiP (ck|fi), for k = 1, . . . , M (25)

m(A) = 0,∀A ∈ 2S \ {{c1}, . . . , {cM}} (26)

which interestingly turns out to be the weighted mixture of individual classi-
fiers as defined in (8). Then we have the decision rule (9).

It should be worth noting that since the average discount rate (1 − α) is
a constant, the decision rule based on the weighted mixture of individual
classifiers is the same as that based on the probability function Pm with m
defined by (22)–(24) via the pignistic transformation.

3.3 OWA Operator Based Combination Scheme

Let us return to the problem of identifying the sense of a given word w as
described above. As discussed on the role of context in the task of determining
the most appropriate sense of w, each representation fi of the context C can
be also considered as providing the information inspired by a semantical or
syntactical criterion for the purpose of word sense identification. Let us assume
that we have R classifiers corresponding to R representations fi of the context,
each of which provides a soft decision for identifying the right sense of the
target word w in the form of a posterior probability P (ck|fi), for i = 1, . . . , R.

Under such a consideration, we now can define an overall decision function
D, with the help of an OWA operator F of dimension R, which combines
individual opinions to derive a consensus decision as follows:

D(ck) = F (P (ck|f1), . . . , P (ck|fR)) =
R∑

i=1

wipi (27)

where pi is the i-th largest element in the collection P (ck|f1), . . . , P (ck|fR), and
W = [w1, . . . , wR] is a weighting vector semantically associated with a fuzzy
linguistic quantifier. Then, the fuzzy majority based voting strategy suggests
that the target word w should be assigned to class cj provided that D(cj) is
maximum, namely

j = arg max
k

D(ck) (28)
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As studied in [33], using Zadeh’s concept of linguistic quantifiers and Yager’s
idea of associating their semantics to various weighting vectors W , we can
obtain many commonly used decision rules as following.

3.3.1 Max Rule.

First let us use the quantifier there exists which can be relatively represented
as a fuzzy set Q of [0, 1] such that Q(r) = 0, for r < 1/R and Q(r) = 1,
for r ≥ 1/R. We then obtain from (6) the weighting vector W = [1, 0, . . . , 0],
which yields from (27) and (28) the Max Decision Rule as

j = arg max
k

[
max

i
P (ck|fi)

]
(29)

3.3.2 Min Rule.

Similarly, if we use the quantifier for all which can be defined as a fuzzy set
Q of [0, 1] such that Q(1) = 1 and Q(r) = 0, for r 6= 1 [33]. We then obtain
from (6) the weighting vector W = [0, . . . , 0, 1], which yields from (27) and
(28) the Min Decision Rule as

j = arg max
k

[
min

i
P (ck|fi)

]
(30)

3.3.3 Median Rule.

In order to have the Median decision rule, we use the absolute quantifier at
least one which can be equivalently represented as a relative quantifier with the
parameter pair (0, 1) for the membership function Q in (5). Then we obtain
from (6) the weighting vector W = [1/R, . . . , 1/R], which from (27) and (28)
leads to the median decision rule as:

j = arg max
k

[
1

R

R∑

i=1

P (ck|fi)
]

(31)

3.3.4 Fuzzy Majority Voting Rules.

We now use the relative quantifier at least half with the parameter pair (0, 0.5)
for the membership function Q in (5) as graphically depicted in Fig. 2. Then,
depending on a particular value of R, we can obtain from (6) the corresponding
weighting vector W = [w1, . . . , wR] for the decision rule, denoted by FM1, as:

j = arg max
k

[
R∑

i=1

wipi

]
(32)
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As Many As Possible

i−1

R

wi

i

R

Fig. 2. Linguistic Quantifiers

where pi is the i-th largest element in the collection P (ck|f1), . . . , P (ck|fR).

Similarly, we can also use the relative quantifier as many as possible with the
parameter pair (0.5, 1) for the membership function Q in (5) (graphically, see
Fig. 2) to obtain the corresponding decision rule, denoted by FM2.

Interestingly also, from the following relation

R∏

i=1

P (ck|fi) ≤
R

min
i=1

P (ck|fi) ≤
R∑

i=1

wipi ≤ R
max
i=1

P (ck|fi) ≤
R∑

i=1

P (ck|fi) (33)

it suggests that the Max and Min decision rules can be approximated by the
upper or lower bounds appropriately. Especially, under the assumption of equal
priors, the decision rule derived from (7) (see [14]) simplifies to the Product
rule, which is a lower approximation of the Min rule, while approximating
Max rule by the upper bound yields the Sum rule.

In addition, from the classical voting strategy, we can also obtain the following
decision rule.

3.3.5 Majority Vote Rule.

Majority voting follows a simple rule as: it will vote for the class which is chosen
by maximum number of individual classifiers. This can be done by hardening
the a posteriori probabilities P (ck|fi) in terms of functions ∆ki defined as
follows:

∆ki =





1, if P (ck|fi) = max
j

P (cj|fi)
0, otherwise

then the right class (sense) cj is determined as follows:

j = arg max
k

∑

i

∆ki (34)
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4 Experimental Study

In this section we will design an experiment to test the classifier combination
schemes discussed.

4.1 Representations of Context for WSD

As mentioned previously, context representation plays an essentially impor-
tant role in WSD. For predicting senses of a word, information usually used in
all studies is the topic context which is represented by bag of words. In [26],
Ng and Lee proposed a use of more linguistic knowledge resources that then
became popular for determining word sense in many papers. The knowledge
resources used in their paper included topic context, collocation of words, and
a syntactic relationship verb-object. In [21], the authors use another infor-
mation type, which is words or part-of-speech and each is assigned with its
position in relation with the target word. In the second scenario of classifier
combination, topical context with different sizes of context windows is usually
used for creating different representations of a polysemous word, such as in
Pedersen [27] and Wang and Matsumoto [32].

Particularly, Pedersen [27] considered several context windows on both the
left and the right and grouped them into three kinds: small with window
sizes 0, 1, 2; medium with window sizes 3, 4, 5; and large with window sizes
10, 25, 50. There were 81 different representations generated from combining
between left and right window sizes. Finally, the best of each kind according
to the majority voting procedure is then chosen. Wang and Matsumoto [32]
also used only the content words in various window sizes with different left
and right window sizes being (1, 2, 3, 4, 5, 6, 10, 15, 20). In this paper, for
the comparison with our own representation of context, we also carry out an
experiment on Pedersen’s representation of context. We borrowed this feature
space division from Pedersen [27] and used the maximum window size in each
kind, consequently nine different representations were generated based on nine
different combinations of left and right windows as follows: (2, 2), (2, 5), (2,
50), (5, 2), (5, 5), (5, 50), (50, 2), (50, 5), and (50, 50).

For context representation, we observe that two of the most important infor-
mation sources for determining the sense of a polysemous word are the topic
of context and relational information representing the structural relations be-
tween the target word and the surrounding words in a local context. Under
such an observation, we have experimentally designed four kinds of representa-
tion with six feature sets defined as follows: f1 is a set of collocations of words;
f2 is a set of words assigned with their positions in the local context; f3 is a set
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of part-of-speech tags assigned with their positions in the local context; f4, f5
and f6 are sets of unordered words in the large context with different windows:
small, median and large respectively. Symbolically, we have

f1 = {w−l · · ·w−1ww1 · · ·wr|l + r ≤ n1}
f2 = {(w−n2 ,−n2), . . . , (w−1,−1), (w1, 1), . . . , (wn2 , n2)}
f3 = {(p−n3 ,−n3), . . . , (p−1,−1), (p1, 1), . . . , (pn3 , n3)}
fi = {w−ni

, . . . ,w−2,w−1,w1,w2, . . . ,wni
} for i = 4, 5, 6

where wi is the word at position i in the context of the ambiguous word w
and pi be the part-of-speech tag of wi, with the convention that the target
word w appears precisely at position 0 and i will be negative (positive) if wi

appears on the left (right) of w.

In the experiment, we set n1 = 3 (maximum of collocations), n2 = 5 and
n3 = 5 (windows size for local context). For topic context, we foresee three
different window sizes: n4 = 5 (small), n5 = 10 (median), and n6 = 100 (large).
Topical context is represented by a set of content words that includes nouns,
verbs and adjectives in a certain window size. Note that after these words being
extracted, they will be converted into their root morphology forms for use. Our
representations for the individual classifiers are richer than the representation
that just used the words in context because we also use the feature containing
richer information about structural relations. Even the unordered words in
a local context may also contain structure information, but collocations and
words as well as part-of-speech tags assigned with their positions may bring
richer information.

4.2 Test Data

Concerning evaluation exercises in automatic WSD, three corpora so-called
Senseval-1, Senseval-2 and Senseval-3 have been built on the occasion of three
corresponding workshops held in 1998, 2001, and 2004 respectively. There are
different tasks in these workshops with respect to different languages and/or
the objectives of disambiguating single-word or all-words in the input. In this
paper, the investigated combination rules will be tested on English lexical
samples of Senseval-2 and Senseval-3. These two datasets are more precise
than the one in Senseval-1 and widely used in current WSD studies.

A total of 73 nouns, adjectives, and verbs are chosen in Senseval-2 with the
sense inventory is taken from WordNet 1.7. The data came primarily from
the Penn Treebank II corpus, but was supplemented with data from the
British National Corpus whenever there was an insufficient number of Tree-
bank instances (see [13] for more detail). Examples in English lexical sample
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of Senseval-3 are extracted from the British National Corpus. The sense in-
ventory used for nouns and adjectives is taken from WordNet 1.7.1, which
is consistent with the annotations done for the same task during Senseval-
2. Verbs are instead annotated with senses from Wordsmyth 3 . There are 57
nouns, adjectives, and verbs in this data (see [23] for more detail).

In these datasets, each polysemous word is associated with its corresponding
training dataset and test dataset. The training dataset contains sense-tagged
examples, i.e. in each example the polysemous word is assigned with the right
sense. The test dataset contains sense-untagged examples, and the evaluation
is based on a key-file, i.e. the right senses of these test examples are listed in
this file. The evaluation used here follows the proposal in [22], which provides
a scoring method for exact matches to fine-grained senses as well as one for
partial matches at a more coarse-grained level. Note that, like most related
studies, we just compute the fine-grained score in the following experiments.

4.3 Experimental Results

Table 1 shows the experimental results conducted on Senseval-3 which are
obtained by using various strategies of classifier combination developed in
Section 3 and the results obtained by individual classifiers respectively. In the
table, Ci (i = 1, . . . , 6) respectively represent six individual classifiers corre-
sponding to the six feature sets fi (i = 1, . . . , 6). The columns denoted by
“Max”, “Min”, “Med”, “FM1”, and “FM2” show the results obtained by ap-
plying the max, min, median, FM1, and FM2 rules, respectively. Further, DS1

denotes the Dempster rule of combination with discounting factor, while DS2

stands for the Dempster rule of combination without discounting factor, or
equivalently, αi = 1 for i = 1, . . . , 6. In order to estimate reliable probability
αi for classifier Ci (i = 1, . . . , 6) used in DS1 rule, we implement a 10-fold
cross validation on the training data and set the obtained accuracy as αi. The
obtained results through the words in Senseval-2 show that in most cases com-
bining classifiers gives better results in comparison with individual classifiers.
On average, the best combination rule gives much better result than the one
obtained from the best individual classifier (72.4% of DS1 in comparison with
64.1% of C4).

Table 2 shows an experimental comparison between the combination strategies
discussed above and the others studied in the literature including majority
voting, weighted voting, a stacking method using a maximum entropy model
and Naive Bayesian combination rule. These first three methods were used
for WSD in [15], and the Naive Bayesian combination rule was presented
in [14]. At the same time, to see how the representation of context affects

3 http://www.wordsmyth.net/
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Table 1
Experimental Results on Senseval-3 Data

C1 C2 C3 C4 C5 C6 DS1 DS2 Max Min Med FM1 FM2

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

activate.v 71.1 73.7 65.8 86.0 75.4 71.9 87.7 79.8 76.3 87.7 83.3 82.5 85.1

add.v 81.8 80.3 73.5 61.4 59.8 68.2 80.3 87.9 81.1 75.0 84.1 84.8 80.3

appear.v 70.7 66.9 66.2 59.4 57.1 58.6 69.9 72.9 72.9 68.4 69.2 69.2 75.2

argument.n 46.8 47.7 48.6 46.8 48.6 42.3 46.8 53.2 47.7 51.4 44.1 43.2 51.4

arm.n 83.5 85.7 84.2 88.0 85.7 88.0 91.7 91.0 90.2 91.0 89.5 89.5 90.2

ask.v 58.0 64.1 59.5 28.2 37.4 34.4 54.2 61.8 61.1 46.6 61.8 61.8 55.0

atmosphere.n 55.6 51.9 56.8 70.4 67.9 66.7 75.3 64.2 55.6 72.8 64.2 65.4 74.1

audience.n 67.0 81.0 77.0 72.0 82.0 76.0 83.0 84.0 71.0 77.0 86.0 85.0 88.0

bank.n 65.2 70.5 59.8 83.3 75.8 77.3 84.8 78.0 77.3 84.1 82.6 81.8 81.8

begin.v 60.8 53.2 55.7 46.8 55.7 58.2 63.3 62.0 60.8 60.8 62.0 62.0 64.6

climb.v 55.2 62.7 59.7 64.2 62.7 67.2 77.6 77.6 67.2 73.1 80.6 79.1 77.6

decide.v 77.4 72.6 69.4 56.5 66.1 66.1 74.2 77.4 75.8 69.4 75.8 77.4 74.2

degree.n 69.5 72.7 66.4 66.4 78.1 71.9 85.2 78.9 71.1 81.3 82.0 80.5 83.6

difference.n 56.1 50.0 41.2 50.9 47.4 41.2 62.3 58.8 55.3 58.8 58.8 57.9 61.4

different.a 48.0 48.0 40.0 38.0 38.0 34.0 46.0 54.0 52.0 44.0 58.0 54.0 50.0

difficulty.n 34.8 34.8 39.1 39.1 30.4 30.4 47.8 43.5 43.5 30.4 47.8 43.5 39.1

disc.n 36.0 47.0 36.0 79.0 60.0 65.0 84.0 53.0 46.0 81.0 67.0 62.0 71.0

eat.v 82.8 77.0 77.0 86.2 83.9 81.6 86.2 90.8 85.1 86.2 90.8 90.8 88.5

encounter.v 60.0 63.1 50.8 70.8 75.4 67.7 72.3 70.8 60.0 72.3 70.8 70.8 70.8

expect.v 85.9 75.6 74.4 67.9 71.8 70.5 80.8 83.3 84.6 76.9 82.1 85.9 80.8

express.v 52.7 50.9 60.0 41.8 70.9 67.3 52.7 58.2 50.9 49.1 61.8 60.0 63.6

hear.v 46.9 62.5 53.1 59.4 50.0 59.4 68.8 59.4 56.3 68.8 62.5 56.3 65.6

hot.a 74.4 65.1 69.8 76.7 79.1 81.4 81.4 81.4 79.1 79.1 81.4 81.4 81.4

image.n 51.4 51.4 37.8 71.6 56.8 58.1 70.3 59.5 55.4 74.3 64.9 64.9 63.5

important.a 36.8 31.6 42.1 31.6 26.3 36.8 36.8 31.6 36.8 31.6 31.6 36.8 36.8

interest.n 67.7 64.5 54.8 64.5 63.4 64.5 79.6 78.5 77.4 76.3 80.6 79.6 81.7

judgment.n 43.8 46.9 40.6 56.3 40.6 43.8 56.3 43.8 46.9 59.4 50.0 50.0 56.3

lose.v 36.1 50.0 33.3 41.7 44.4 41.7 58.3 50.0 36.1 55.6 44.4 44.4 50.0

mean.v 60.0 65.0 65.0 60.0 57.5 65.0 70.0 75.0 75.0 67.5 75.0 75.0 75.0

miss.v 36.7 43.3 46.7 36.7 50.0 50.0 46.7 46.7 40.0 43.3 43.3 43.3 46.7

note.v 67.2 61.2 70.1 65.7 64.2 62.7 73.1 73.1 73.1 68.7 73.1 76.1 74.6

operate.v 44.4 61.1 44.4 66.7 44.4 44.4 66.7 61.1 66.7 55.6 61.1 61.1 66.7

organization.n 78.6 76.8 69.6 73.2 66.1 69.6 80.4 75.0 73.2 80.4 80.4 76.8 82.1

paper.n 42.7 45.3 43.6 52.1 51.3 48.7 65.0 51.3 53.8 62.4 60.7 59.8 65.0

party.n 61.2 59.5 51.7 72.4 68.1 68.1 73.3 66.4 66.4 74.1 69.0 70.7 70.7

performance.n 33.3 34.5 29.9 59.8 40.2 36.8 50.6 37.9 34.5 55.2 41.4 41.4 46.0

plan.n 75.0 73.8 72.6 81.0 78.6 77.4 86.9 83.3 77.4 84.5 86.9 84.5 89.3

play.v 44.2 38.5 42.3 63.5 57.7 67.3 65.4 57.7 63.5 61.5 61.5 59.6 63.5

produce.v 53.2 55.3 56.4 74.5 59.6 67.0 83.0 69.1 71.3 80.9 70.2 69.1 74.5

provide.v 82.6 89.9 87.0 91.3 85.5 88.4 92.8 89.9 87.0 91.3 91.3 91.3 91.3

receive.v 85.2 85.2 85.2 85.2 88.9 92.6 88.9 88.9 88.9 85.2 88.9 88.9 88.9

remain.v 88.6 84.3 84.3 75.7 85.7 77.1 84.3 85.7 87.1 82.9 85.7 87.1 85.7

rule.v 50.0 66.7 60.0 70.0 66.7 73.3 80.0 76.7 70.0 83.3 80.0 76.7 76.7

shelter.n 62.2 58.2 56.1 53.1 46.9 49.0 72.4 69.4 66.3 69.4 70.4 66.3 71.4

simple.a 22.2 55.6 38.9 22.2 27.8 27.8 33.3 22.2 22.2 16.7 38.9 33.3 27.8

smell.v 70.9 63.6 72.7 69.1 67.3 54.5 74.5 72.7 72.7 72.7 76.4 72.7 76.4

solid.a 17.2 6.9 17.2 17.2 27.6 24.1 20.7 20.7 17.2 17.2 24.1 24.1 24.1

sort.n 72.9 72.9 52.1 64.6 59.4 57.3 66.7 71.9 72.9 66.7 72.9 72.9 65.6

source.n 59.4 50.0 28.1 62.5 68.8 59.4 78.1 62.5 59.4 59.4 62.5 62.5 68.8

suspend.v 48.4 51.6 42.2 64.1 56.3 56.3 65.6 54.7 57.8 67.2 60.9 59.4 57.8

talk.v 69.9 69.9 71.2 64.4 68.5 68.5 69.9 69.9 69.9 69.9 71.2 71.2 71.2

treat.v 35.1 45.6 24.6 45.6 49.1 50.9 54.4 43.9 42.1 42.1 45.6 49.1 45.6

use.v 100.0 57.1 64.3 78.6 50.0 64.3 85.7 92.9 92.9 85.7 92.9 100.0 71.4

wash.v 58.8 55.9 61.8 64.7 55.9 70.6 70.6 64.7 64.7 61.8 70.6 64.7 70.6

watch.v 78.4 74.5 84.3 68.6 68.6 66.7 76.5 80.4 78.4 80.4 80.4 82.4 78.4

win.v 43.6 56.4 56.4 56.4 53.8 61.5 69.2 59.0 51.3 71.8 64.1 59.0 66.7

write.v 52.2 47.8 52.2 65.2 43.5 60.9 56.5 65.2 69.6 56.5 69.6 69.6 65.2

Average 61.9 62.5 58.6 64.1 62.4 62.3 72.4 68.9 66.3 70.0 70.7 70.1 71.5
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on the performance of combination strategies, we conducted an experiment
with those combination strategies on Pedersen’s representations of context, of
which the result is also shown in Table 2.

From the obtained results we see that the combination rule DS1 based on
Dempster-Shafer theory of evidence with our context representation gives the
best result on average. Interestingly also, some combination strategies using
OWA operators such as median and FM2 rules provide high accuracies as well.
Note that though DS1 also requires an assumption of conditional indepen-
dence between individual classifiers, it seems to be reasonable since individual
classifiers used here are built based on different feature sets. Furthermore,
each context representation, which is used to build an individual classifier,
does not provide fully enough information for detecting the sense of a target
word, therefore taking weights which reflect relative confidences in individual
classifiers into consideration is appropriate. This is shown by the fact that
the results yielded by DS1 rule are better than the ones obtained by DS2

rule. It is also shown that our representation of context is much more effective
than Pedersen’s ones. Note that while majority voting has been widely used
in many studies of combining classifiers in pattern recognition, it may not be
a good choice for classifier combination in the context of WSD.

The best accuracies obtained by the DS1 rule, 64.7% for Senseval-2 and 72.4%
for Senseval-3, are comparable with the best systems in the contests for the
English lexical sample tasks of Senseval-2 [13] and Senseval-3 [23], respectively.
The best system of Senseval-2 contest also used a combination technique: the
output of subsystems (classifiers) which were built based on different machine
learning algorithms were merged by using weighted and threshold-based voting
and score combination (see [35] for the detail). The best system of Senseval-3
contest used the Regularized Least Square Classification (RLSC) algorithm
with a correction of the a priori frequencies (refer to [8] for more details).
Note that the methods using in these systems are also corpus-based methods.
The detail of this comparison is shown in Table 3.

Table 2
A comparison with Pedersen’s representation of context

Best Individual Majority Weighted NB DS1 DS2 Max Min Med FM1 FM2

Classifier Voting Voting

Ours

Senseval-2 56.8 62.6 63.6 63.8 64.7 62.7 60.0 61.8 63.9 63.5 63.5

Senseval-3 64.1 69.0 70.0 71.7 72.4 68.9 65.8 70.2 70.6 70.0 71.5

Pedersen

Senseval-2 57.2 59.5 60.2 55.0 59.1 60.3 59.6 57.2 60.3 60.2 60.0

Senseval-3 63.8 66.5 67.3 65.2 68.1 67.8 65.9 65.9 68.1 67.7 68.1
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Table 3
A comparison with the best systems in the contests of Senseval-2 and Senseval-3

The best system New method – DS1

Senseval-2 64.2% 64.7%

Senseval-3 72.9% 72.4%

5 Conclusions

In this paper we have discussed and formalized various ways of using context
in WSD as distinct representations of a polysemous word under consideration,
and then all these representations are used jointly to identify the meaning of
the target word. This consideration allowed us to develop a framework for
combining classifiers based on the theories of evidence and OWA operators.
By viewing distinct representations of a polysemous word as different infor-
mation sources serving for identifying the right sense of the target word, we
have applied Dempster rule of evidence combination to derive decision rules,
denoted by DS1 and DS2, for making the final decision of identification. On
the other hand, considering each representation of a polysemous word as in-
formation inspired by a semantics or syntactical criterion for the aim of word
sense identification, we have also applied the notion of OWA operators for
aggregating multi-criteria to define an overall decision function, which leads
to numerous combination rules such as Max, Min, Median, FM1 and FM2,
with the help of linguistic fuzzy quantifiers.

We have experimentally explored all developed combination strategies on the
datasets of English lexical samples of Senseval-2 and Senseval-3. It has been
shown that individual classifiers corresponding to different types of representa-
tion suitably offer complementary information about the target to be assigned
a sense; it consequently makes combination strategies would help in making
more correct decisions. The experimental result has shown that the discussed
framework of classifier combination also yields several decision rules in WSD
that perform well comparable to the best systems in the contests of Senseval-2
and Senseval-3.

For the future work, we are planning to integrate the classifier combination
schemes discussed in this paper with knowledge-based WSD methods as com-
prehensively studied in [24] for further improving the performance of disam-
biguation methods.
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