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A Probability-Based Approach to Comparison
of Fuzzy Numbers and Applications
to Target-Oriented Decision Making

Van-Nam Huynh, Member, IEEE, Yoshiteru Nakamori, Member, IEEE, and Jonathan Lawry

Abstract—In this paper, we introduce a new comparison rela-
tion on fuzzy numbers based on their alpha-cut representation and
comparison probabilities of interval values. Basically, this compar-
ison process combines a widely accepted interpretation of fuzzy
sets together with the uncertain characteristics inherent in the rep-
resentation of fuzzy numbers. The proposed comparison relation
is then applied to the issue of ranking fuzzy numbers using fuzzy
targets in terms of target-based evaluations. Some numerical ex-
amples are used to illuminate the proposed ranking technique as
well as to compare with previous methods. More interestingly, ac-
cording to the interpretation of the new comparison relation on
fuzzy numbers, we provide a fuzzy target-based decision model as
a solution to the problem of decision making under uncertainty,
with which an interesting link between the decision maker’s dif-
ferent attitudes about target and different risk attitudes in terms
of utility functions can be established. Moreover, an application of
the proposed comparison relation to the fuzzy target-based deci-
sion model for the problem of fuzzy decision making with uncer-
tainty is provided. Numerical examples are also given for illustra-
tion.

Index Terms—Decision-making, fuzzy number, fuzzy target,
ranking, uncertainty.

I. INTRODUCTION

THE issue of comparison and ranking of fuzzy numbers has
been a topic of investigation since the 1970s, mainly re-

lated to applications of fuzzy sets in decision analysis [11], [24],
[25], [31], [44], [45], [49], [56]. As we know, in practice evalu-
ations for selection and for ranking among alternatives are two
closely related and common facets of human decision making
activities. Frequently, decision-makers are faced with a lack of
precise information when assessing alternatives. In such situ-
ations, fuzzy numbers are extensively applied to represent the
performance of alternatives and therefore, the ranking or selec-
tion of alternatives eventually leads to comparisons of the re-
sulted fuzzy numbers.

Many methods for comparison and ranking of fuzzy num-
bers have previously been proposed in the literature. Most early
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ranking methods in the field have been reviewed and analyzed
by Bortolan and Degani [7], and more recently by Chen and
Hwang [11]. In particular, the collection of cases examined by
Bortolan and Degani [7] has been widely used as the bench-
mark examples for comparative studies of ranking methods. As
observed in a recent review by Wang and Kerre [47], ranking
methods can be classified into three categories. Methods be-
longing to the first class aim to define a ranking function map-
ping a fuzzy number into a real number, and then use a nat-
ural order for ranking purpose. In other words, these methods
tend to defuzzify an intrinsically fuzzy number into a crisp one
and base the comparison of fuzzy numbers on that of real num-
bers, where a natural order exists. Examples of these methods
are given for instance in [8], [18], [20], [33], and [48]. The
main criticism of these methods is, as Freeling [19] pointed out,
that “by reducing the whole of our analysis to a single number,
we are losing much of the information we have purposely been
keeping throughout our calculations.” The second class consists
of methods that compare fuzzy numbers based on their rela-
tion(s) to predefined reference set(s), e.g., as given in [13], [24],
[25], and [28]. More recently, Yeh and Deng [55] have also pre-
sented a new reference-based ranking approach accompanying
with a comprehensive discussion of the use of reference sets for
ranking fuzzy numbers in the literature. Lastly, methods of the
third class tend to construct a fuzzy binary relation on fuzzy
numbers representing pairwise comparisons between them and
then develop a procedure for obtaining the final ranking based
on these pairwise comparisons. For example, methods given in
[3], [16], [30], [40], and [45] could be considered as belonging
to this class.

Though many methods for ranking fuzzy numbers have been
presented in the last decades, none of them is a well accepted
“golden choice” for all cases [7], [47]. Main drawbacks found in
most methods include: counterintuitive, nondiscriminating, in-
consistency, using only local information or restricting the shape
of fuzzy numbers to be ranked, and difficult to understand [18],
[30]. Recently, Lee-Kwang and Lee [31] have proposed a new
method for ranking fuzzy numbers based on the so-called sat-
isfaction function (SF) and a viewpoint-dependent evaluation
method. Their method could be viewed as a hybrid of reference
set based methods and fuzzy preference relation based methods
mentioned above, while taking the overall possibility distribu-
tion of fuzzy numbers involved into consideration. More partic-
ular, the SF (see Section IV) defined for any two
fuzzy numbers and is interpreted as “the possibility that
is greater than .” Then the proposed ranking method is based
on evaluations of the SF of every fuzzy number involved with

1063-6706/$25.00 © 2008 IEEE
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a predefined viewpoint , which is also a fuzzy number. For-
mally, by means of the SF a comparison relation on fuzzy
numbers is established

Note that the formulation of the SF is different from the pos-
sibility theory based approach proposed by Dubois and Prade
[16], though semantic interpretations of them are somehow sim-
ilar. It is interesting here to observe that if fuzzy numbers in-
volving in a ranking could be considered as the fuzzy perfor-
mance assessments of alternatives, a predefined viewpoint
in Lee-Kwang and Lee’s method could be seen as the deci-
sion-maker’s fuzzy target [22]. Then, obeying the optimizing
principle, the decision maker should choose an alternative that
maximizes the possibility of “meeting his target” represented
by the SF as showed above. This view can be considered as
one of underlying motivations for ranking methods based on
viewpoint-dependent evaluations. Naturally, it also suggests a
thinking of a probability-based comparison relation in a sim-
ilar manner, supported by a probability-based representation of
fuzzy sets as discussed, e.g., in [17].

Furthermore, our other motivation comes from the desire to
bring fuzzy targets within the reach of the target-based decision
model [4], [9]. More concretely, in decision analysis with un-
certainty, a classical problem is to rank a set of acts defined on a
state space accompanying with a probability distribution ,
where, due to the uncertainty in the state of nature, each act
may lead to different outcomes taking from a set of outcomes ,
usually associated with a random outcome . The de-
cision maker (DM) must then use some ranking procedure over
acts for making decisions. The most commonly used ranking
procedure is based on the expected utility model, which sug-
gests that the ranking be obtained by using the value function

where is a utility function over . In the target-based model,
instead the DM could assess some random variable as his un-
certain target (or benchmark) and then rank an act by the prob-
ability that it meets the target (or, it outperforms
the benchmark), provided that the target is stochastically in-
dependent of the random outcomes to be evaluated. Namely, the
target-based model suggests using the value function

Interestingly enough, as proved in [4], this target-based deci-
sion model satisfies the Savage axioms [42] serving as an ax-
iomatic foundation for rational decision making under uncer-
tainty, while maintaining the appealing features from the target-
based approach as thinking about targets is very natural in many
practical situations of decision making. Therefore, it would be
interesting to study of the target-based decision model using
fuzzy targets, instead of random ones, because in many contexts,

defining fuzzy targets is much easier and intuitively natural than
directly defining random targets.

Motivated by the above observations, we propose in this
paper a new comparison relation on fuzzy numbers, viewed as
the SF in Lee-Kwang and Lee’s work, based on a probabilistic
approach. Obviously, it is straightforward to apply the proposed
comparison relation to the issue of ranking fuzzy numbers
using fuzzy targets in terms of target-based evaluations. This
method of ranking fuzzy numbers basically works in a similar
way to Lee-Kwang and Lee’s method, i.e., consisting of two
steps: evaluation and ordering, but with the new comparison
relation interpreted as the probability of “meeting the target.”
According to the interpretation of the proposed comparison re-
lation, we then introduce a target-based formulation for solving
the problem of decision making under uncertainty (DMUU)
using fuzzy targets. It is shown that the proposed approach can
transform fuzzy targets so as to allow the application of the
target-based decision model extensively discussed in the deci-
sion analysis with uncertainty literature, e.g., [1], [4], [6], [9],
[10], and [32]. Furthermore, as will be discussed in Section VI,
the fuzzy target-based approach can provide a unified way for
solving the problem of fuzzy decision making with uncertainty
about the state of nature and imprecision about payoffs. It is of
interest noting that by this approach to fuzzy decision analysis,
we can discuss an interesting relation between different atti-
tudes about target and different attitudes towards risk in terms
of utility functions.

The organization of this paper is as follows. In Section II,
the basic notions of fuzzy numbers and the -cut representa-
tions are briefly presented. Section III introduces a new com-
parison relation on fuzzy numbers based on the -cut repre-
sentation and the comparison probabilities of interval values.
In Section IV, we provide a method for ranking fuzzy num-
bers based on the proposed comparison relation and a target-
based evaluation method. Section V explores a fuzzy target-
based model for the problem of DMUU using the proposed com-
parison relation. Section VI then extends the application to the
problem of fuzzy DMUU. Finally, some concluding remarks
and further work are presented in Section VII.

II. FUZZY NUMBERS AND THE -CUT REPRESENTATION

A fuzzy number is defined as a fuzzy subset with the mem-
bership function of the set of all real numbers that sat-
isfies the following properties [27], [56]:

• is a normal fuzzy set, i.e., ;
• is a convex fuzzy set, i.e.,

for and ;
• the support of , i.e., the set supp

, is bounded.
For , the -cut of is a crisp set defined as
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According to [15] and [29], a fuzzy number can be conve-
niently represented by the canonical form

otherwise

where is a real-valued function that is monotonically in-
creasing and is a real-valued function that is monotoni-
cally decreasing. In addition, as in most applications, we assume
that functions and are continuous. If and are
linear functions, then is called a trapezoidal fuzzy number and
denoted by . In particular, becomes a trian-
gular fuzzy number if .

For any fuzzy number expressed in the canonical form, its
-cuts are expressed for all by the formula [29]

when
when

(1)

where and are the inverse functions of and ,
respectively. In the case that degenerates into a crisp interval,
i.e., , we define for all .

It should be noted that in fuzzy set theory, the concept of
-cuts plays an important role in establishing the relationship

between fuzzy sets and crisp sets. Intuitively, each -cut of
a fuzzy set can be viewed as a crisp approximation of at the
level . In the area of fuzzy arithmetic, the -cut rep-
resentation plays an essential role in implementing arithmetic
operations on fuzzy numbers, with help from the extension prin-
ciple [35] and the interval arithmetic [34].

In the case where a fuzzy set has a discrete membership
function, i.e.,

and

with being a finite positive integer, Dubois and Prade [14]
pointed out that the family of its -cuts forms a nested family
of focal elements in terms of Dempster–Shafer theory [43]. In
particular, assuming the range of the membership function ,
denoted by , is , where

for then the so-called body of
evidence induced from is defined as the collection of pairs

with by convention. Then the membership function
can be expressed by

(2)

where can be viewed as the probability that
stands as a crisp representative of the fuzzy set [17], and

so is referred to as a consonant random set. Note that the nor-
malization assumption of insures the body of evidence does
not contain the empty set. This view of fuzzy sets has been also
used by Baldwin [2] to introduce the so-called mass assignment
of a fuzzy set, with relaxing of the normalization assumption of
fuzzy sets.

In the case of a fuzzy number that possesses a continuous
membership function, as discussed in Dubois and Prade [17],
the family can be viewed as a uniformly dis-
tributed random set, consisting of the Lebesgue probability mea-
sure on [0,1] and the set-valued mapping . Then the
membership function is expressed as an integral

(3)

where is the characteristic function of crisp set .
In computer applications, a fuzzy number can be usually

approximated by sampling the membership function along the
membership axis. That is, assuming uniform sampling and that
the sample values are taken at membership grades

, then, from the perspective
of the above interpretation of fuzzy sets, we can approximately
represent as

(4)

and then membership degrees can be approximately computed
via (2), the discrete version of (3). The approximation becomes
better when the sample of membership grades is finer. Interest-
ingly, regarding the issue of ranking fuzzy numbers, this approx-
imate representation of fuzzy numbers has been either implicitly
or explicitly used by many authors previously, for instance, in
[12], [18], [39], and [48].

III. A PROBABILITY-BASED COMPARISON RELATION

In this section, we propose a new comparison relation on
fuzzy numbers based on the -cut representation. The section
first begins with the case of intervals and then generalizes to the
case of fuzzy numbers. Finally, an extension to the case of non-
convex and subnormal fuzzy sets is also discussed.

A. Intervals Case

Let us consider two interval values denoted by
and . In [40], the authors proposed a ranking pro-
cedure for intervals based on the Hurwicz criterion as ranks
over if and only if

where is a parameter reflecting the strategy that is
adopted by the decision maker. Roughly speaking, interval
values are first mapped into real numbers taking the deci-
sion maker’s attitude expressed by the Hurwicz criterion into
account, and then a ranking is based on the natural order of
resulted real numbers.

Here we utilize an approach to comparing intervals motivated
by a probabilistic view of the underlying uncertainty, instead.
More formally, motivated by our later developments, we aim at
defining a probability-based comparison relation over intervals,
denoted by . To this end, we consider intervals
and as uncertain values having uniform distributions
and over and , respectively. Then, based
on the probability theory, we can work out the probability of
the ordering of uncertain values and taking into account
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Fig. 1. Comparison probability of two intervals.

associated probability distributions and . Namely,
we define

(5)

Recall that

if
otherwise

if
otherwise

Obviously, the result of computation for (5) depends on the rel-
ative position of and with respect to and . By a di-
rect computation, we easily obtain the result of (5) for all cases
where at least one of “ ” or “ ” holds as follows.

1) If .
2) If .
3) If and , we have

4) If and , similar to
case 3), we obtain

Intuitively, this case is illustrated as in Fig. 1 (left), where
the area where is smaller than is denoted by and

is the ratio of to the whole rectangle, i.e.,
.

5) If , and , we have

Intuitively, this case is graphically illustrated as in Fig. 1
(right).

6) If and , similar to case 5), we
obtain

In the case where both intervals and degenerate into scalar
numbers, i.e., and , we define by convention

if
if
if

(6)

Note that this definition of the degenerate case has been sug-
gested in [52] and motivated by the fact that if we define the
order relation over intervals as iff

and iff , then
the definition of in case of crisp numbers leads to
the natural ordering of numbers with the ordering procedure de-
fined by .

As a consequence of the above computational results and (6),
we get the following.

Proposition 1: We have the following.
1) .
2) If .
Remark 1: In [52], the authors provide an indirect way to

obtain for intervals and , equivalently, by com-
puting , where the probability distribution
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of uncertain value is defined as the convolution of
and [37]. Namely

(7)

and then

(8)

However, in our opinion, this method of obtaining is
more complicated and difficult to figure out geometrically than
the direct method as presented above. In addition, as we will see
later in Section IV, the formulation of (5) also allows us to pro-
vide a probabilistic interpretation for the SF proposed in [31],
which is clearly more intuitive than a possibilistic interpretation
as suggested by the authors.

B. Fuzzy Numbers Case

Now let us turn to the case of fuzzy numbers. Consider two
fuzzy numbers and whose membership functions are ex-
pressed in the canonical form by

otherwise

otherwise

respectively. According to (1), we obtain for all

when
when

(9)

when
when

(10)

Based on the comparison relation on intervals defined in the pre-
ceding section and the -cut representations of fuzzy numbers,
we now define a comparison relation on fuzzy numbers, denoted
by , as follows:

(11)

Fig. 2 graphically illustrates the idea of the comparison of two
triangular fuzzy numbers.

Remark 2: Due to the continuity and monotonicity of func-
tions and , it follows from the computational re-
sults of cases 1)–6) in the preceding section that the function

is a piecewise continuous function on
[0,1], which makes the definition of via (11) eli-
gible.

As a direct consequence of Proposition 1 and (11), we obtain
the following.

Fig. 2. Comparison of two triangular fuzzy numbers.

Proposition 2: For any fuzzy numbers and , we have the
following.

1) .
2) If , for all

.
Regarding the interpretation of , let us express

(11) by

where is the cumulative probability distribution of a
random variable having the uniform distribution on . Then
according to the probability-based representations of and
(again, see Dubois and Prade [17]), that view
and as uniformly distributed random intervals,
we can view as expected probability of domi-
nating .

C. Extension to Nonconvex and Subnormal Fuzzy Numbers

Considering now two nonconvex fuzzy numbers and ,
then for , we can express -cuts and , respec-
tively, as unions of distinct intervals [48]

(12)

(13)

Here we still assume that and are normal. Intuitively, recall
that the probability of the ordering of two intervals

and is defined by the ratio of the area where is smaller
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than , i.e., , to the whole area determined by the rec-
tangle (graphically, see, for example, Fig. 1). Keeping
this in mind, we can define as

(14)

where , , and
is the area determined by the rectangle

. Note that in this case we also have

Further, once having defined by (14), we can
also obtain as defined in (11).

Now let us consider the case of subnormal fuzzy numbers
and . Denote by and the heights of fuzzy sets

and , respectively. Assuming that and are nonempty,
i.e., and , let

Then the relation established in Proposition 2 suggests to define
as

(15)

IV. APPLICATION TO RANKING FUZZY NUMBERS

In this section, we propose a ranking procedure of fuzzy num-
bers based on the comparison relation on fuzzy numbers intro-
duced in the preceding section.

A. Ranking Procedure

Given fuzzy numbers and , as discussed previously,
could be interpreted as the expected probability

of the relation “ dominates .” From a perspective of de-
cision making, assuming that and are considered as
fuzzy performance assessments of two alternatives and ,
respectively, then can be also interpreted as the
probability that outperforms . Under such an interpretation
and motivated by the target-based approach to decision making
[4], [9], a procedure is proposed in the following, which ranks
fuzzy numbers by the probability that they outperform some
prespecified target or benchmark, which itself is also fuzzy.

Assume that is a finite set of fuzzy num-
bers that need to be ranked. Then by a fuzzy target involving in
the ranking problem, we mean a fuzzy set over having the
membership function satisfying the following.

1) is a piecewise continuous function having a bounded
support.

2) For any supp supp .
3) is not empty, i.e., .
Once having specified target , the ranking procedure is

simply carried out as follows.
1) Evaluate .
2) Rank fuzzy numbers in according to their evaluation

values .

Similar to [31], we also define the so-called relative index of
a fuzzy number in with respect to a prespecified target
as

Though the relative index does the same as the index
in ranking fuzzy numbers, it provides, however, the in-

formation that shows how close is to the best one according
to the target (or viewpoint [31]) .

Let us denote supp . In the case of trian-
gular and trapezoidal fuzzy numbers, we have the following.

Proposition 3: Assuming is the neutral target, i.e.,

if
otherwise

we have the following.
1) If

(16)

2) If

(17)

Informally, Proposition 3 means that if the decision maker
has a neutral behavior on the target, triangular and trapezoidal
fuzzy numbers are ranked according to the (weighted) average
of their crucial points, where for the case of triangular fuzzy
numbers the modal value is weighted double compared to left
and right spreads.

It should be noted that this ranking procedure is similar to that
proposed by Lee-Kwang and Lee in [31]; however, as discussed
above, our motivation here is somehow different. Furthermore,
their ranking procedure is based on the SF defined as

where is a -norm and is interpreted as the pos-
sibility that is greater than (or the evaluation of in the
local viewpoint of ). That is, in their ranking procedure, the
evaluation value of fuzzy number with respect to a target
is defined by

(18)

where the multiplication operator is selected as -norm in
the SF. The following proposition is due to Lee-Kwang and Lee
[31].

Proposition 4: If the multiplication operator is selected as
-norm in the SF and the given target is , then fuzzy

numbers are ranked according to their centroids. Namely

where is the centroid of fuzzy number .
Consequently, by a simple calculation, we have the following.
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Fig. 3. Fuzzy numbers in (a) Example 1, (b) Example 2, and (c) Example 3.

1) If

(19)

2) If

(20)

Remark 3: In our opinion, should have a prob-
abilistic interpretation rather than a possibility interpretation as
originally provided by Lee-Hwang and Lee [31]. Particularly, let
us consider possibility distributions and of fuzzy
numbers and , respectively. Using Yager’s method [53] of
converting possibility distributions into probability distributions
via a simple normalization, we obtain associated probability dis-
tributions of and as follows:

Having considered and as random variables with associated
probability distributions and , respectively, we can
define the probability of the ordering of random variables and

taking into account distributions and as

(21)

which clearly turns out to be the SF defined by
Lee-Hwang and Lee [31] with -norm selected as the multi-
plication operator.

B. Examples

In order to illustrate the proposed ranking method and to see
how different targets affect the ranking results, we now examine
following numeric examples.

Example 1: Let us first consider an example taken from
[31]. Assume that we have four fuzzy numbers as depicted in
Fig. 3(a). Let us consider three prototypical targets that are
pessimist, optimist, and neutral, as depicted in Fig. 4.

The probabilities that given fuzzy numbers meet various tar-
gets and the corresponding ranking results are shown in Table I.
From the table, we see that the ranking order is the same for all
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Fig. 4. Fuzzy targets.

TABLE I
RESULTS OF THE EXAMPLE 1

TABLE II
RESULTS OF EXAMPLE 2

three targets. Intuitively, it is clear that dominates , and
dominates both and . In addition, while the modal value
of is less than that of with a small differentiation, the
area where dominates is much larger than that where
is dominated by . Thus, it is intuitively reasonable to order

over . On the other hand, it can also be seen that the eval-
uation value of each fuzzy number as well as its relative index
vary considerably according to selected target. Particularly, let
us compare with the case of the neutral target, which indicates a
uniform preference distribution on the domain. While the eval-
uation values of and and, consequently, their rela-
tive indexes are much improved in relation to those of the best

according to the pessimistic target, they are considerably de-
creased in relation to those of the best according to the op-
timistic one.

Example 2: Given five fuzzy numbers on [0,1] as shown in
Fig. 3(b), we also consider three prototypical targets that are

pessimist, optimist, and neutral as in Example 1. Table II shows
the evaluation values, relative indexes of given fuzzy numbers
according to various targets, and the corresponding ranking re-
sults. In this example, we obtain different rankings among fuzzy
numbers according to different targets. If the neutral target is
selected, the corresponding result makes no distinction between

and as well as between and . However, if an opti-
mistic target is selected, is ranked over and is ranked
over , while a reverse result holds for the case of pessimistic
target.

Example 3: This is a more complex example. Assume that we
are given three fuzzy numbers on [1,5] as shown in Fig. 3(c). In-
tuitively, it is not obvious to us what the ranking order among
given fuzzy numbers should be. However, having interpreted

as the probability of fuzzy number meeting target ,
the decision maker can establish a target that reflects his atti-
tude of preference and then rank the fuzzy numbers according
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TABLE III
RESULTS OF EXAMPLE 3

to their probabilities of meeting the target. In this example, pes-
simistic, optimistic, and neutral targets are represented by tri-
angular fuzzy numbers [1,1,5], [1,5,5], and the interval [1,5],
respectively. As we have seen from the ranking result shown
in Table III, different targets lead to different ranking orders of
fuzzy numbers. This is a reasonable consequence since a change
in the target corresponds to a change in the decision maker’s at-
titude of preference in the decision-making process.

C. Comparison With Previous Methods

Now we examine the proposed ranking method in compar-
ison with several previous methods. In particular, for the pur-
pose of comparative study, we select the following methods:
Lee-Kwang and Lee [31], Baldwin and Guild [3], Jain [25], Liou
and Wang [33], Kim and Park [28], and Peneva and Popchev
[36], all of which allow a change in the evaluation strategy that
reflects the attitude of the decision maker. Note here that targets
pessimistic, neutral, and optimistic correspond to viewpoints

and of Lee-Kwang and Lee’s method.
The comparative study is performed on eight cases, all of

which are reproduced from [7] and [31]. The results are shown
in Tables IV and V. From these results, we can see that in
some cases the last five methods either are not discriminative
[Baldwin and Guild’s method in case b), Liou and Wang’s and
Kim and Park’s methods in case e) with ] or provide
counterintuitive results [Kim and Park’s method in case c);
Jain’s method in case c) with and Peneva and
Popchev’s method in case e) with ]. It is of interest to see
that, though our method and Lee-Kwang-Lee’s method provide
different results, they are consistent in ranking involved fuzzy
numbers with respect to corresponding fuzzy targets. Except
for the case of neutral target [refer to (16) and (17) and (19)
and (20)], where our method is indifferent in between and

of example d) but slightly dominates according to
Lee-Kwang-Lee’s method, conversely, Lee-Kwang and Lee’s
method is indifferent in between and of example f), while
our method ranks over . Detailed discussions on the results
can be found in [31], from which Tables IV and V show that
in all cases both the methods produce reasonable and almost
consistent results. This is an understandable consequence as
both methods work in a similar manner with only difference
is different representations of fuzzy numbers to be used in
each method; i.e., while Lee-Kwang and Lee’s method uses
the possibility distribution (or, membership function) repre-
sentation, our method uses the random set representation of
fuzzy numbers. Furthermore, it should be emphasized here that
though all considered ranking methods allow a change in the

evaluation strategy, it is difficult to see clearly how the change
of parameters in the last five methods reflects the decision
maker’s corresponding attitude of evaluation. In Lee-Kwang
and Lee’s and our methods fuzzy targets have a clear semantics
associated with a well-interpreted evaluation strategy, and
hence, the change in target reflects clearly and directly the
corresponding change in attitude of the decision maker.

V. DECISION MAKING UNDER UNCERTAINTY USING FUZZY

TARGETS

In this section, we aim to apply a target-based language to the
problem of decision making in the face of uncertainty, with the
help of the new comparison relation proposed above. The funda-
mental framework of DMUU can be most effectively described
using the decision matrix shown in Table VI (see, e.g., [50]). In
this matrix, represents the alternatives (or ac-
tions) available to a decision maker (DM), one of which must be
selected. The elements correspond to the pos-
sible values/states associated with the so-called state of nature

. Each element of the matrix is the payoff the DM receives
if alternative is selected and state occurs. The uncertainty
associated with this problem is generally a result of the fact that
the value of is unknown before the DM must choose an alter-
native . Let us consider the decision problem as described in
Table VI, assuming a probability distribution over . Here,
we restrict ourselves to a bounded domain of the payoff variable
that , i.e., .

A. Target-Based Model of the Expected Value

As is well known, the most commonly used method for valu-
ating alternatives to solve the DMUU problem described by
Table VI is to use the expected payoff value

(22)

On the other hand, each alternative can be formally consid-
ered as a random payoff having the probability distribution
defined, with an abuse of notation, as follows:

(23)

Then, similar to Bordley and LiCalzi’s result [4], we now
define a random target that has a uniform distribution, denoted
by , on and is defined by

otherwise
(24)

Under the assumption that the random target is stochasti-
cally independent of any random payoffs [4], we have

(25)
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TABLE IV
COMPARATIVE EXAMPLE 1

where

is the cumulative distribution function of the target . It is of
interest to note here that, in a different but similar context, a
similar idea has been used in [21] to develop the so-called sat-
isfactory-oriented decision model for multiple-expert decision
making with linguistic assessments.

Due to (23) and (24) and the additive property of the proba-
bility measure, from (25) we easily obtain

(26)

From (22) and (26), we easily see that there is no way to tell if
the DM selects an alternative by maximizing the expected value
or by maximizing the probability of meeting the uncertain target

. In other words, the target-based decision model with decision

function in (26) above is equivalent to the expected value
model defined by (22).

Intuitively, in the target-based model of the expected value
above, we can think of as an interval target represented as
a membership function for , and

otherwise. Then it is interesting to extend target-based
decision models with the use of fuzzy targets as in the following.

B. Fuzzy Target-Based Model of DMUU

In this section, by a fuzzy target, we mean a possibility
variable over the payoff domain represented by a pos-
sibility distribution . For simplicity, we also
assume further that is a piecewise continuous function having
supp .

In the target-based decision model, assume now that the DM
assesses a fuzzy target that reflects his attitude. Then, ac-
cording to the optimizing principle, after assessing the target
the DM would select an alternative as the best that maximizes
the expected probability of meeting the target defined by

(27)
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TABLE V
COMPARATIVE EXAMPLE 2

TABLE VI
THE GENERAL DECISION MATRIX

where is a formal notation indicating the probability
of meeting the target of value .

At this juncture, by using Yager’s method of converting a pos-
sibility distribution into an associated probability distribution
via the simple normalization as mentioned above, we have a di-
rect way to define as the cumulative distribution
function (cdf)

(28)

where

It should be noted that this definition of is also
formally used but without a probabilistic interpretation, for the
SF in [31] for the comparison between a fuzzy
number with a crisp number .

On the other hand, based on the discussion presented in
Section III, we can also define

(29)

and call this the probabilistic comparison function (pcf). Note
that in the case of , we have for all

, which immediately implies

Thus the value function (27) for a fuzzy target with
defined by (29) is also an extension of the value function (26)
for an interval target.
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Fig. 5. Cumulative distribution versus proposed comparison probability: optimistic and pessimistic cases.

Importantly, note here that in the utility-based language of
decision theory, the probability could be consid-
ered as the formulation of a utility function and then
(27) turns out to be an expected utility model. A formal con-
nection between the utility-based approach and the target-based
approach in decision analysis with uncertainty has been estab-
lished and intensively discussed in, e.g., [4]–[6], [9], [10], and
[32]. In particular, see Castagnoli and LiCalzi [9] for the target-
based interpretation of Von Neumann and Morgenstern’s ex-
pected utility model [46] and Bordley and LiCalzi [4] for the
target-based interpretation of Savage’s expected utility model
[42]. Here we have also been showing that the procedure sug-
gested in Yager [53] and that proposed in Section III both can be
used to bring fuzzy targets within the reach of the target-based
decision model.

Let us now consider three prototypical fuzzy targets. The first
is called the optimistic target. This target would be set by a DM
who has an aspiration towards the maximal payoff. Formally, the
optimistic fuzzy target, denoted by , is defined as follows:

if
otherwise.

Fig. 5(a) graphically depicts the membership function ,
the associated probability distribution , the cdf

, and the pcf corresponding to this target.
The second target is called the pessimistic target. This target is
characterized by a DM who believes bad things may happen and
has a conservative assessment of the target, which correspond
to ascribing high possibility to the uncertain target being a low
payoff. The membership function of this target is defined by

if
otherwise

The portraits of related functions corresponding to the pes-
simistic target are shown in Fig. 5(b). Consider now the third

target linguistically represented as “about ” whose member-
ship function is defined by

otherwise

where . This fuzzy target characterizes the
situation at which the DM establishes a modal value as the
most likely target and assesses the possibilistic uncertain target
as distributed around it. We call this target the unimodal. Fig. 6
graphically illustrates this situation.

Looking at Figs. 5 and 6, we see that the portraits of the cdf
and the pcf have similar shapes for

each corresponding target. However, the behavior of the pcf
is steeper towards the modal value of the corre-

sponding targets than that of the cdf . This prac-
tically implies that the value function defined with the pcf

reflects a stronger decision attitude towards the target
than that defined with the cdf as shown in the ex-
ample below.

As we have seen from Fig. 5(a), the optimistic target
leads to the convex pcf , which is equivalent to
a convex utility function and, therefore, exhibits a risk-seeking
behavior. This is because, having an aspiration towards the max-
imal payoff, the DM always feels loss over the whole domain
except the maximum, which would produce more risk-seeking
behavior globally. By contrast, Fig. 5(b) shows that the pes-
simistic target induces the concave pcf and thus
equivalently corresponds to global risk-aversion behavior. More
interestingly, as we see from Fig. 6, the unimodal target in-
duces the -shape pcf that is equivalent to the

-shape utility function of Kahneman and Tversky’s prospect
theory [26], according to which people tend to be risk averse
over gains and risk seeking over losses. In the fuzzy target-based
language, as the DM assesses his uncertain target as distributed
around the modal value, he feels loss (respectively, gain) over
payoff values that are coded as negative (respectively, positive)
changes with respect to the modal value. This would lead to the
behavior consistent with that described in the prospect theory.
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Fig. 6. Cumulative distribution versus proposed comparison probability: unimodal case.

TABLE VII
THE PAYOFF MATRIX

Let us consider the following example from Samson [41] to
illustrate the point discussed above.

Example 4: In this example, payoffs are shown in thousands
of dollars for a problem with three acts and four states as de-
scribed in Table VII. A proper prior over the four possible states
of is also assumed [41].

Table VIII shows the computational results of two value func-
tions with different fuzzy targets for acts, where

and

From the result shown in Table VIII, we see that both value
functions and suggest almost the same solution for
the selection problem. That is, the act is the preferred choice
according to a DM who has a neutral (equivalently, who abides
by the expected value) or optimistic-oriented behavior about tar-
gets, a DM having pessimistic-oriented behavior about targets
selects as his preferred choice. Especially, in the case of sym-
metrical unimodal target , the acts and are almost in-

TABLE VIII
THE TARGET-BASED VALUE MATRIX

different to a DM who use , while slightly dominates
if using . In addition, though the act is not selected

in all cases, its value is much improved with respect to a pes-
simistic-oriented decision maker. However, the computational
results of these two functions are different except, obviously,
for the case of the neutral target. Especially, it is of interest to
see that the spread of the difference of the value function
between opposite-oriented targets is much larger than that of the
value function . This illustrates that the target-based deci-
sion model using the pcf reflects a stronger decision
attitude towards the target than that using the cdf .

VI. APPLICATION TO FUZZY DECISION ANALYSIS

A. Target-Based Decision Procedure

As discussed above, the fuzzy target-based method of uncer-
tain decision making is formally equivalent to a procedure that,
once having designed a target , consists of the following two
steps.

1) For each alternative and state , we define
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TABLE IX
THE DERIVED DECISION MATRIX

and then form a “probability of meeting the target” table
described in Table IX from the payoff table (i.e., Table VI).

2) Define the value function as the expected probability of
meeting the target

(30)

We now consider the problem of decision making under un-
certainty where payoffs may be given imprecisely. Let us turn
back to the general decision matrix shown in Table VI, where

can be a crisp number, an interval value, or a fuzzy number.
Clearly in this case, we have an inhomogeneous decision matrix,
and traditional methods cannot be applied directly. One of the
methods to deal with this decision problem is to use fuzzy set
based techniques with help of the extension principle and many
procedures of ranking fuzzy numbers developed in the litera-
ture. In the following, we provide a fuzzy target-based proce-
dure for solving this problem.

First, using the preceding mechanism, once having assessed
a fuzzy target , we need to transform the payoff table into one
of the probabilities of meeting the target. For each alternative

and state , the probability of payoff value meeting the
target is defined by

If is a crisp number or interval, as previously discussed,
we have

If is a fuzzy number, we get

As such, we have transformed an inhomogeneous decision
matrix into the derived decision matrix described by Table IX,
where each element of the derived decision matrix can be
uniformly interpreted as the probability of payoff meeting
the target . From this derived decision matrix, we can then
use the value function (30) for ranking alternatives and making
decisions. It is worth emphasizing that as an important charac-
teristic of this target-based approach, it allows for including the
DM’s attitude, which is expressed in assessing his target, into
the formulation of decision functions. Consequently, different
attitudes about the target may lead to different results of the se-
lection.

Note that in the fuzzy set method [38], we first apply the ex-
tension principle to obtain the fuzzy expected payoff for each
alternative and then utilize either a defuzzification method or a
ranking procedure for fuzzy numbers for the purpose of making
the decision. Therefore, we may also get different results if
different methods of ranking fuzzy numbers or defuzzification
are used. However, this difference of results caused by using
different ranking methods does not reflect the influence of the
DM’s attitude. Furthermore, a bunch of methods for ranking
fuzzy numbers developed in the literature may also make it dif-
ficult for people choosing the most suitable method for each par-
ticular problem.

B. A Numerical Example

For illustration, let us consider the following application ex-
ample adapted from [38].

LuxElectro is a manufacturer of electroutensils, and currently
the market demand for its products is higher than the output.
Therefore, the management is confronted with the problem of
making a decision on possible expansion of the production ca-
pacity. Possible alternatives for the selection are as following:

enlargement of the actual manufacturing
establishment with an increase in capacity of 25%;

construction of a new plant with an increase in total
capacity of 50%;

construction of a new plant with an increase in total
capacity of 100%;

renunciation of an enlargement of the capacity, the
status quo.

The profit earned with the different alternatives depends upon
the demand, which is not known with certainty. Due to the
amount of information, the management estimates three states
of nature corresponding to high, average, and low demand with
associated prior probabilities of 0.3, 0.5 and 0.2, respectively.
Then the prior matrix of fuzzy profits (measured in millions
of euros) is given in Table X, where fuzzy profits are represented
parametrically by triangular and trapezoidal fuzzy numbers.

Using the extension principle in fuzzy set theory, we obtain
the expected profits of alternatives as shown in Table XI, where
risk neutrality is assumed. Then to make a decision, one can
apply one of the ranking methods developed in the literature
on these fuzzy profits. Looking at the membership functions
of the expected profits depicted in Fig. 7, we can intuitively
see that the alternatives and are much worse than the
alternatives and . However, it is not so easy to say which
alternative is dominated by the other among these two better
alternatives. Here, if using, for example, the centroid of fuzzy
numbers as the ranking criterion, we get the ranking order as

.
To apply the target-based procedure suggested above for

solving this problem, according to the information given by this
problem, we define the domain of profits as .
Assume, for instance, that a fuzzy optimistic target has
been estimated based upon the optimistic attitude of the man-
agement, where
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TABLE X
FUZZY PROFIT MATRIX ~U = ~U(A ; S )

Fig. 7. Membership functions of expected profits.

TABLE XI
EXPECTED FUZZY PROFITS VIA EXTENSION PRINCIPLE

TABLE XII
DERIVED DECISION MATRIX p = P ( ~U � T )

Then with this optimistic target, using the above procedure we
obtain the derived decision matrix as shown in Table XII.

In the same way, we also obtain the derived decision ma-
trices corresponding to neutral and pessimistic targets, denoted,
respectively, by and , as shown in Tables XIII and
XIV. After assessing a target and obtaining the derived decision
matrix accordingly, the value function (30) is then applied for
making the decision. Table XV shows the results of the value

TABLE XIII
DERIVED DECISION MATRIX p = P ( ~U � T )

TABLE XIV
DERIVED DECISION MATRIX p = P ( ~U � T )

function for three above targets and the corresponding ranking
orders of alternatives.

From Table XV, we see that the result reflects very well the
behavior of the DM which is expressed in assessing the target. In
particular, the ranking order of alternatives corresponding to the
neutral target is the same as that obtained by using the fuzzy ex-
pected profits with centroid-based ranking criterion, where the
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TABLE XV
THE RANKING RESULT USING DIFFERENT TARGETS

risk neutrality is assumed. As shown in Section V, the neutral
target induces a linear utility function

, which is also equivalent to risk neutrality behavior. For
the case of optimistic target , it provides a convex utility
function [refer to Fig. 5(a)] that is equiv-
alent to a risk-seeking behavior. In this case, the DM wishes to
have profit as big as possible, accepting a risk that if the de-
sirable state will not occur, he may get a big loss. This attitude
leads to the selection of alternative that has the biggest profit
in case of a high demand occurs. In contrast, the pessimistic
target yields a concave utility function

, which corresponds to a risk-aversion behavior [refer to
Fig. 5(b)]. In this case, we see that is selected and, in addi-
tion, the alternative becomes the worst. This reflects the sit-
uation that the DM is somewhat looking for certainty of gaining
profit. It should be noted here that we have defined member-
ship degrees for linearly decrease over the profit domain,
which exhibits a neutral-pessimistic attitude, and consequently
in this case the DM is not risk averse enough to rank over

. However, other types of membership function can be used
to express a more or less pessimistic attitude depending on the
behavior of the DM.

VII. CONCLUSION

The issue of comparison and ranking of fuzzy numbers plays
an important role in many applications of fuzzy set theory to
decision analysis. Though there are many methods proposed for
ranking fuzzy numbers, many of them are difficult to understand
and may produce counterintuitive results, as pointed out in the
literature. In this paper, we have proposed a new comparison
relation on fuzzy numbers based on the alpha-cut representa-
tion and comparison probabilities of interval values. Inspired by
the target-based ranking procedure in decision theory under un-
certainty, we applied the proposed comparison relation to the
issue of ranking fuzzy numbers using fuzzy targets in terms
of target-based evaluations. This also suggested to us to pro-
vide a better understanding of Lee-Kwang and Lee’s method
of ranking fuzzy numbers with a probability-based interpreta-
tion of the SF. More interestingly, we have applied the proposed
comparison relation to bring fuzzy targets within the reach of
DMUU paradigm on which an interesting link between different
attitudes about target and different risk attitudes in terms of
utility functions has been established. Furthermore, it has been
also shown that the fuzzy target-based decision model provides
a unified way for fuzzy decision making with uncertainty.

It is also worth noting that although the proposed ranking
method also reduces the comparison of fuzzy numbers into that
of real numbers, it differs from defuzzification-based ranking
methods in that single comparison values in the proposed

method are associated with a probabilistic semantics in terms
of target/benchmark-based evaluations. However, this conse-
quently restricts the application scope of the proposed ranking
method to the paradigm of target-oriented decision analysis as
well.

By the consideration of a fuzzy target-based approach to
DMUU in this paper, we think that it suggests an interesting
perspective for further studies on various different decision
problems. The first problem of constructing target-based deci-
sion functions for attitudinal decision making [50] as well as for
intelligent decision making with fuzzy modelling techniques
[51], [54] is worth study. Also, it would be interesting to study
whether and how a fuzzy target-based approach can be applied
to developing decision models for multiple-attribute decision
making as well as group decision making.
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