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Abstract. This paper proposes an evolutionary-game-theory model, called
meta-evolutionary game dynamics, for studying the dynamics of rules
and individual behaviour. Although there are two game theoretical views
of rules, i.e., seeing rules as game forms and as equilibria of games, en-
dogenous changes of rules are not modelled effectively by either of these
two views. We introduce a model for integrating the two views, in which
the interaction rules of replicator equations change dynamically. Com-
puter simulations of an example of the model that include mutation
and extinction of both strategies and games show (1) an intermittent
change of strategy distributions, (2) a continual transition from a dom-
inant strategy to another, and (3) metastable states distinct from the
Nash equilibria. We discuss the notion of evolutionary stability of games
and some natural examples showing rule dynamics. We conclude that
meta-evolutionary game dynamics enables the study of the endogenous
dynamic of rules. Our model contributes, therefore, the development of
game theory approach to the dynamics of rules.

Keywords: Dynamics of rules; Mathematical modelling; Meta-evolutionary
game dynamics; Replicator equations; Evolutionary stable games

1 Introduction

There are certain social “rules”, such as institutions, norms, ethics, conventions,
laws, and languages. Not all of these rules are given a priori, but many rules
emerge spontaneously from our activities. These spontaneous rules constructed
by human activities undergo change during the course of history. The changes
of the rules are induced by interactions between the rules and the individual
activities regulated by the rules.

1.1 Background: Game Theory Views of Rules

Conventions, norms, and institutions, which we refer to as “rules” in this paper,
and their dynamics have been studied in terms of game theory and evolutionary
game theory [1–5].



There are two views of rules in the framework of game theory [5].3 One
view is to see rules as game forms of games, and individuals’ actions as moves
or strategies of the game players [1, 2]. In this view, individual behaviour is
regulated via the payoffs in the games. Rules should be changed from the outside
of the system. Rule changes are represented by, for instance, the change of payoff
matrices of the existing games or the addition of new strategies.

The other view considers rules as equilibria of a game [3–5]. In this view,
individuals following particular rules are players, and properties of the rules are
strategies of the players at the equilibria. Exogenous features that are common
to all players, such as environmental factors and laws, are specified as a game
form including payoff functions. The actually playable equilibria are thought of
as rules established and enforced.

This view may include the evolutionary game framework [6], in which the
population or the proportion of individuals taking particular strategies changes
as a result of games played. Although it seems in this framework that there is
formation of a rule by means of transition from a non-equilibrium state to an
equilibrium state, however, the process is actually a selection of one equilibrium
out of several prescribed ones. Furthermore, the system no longer changes once it
attains an equilibrium state, unless perturbations, like invasions of new strategies
or changes of the payoff matrix, are given exogenously. Thus, the spontaneous
change of rules cannot be treated.

1.2 Integration of Two Views

The common inclinations in both views are that established rules are static and
do not change endogenously. As such, these views fail to grasp the fact that rules
are dynamic in nature and undergo transition through individuals’ activities. We
need a new view and a mathematical tool to study the dynamic aspect of rules,
one that recognizes that rules and the individuals’ behaviour interact with each
other and change concurrently. In this paper, we develop a mathematical model
of the interaction between rules and individual activities, to expand evolutionary
game theory to understand the endogenous dynamics of social structures.

The new view proposed here is an integrated version of the two views above.
We basically express initial rules in a society by game forms. Multiple games,
which are introduced explicitly, have their own weight factors representing the
extent of importance of the rules. Each player plays all games with one strategy
and gains weighted payoff from each game. The population of strategies varies in
time through the payoffs. In addition, the weights of the games change, depend-
ing on the payoffs and the population of strategies. The change of the weights is
governed by another rule, called a meta-rule.

The weighted sum of all games can be considered as indicating an entire rule
in the society. Accordingly, this entire rule shifts continuously, rather than dis-
3 Aoki [5] lists three views of institutions, the third one of which is ‘institutions as

specific players of games’. Since this view is not pursued so much, we do not deal
with it.



cretely as in transition among equilibria. The rules and configurations of strate-
gies may also stay at an equilibrium, which is a stable rule in both senses de-
scribed in the previous subsection.

The situation abstracted here may be acceptable when we suppose multina-
tional firms engaged in business activities in multiple markets. Each market has
its own scale and degree of importance in the world economy. The basic strategy
of a firm is thought of as the same for all markets, even though the firm can
adjust its tactics for each market. Firms change their shares according to the
benefits obtained at all markets. The scale and the importance of each market
also change in time with the activities of the firms.

1.3 Meta-Rule and Hierarchy of Rules Plasticity

One might ask what a meta-rule represents. It is a principle regarded as more
basic than an objective rule to be modelled, and therefore it is exogenous. In
the above example, it is the basic principle of the market mechanism, such that
a profitable market is more importance in the world economic system than an
unprofitable market. The meta-rule should be appropriately set for an objective
system. For instance, it may be the happiness of the majority for a utilitarian
system, the diversity of individual opinions for a democratic system, or sports-
manship in sports.

Such a principle, of course, may change in time, or be replaced by a new
principle. Thus, we might consider introducing a meta-meta-rule to capture the
change of the principle. Logically speaking, the chain of meta-meta-· · ·-rules may
cause a problem of infinite regression.

However, we allow a hierarchy of rules plasticity. We suppose that the rules
are classified in terms of their variability. As exemplified above, a meta-rule are
deemed more universal and invariable than rules at a focal level. For example,
in the legal system of a country, the constitution hardly changes, criminal laws
can be amended under the constitution, civil laws are more changeable, and so
on. In this paper, we assume that the change of rules in the lower classes of
the plasticity hierarchy can be neglected. By introducing an invariable meta-
rule, we confine the dynamics within two levels, the rules and the behaviour of
individuals.

2 Meta-Evolutionary Game Dynamics

In this section, we formalize the views proposed in §1.2 to model dynamic change
of rules. It is an extension of replicator dynamics [7] to include multiple games
with variable weights. We call our formalization meta-evolutionary game dynam-
ics.

Suppose N different strategies and the population share of individuals taking
the i-th strategy denoted by xi, where

∑N
i=1 xi = 1. The replicator system is

ẋi = (ui − ū)xi , (1)



where ui is the payoff of i-th strategy and ū =
∑N

i=1 xiui is the average of
payoffs over all individuals. This equation implies that the share of the i-th
strategy grows or shrinks in proportion to the difference between its payoff and
the average payoff.

We introduce here M multiple games with weighting factors. The weight of
the g-th game is expressed by wg, where

∑M
g=1 wg = 1. All individuals play all

games simultaneously with their own strategies. Thus, the growth rate of the
share of each strategy consists of the weighted sum of the payoffs at each game.
Accordingly, the time evolution of the share is given by

ẋi =
M∑

g=1

wg(ug
i − ūg)xi , (2)

where ug
i and ūg =

∑N
i=1 xiu

g
i are the payoff of the i-th strategy and the average

payoff at the game g, respectively. We refer to this equation as the weighted
replicator equation.

We assume that each game is evaluated in terms of certain principles or
criteria, i.e., a meta-rule in our terminology. We also assume the weight changes
according to the evaluation. It is further postulated that the higher a game is
evaluated above average, the more the weight of the game grows. Thus, as with
the dynamics of strategies, the dynamics of weights is described by replicator
type equation (1), by introducing the evaluation λg of the game g,

ẇg =
1
τ

(λg − λ̄)wg , (3)

where τ represents the time constant associated with the rate of change relative
to the change of strategy shares, and λ̄ =

∑M
g=1 wgλg is the weighted average

of the evaluation over all games. We refer to the whole system of equations (2)
and (3), together with the definition of the evaluation function, which will be
presented later, as the meta-evolutionary game dynamics.

A meta-rule regulating the dynamics of games is introduced as the form of
the evaluation function. Basically, the meta-rule is considered as the function of
the population shares and the payoffs of all strategies, namely, λg = λg(x, ug),
where x = (x1, x2, · · · , xN ) is a vector of population shares called the strategy
profile and ug(x) = (ug

1(x), ug
2(x), · · · , ug

N(x)) is a vector of the payoffs at the
game g.

We can define various evaluation schemes according to the objects to be
modelled. For example, we can evaluate any single stock market based on the
average profit it provides to all who invest in it. In the same way, we can eval-
uate any single game based on the average payoff it provides to all who play
it. In this case, it is defined as λg

A(x, ug) = 〈ug
i (x)〉, where 〈·〉 means the av-

erage over all strategies. In this scheme, a game that gives large payoff to the
players on average raises its weight. Another example is the inverse of variance,
λg

IV(x, ug) = (〈ug
i (x) − 〈ug

i (x)〉〉)−1. This evaluation function represents a situ-



ation in which equality or impartiality acquires importance as in a democratic
society.4

We suppose that the state of a societal rule is characterized by the weighted
average of the component rules. Then, the total game is defined as

G =
M∑

g=1

wgAg , (4)

where Ag (g = 1, · · · , M) stands for the payoff matrices of a component game
g. Note that this matrix is not constant, since each weight wg changes in time
according to Eq. (3). Using the total game G, the population dynamics, namely,
the weighted replicator dynamics, Eq. (2), is reduced to the matrix form,

ẋ = (G(t)x − x · G(t)x)x , (5)

where the operator ‘·’ is the inner product between vectors. This formalization
clearly shows that meta-evolutionary game dynamics is a direct development of
the replicator equation into one with a time-changing interaction matrix.5

3 Model

3.1 Specification of Simulation Model

We specify a particular model of meta-evolutionary game dynamics for 2 × 2
symmetric game matrices and individuals characterized by mixed strategies.6

In this model, the basic equations (2) and (3) were reformalized into difference
equations. In addition, mutation and extinction of both the strategies and the
games were introduced as follows. The values in parentheses were used in the
following simulations described in §4.

Games: All games are 2 × 2 symmetric matrices with elements aij ∈ [−1, 1].
Strategies: We adopt a mixed strategy (s1, s2) for an individual, where s1, s2 ∈

[0, 1], and s1 + s2 = 1. (We use 11 strategies s1 = (0.0, 0.1, · · · , 1.0)).
Mutation of strategies: The ratio µs(= 0.003) of the share of each strategy

is transferred to the other strategies or to a new strategy at every step.
Mutation of games: The ratio µg(= 0.003) of the weight of a randomly se-

lected game is transferred to a new game at every step. Each element of the
new game is shifted by a random number of normal distribution with the
average 1 and the variance 0 from the original game.

4 The payoff matrices of all games should be appropriately normalized or limited for
each evaluation function.

5 The meta-evolutionary game dynamics may be represented as continuous-time infi-
nite dynamic games or differential games [8]. The cost function to be maximized in
that framework, however, is defined as a time integration of payoff at a point in time
or at one-shot game. Furthermore, following the definition in [8], the payoff function
at a point in time does not include payoff values at previous times.

6 In the usual replicator dynamics, an individual is thought to be taking a pure strat-
egy, and the strategy profile can be interpreted as a mixed strategy.



Extinction of strategies: The strategies with the share xi < θs(= 10−7) are
removed.

Extinction of games: The games with the weight wg < θg(= 10−7) are re-
moved.

3.2 Categorization of 2 × 2 Game Matrix

Followings are the normalization and the categorization of game matrices. Since
the replicator dynamics is invariant under a local shift of payoff [6], given a 2×2

payoff matrix A =
(

a b

c d

)
, then we can transform the payoff matrix without loss

of generality to

A′ =
(

a − c 0
0 d − b

)
≡
(

α 0
0 β

)
. (6)

Under this transformation, the set of Nash equilibria is invariant. We use the α-β
space to view the motion of games. The α-β space is divided into four categories
in terms of properties of the set ΘNE of Nash equilibria and the convergence
point x̂ of the replicator dynamics [6]. Let the strategies for 2 × 2 game be
e0 = (1, 0), e1 = (0, 1), and p =

(
β

α+β
α

α+β

)
. Then the four categories are

defined as follows:

Category I For a game with α < 0 and β > 0, ΘNE = {e0} and x̂ = e0.
Category II For α > 0 and β > 0, ΘNE = {e0, p, e1}. If the initial state x0 is

e0 < x0 < p, then x̂ = e0. If p < x0 < e1, then x̂ = e1.
Category III For α < 0 and β < 0, ΘNE = {p} and x̂ = p.
Category IV For α > 0 and β < 0, ΘNE = {e1} and x̂ = e1.

4 Simulation Results of Average-Type Meta-Rule

As a simple example of the meta-rule, we examined the average type meta-rule,

λg
A(x, ug(x)) =

1
N

N∑
i=1

ug
i (x) . (7)

This evaluation function formalizes a meta-rule that selects the rules that gives
the maximum utility to individuals on average.

An example of the time evolution of population share for each strategy is
shown in Fig.1. In this and the following results, only one game whose elements
are all 0.0 exists and four strategies are selected using random numbers with
uniform distribution at the initial state. The distribution of share intermittently
changes in time. Moreover, there occasionally arise the transitions in a dominant
strategy sometimes.



Fig. 1. The time evolution of the
share of strategies for the average-
type meta-rule. The x-axis is the time
step and the y-axis is the share. The
time constant τ = 4.0. All 11 lines
for the strategies are drawn. We can
observe the changes of the distribu-
tion and transitions of the dominant
strategies.

To see the movement of games, we depict in Fig.2 the change of the elements
α and β of the normalized total game. The large changes in the population
share correspond with the large changes in the total game. The drastic change
of distribution of strategies and the change of dominant strategies are caused by
the shift of the total game between or inside the categories. In the α-β plane,
the total game starts from the origin, moves among the categories, and finally
comes back toward the origin.
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Fig. 2. The time evolution of α (up-
per) and β (lower) of the total game.
The x-axis denotes the time step. Cat-
egories I ∼ IV (introduced in §3.2) and
the line dividing them are indicated.

The usual replicator dynamics with
a 2×2 matrix has a stable equilibrium
at one of two pure strategies in each of
the categories I, II, and IV. However,
the actual distribution of the strategies
in meta-evolutionary dynamics does not
converge to these Nash equilibria of
the total game, as shown in Fig.3. For
categories I, II, and IV, this misconver-
gence is induced by the perturbation
caused by strategy mutation. There-
fore, the difference between the actual
distribution and the equilibria is small.

For category III, the mutation also
affects the misconveregence, but it seems
to be more than a perturbation. The

system presumably diverges in a disparate direction from the equilibrium under
the appropriate mutation rate.7 In the ideal (without perturbations) situation,

7 If the mutation rate is too large, the structure of the system is destroyed. Thus
there is no remarkable dynamics as described here, and the difference between the
equilibrium and the actual stationary point is just proportional to the mutation rate.



the distribution of strategies would converge to the Nash equilibrium of the total
game. With perturbations, however, the distribution of strategies converges to a
metastable point, which is different from the equilibrium point. To understand
the mechanism that causes the two points to be different, we should analyse each
game not only the total game.

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

pr
op

or
tio

n

time step

equilibrium
actual dynamics

Fig. 3. The comparison of time
evolutions of the actual dynam-
ics (×, gray) and the equilib-
rium point of the total game (+,
black). The x-axis is the time
step and the y-axis is the pro-
portion of the first pure strat-
egy. The symbol ×’s are for the
actual dynamics,

∑
i xis1, and

+’s are that of the theoretically
calculated equilibrium of the to-
tal game.

5 Discussion

5.1 Evolutionary Stable Game

In meta-evolutionary game dynamics, the weights of games change according
to Eq. (3). If a strategy profile is fixed, the games reach an equilibrium under
the profile. Therefore, the evolutionary stability of games is formalized as the
straightforward extension of the evolutionary stable strategy in evolutionary
game theory [9].

Suppose a strategy profile x. When a game g (possibly the total game) sat-
isfies

λg(x, ug) > λg′
(x, ug′

) (8)

for any g′ under the profile x, the game g is stable under the invasion of any
game. Furthermore, if the strategy profile x is the evolutionary stable strategy,
there is no incentive for both the game and the strategy to change. “Evolutionary
stable strategy” satisfies

x · Ag(εy + (1 − ε)x) > y · Ag(εy + (1 − ε)x) (9)

for sufficiently small ε > 0 and for any strategy profile y, where Ag is the payoff
matrix of the game g. Thus, the system is at an equilibrium with respect to
both the game and the strategy. We call the game g and the strategy profile
x satisfying Eq. (8) and (9) an evolutionary stable game (ESG). The ESG of

the average-type meta-rule under the specifications of §3 is GESG =
(

1 1
1 1

)
.

Therefore, the total game converges to the origin of the α-β space.



We found that, in the simulation of the average-type meta-rule with mutation
and extinction, the meta-evolutionary game dynamics results in a metastable
state distinct from the Nash equilibria. In general, for a system in which ESG is
definable and mutation is introduced, since the strategy profile changes slowly
around Nash equilibria, we infer the existence of a metastable state different
from Nash equilibria.

We have also examined a system with the variance-type meta-rule

λg
V(x, ug(x)) =

1
N

N∑
i=1

(
ug

i (x) − 1
N

N∑
i=1

ug
i (x)

)
. (10)

Since this evaluation function gives a high weighting factor to a game in which
the variance of the payoff of strategies is large, the difference of payoffs between
winners and losers increases and one strategy tends to dominate. In such a
situation, the other strategies decrease their population, and sooner or later
they become extinct. When they disappear, there remains only one strategy.
In such a situation, the variance also disappears and, therefore, the evaluation
of such a game decreases drastically. Accordingly, ESG is not defined for this
meta-rule and the games and the strategies tend to be itinerant.

5.2 Various Systems with Dynamics of Rules

Natural examples in which rules of a system change with time are ubiquitous.
Almost all adaptive systems show dynamics of rules. The brain has a hierarchical
structure, i.e., upper levels regulate lower levels to some extent, the dynamics
at the upper level induce change of the rule of dynamics at the lower level [10].
Cognitive development is a process of rewriting rules for representation [11].
Biological evolution is the transition of functions that determine characteristics
of biological systems [12].

In this paper, we treat social systems such that the behaviour of elements
at the micro or lower level not only is governed by a rule, the macro or upper
level, but also can change the rule. In other words, the system has a dynamic
interaction loop between the two levels. Language is another representative what
having such dynamics. Grammars and lexicons of a language are kinds of rules
that the users of the language have produced and followed. Such rules change
temporally to a greater or lesser extent. Changes are brought about by the
users’ activities, especially writing and speaking the language. Unused, or dead,
languages are indisputably invariable.

It is difficult to treat the dynamics of rules mathematically and generically.
In the theory of dynamical systems, state changes of the system are governed
by fixed functions. The change of functions is beyond the scope of the standard
dynamical systems theory. Recently, some studies in iterated functional systems,
skew product, and functional shift [13], have considered change of functions. To
understand the dynamics of rules, we need to develop a mathematical framework
for modelling the dynamics, as well as describing them empirically.



6 Conclusion

We conclude that the meta-evolutionary game dynamics proposed in the present
paper is useful for studying the dynamic change of rules in which the interaction
loop between individual behaviour and the state of rules matters. The endoge-
nous change of rules cannot be studied effectively by either the game-form view
or the equilibrium view. Such interesting dynamics, intermittent changes of the
distribution of strategies, a continual drastic transition of the dominant strate-
gies, and metastable states different from the Nash equilibria are not seen in the
usual low-dimension replicator dynamics. Further study of meta-evolutionary
game dynamics will contribute to an understanding of rule dynamics from the
viewpoint of game theory. We must clarify foremost how such dynamics occur by
looking closely at the dynamics of both the total game and of component games.
Moreover, applicability of meta-evolutionary game dynamics to the empirical
investigation of the formation of norms and institutions should be pursued.
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