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Abstract. It has been shown that, despite the differences in approach
and interpretation, all belief function based models without the so-called
dynamic component lead essentially to mathematically equivalent theo-
ries – at least in the finite case. In this paper, we first argue that at
the logical level these models seem to share a common formal framework
and various interpretations just come at the epistemic level. We then
introduce a framework for belief modeling formally based on Dempster’s
structure with adopting Smets’ view of the origin of beliefs. It is shown
that the proposed model is more general than previous models, and may
provide a suitable unified framework for belief modeling.

Keywords: Transferable belief model, Uncertainty, Dempster–Shafer theory,
Propagable belief model.

1 Introduction

Dealing with uncertainty is a fundamental and unavoidable issue in AI re-
searches. Undoubtedly, the Bayesian approach is the most widely-used approach
to dealing with uncertainty. Although the Bayesian approach is strongly sup-
ported by relying on well-established techniques from probability theory as well
as some philosophical justification, it has been widely criticized in the literature.
So far numerous other approaches to dealing with uncertainty have been pro-
posed, including Dempster-Shafer theory [2, 22], the transferable belief model
[24, 28], the probability of modal propositions [21], various nonstandard and
fuzzy logics [16, 10, 32], and the context model [7], among others. Of particular
interest to us in this paper is based on the Dempster-Shafer-Smets model3.
? D. Seipel, J.M. Turull Torres (Eds.), Foundations of Information and Knowledge

Systems, LNCS 2942, Springer-Verlag, Berlin Heidelberg, 2004, 196–212.
3 This name is used in [7] to reflect Smets’ “non-probabilistic” view of using belief

functions (including Dempster’s rule of conditioning and Dempster’s rule of combi-
nation) to model someone’s belief.
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From a mathematical point of view, a belief function can be treated as a
mathematical object satisfying a certain set of axioms. Especially, the axioms for
belief functions can be viewed as a weaker form of the Kolmogorov axioms that
characterize probability functions. Under such a view, a number of authors have
tried to characterize a belief function as a generalized probability function [5, 6]
or in terms of probability functions [2, 3, 23]. On the other hand, belief functions
have been also used to model someone’s belief originated back to Shafer [22]. In
belief modeling using belief functions, there are various views, even contrast, of
the origin of beliefs. These have resulted in so many various interpretations of
Dempster-Shafer theory and, at the same time, opened to criticism [29]. This
paper does not aim at being a deal of debate regarding the existing approaches
to belief modeling, also not presenting another interpretation of belief functions.
Our main concern is on belief modeling itself. To this end, we adopt Smets’
view of the origin of beliefs in the transferable belief model, inasmuch as it is
not only based on a well-established axiomatic justification, but also supported
by practical basis when someone intends to model subjective, personal beliefs.
For example, in a medical diagnostic situation, it is easier and realizable for
You, the doctor, to give basic belief masses on subsets of symptoms that may
cause the unknown disease rather than to give (subjective) probabilities on single
symptoms, even though such probabilities may exist4. On the other hand, we are
highly motivated by the fact that the notion of a multivalued mapping may be
a good mathematical tool for representing human beings’ cause-and-effect view
of reality. Thus our approach is based on Dempster’s structure, but according
to Kohlas and Monney’s view of the multivalued mapping [13].

In the next section we will briefly present necessary notions from the Dempster-
Shafer theory of evidence. Some belief function based models are recalled and
analyzed in Section 3. We would like to emphasize that the model introduced
in this paper should not be considered as a formally generalization of previous
models, even though it may be. Thus not all interpretations of belief functions
are analyzed here (see [29] for the details), but only models that we have been
guided by our purpose are mentioned. A full description of the model for beliefs
representation can be found in [22]. Other models can be found in, e.g. [21, 20,
15] for the modal logic based interpretation; [17] for the random set based inter-
pretation; [7, 11] for the context model. In Section 4 we introduce the so-called
propagable belief model, and conditioning as belief revision with certain evidence
versus the one with uncertain evidence will be analyzed via the well-known tree
prisoners problem. Finally, some concluding remarks and further work will be
presented in Section 5.

2 Dempster-Shafer theory of evidence

We recall in this section necessary notions from the Dempster-Shafer theory of
evidence (DS theory, for short). The theory aims at providing a mechanism for
4 Note that this does not exclude the possibility of using correct probabilities whenever

available.
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representing and reasoning with uncertain, imprecise and incomplete informa-
tion. It is based on Dempster’s original work [2] on the modeling of uncertainty
in terms of upper and lower probabilities induced by a multivalued mapping.

A multivalued mapping Γ from space Ω into space Θ associates to each
element ω of Ω a subset Γ (ω) of Θ. The domain of Γ , denoted by Dom(Γ ), is
defined by

Dom(Γ ) = {ω ∈ Ω|Γ (ω) 6= ∅}.
From a multivalued mapping Γ , a probability measure P on Ω can be propagated
to Θ in such a way that for any subset T of Θ the lower and upper bounds of
probabilities of T are defined as

P∗(T ) =
P (Γ∗(T ))

P (Dom(Γ ))
(1)

P ∗(T ) =
P (Γ ∗(T ))

P (Dom(Γ ))
(2)

where
Γ∗(T ) = {ω ∈ Ω|ω ∈ Dom(Γ ) ∧ Γ (ω) ⊆ T},
Γ ∗(T ) = {ω ∈ Ω|Γ (ω) ∩ T 6= ∅}.

Clearly, P∗, P
∗ are well defined only when P (Dom(Γ )) 6= 0.

Remark 1. The equations (1) and (2) can be represented in the terms of condi-
tional probabilities as follows

P∗(T ) = P (Γ∗(T )|Dom(Γ )), P ∗(T ) = P (Γ ∗(T )|Dom(Γ )) (3)

This presentation suggests us the idea of a new interpretation of conditional
beliefs presented in Section 4.

Furthermore, Dempster also observed that, in the case that Θ is finite, these
lower and upper probabilities are completely determined by the quantities

P ({ω ∈ Ω|Γ (ω) = T}), for T ∈ 2Θ.

As such Dempster implicitly gave the prototype of a mass function also called
basic probability assignment. Shafer’s contribution has been to explicitly define
the basic probability assignment and to use it to represent evidence directly. Si-
multaneously, Shafer has reinterpreted Dempster’s lower and upper probabilities
as degrees of belief and plausibility respectively, and abandoned the idea that
they arise as lower and upper bounds over classes of Bayesian probabilities [22].

Formally, the definitions of these measures are given as follows:

1. A function bel : 2Θ → [0, 1] is called a belief measure over Θ if
B1. bel(∅) = 0, bel(Θ) = 1
B2. For any finite family {Ai}n

i=1 in 2Θ,

bel(
n
∪

i=1
Ai) ≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1bel( ∩
i∈I

Ai)
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2. A function pl : 2Θ → [0, 1] is called a plausibility measure if
P1. pl(∅) = 0, pl(Θ) = 1
P2. For any finite family {Ai}n

i=1 in 2Θ,

pl(
n
∩

i=1
Ai) ≤

∑
∅6=I⊆{1,...,n}

(−1)|I|+1pl( ∪
i∈I

Ai)

It should be noted that belief and plausibility measures form a dual pair, namely

pl(A) = 1− bel(A), for any A ∈ 2Θ

In the case of a finite universe S, a function m : 2Θ → [0, 1] is called a basic
probability assignment if m(∅) = 0 and∑

A∈2Θ

m(A) = 1

A subset A ∈ 2Θ with m(A) > 0 is called a focal element of m. The difference
between m(A) and bel(A) is that while m(A) is our belief committed to the
subset A excluding any of its proper subsets, bel(A) is our degree of belief in A
as well as all of its subsets. Consequently, pl(A) represents the degree to which
the evidence fails to refute A. Furthermore, the belief and plausibility measures
are in an one-to-one correspondence with basic probability assignments. Namely,
given a basic probability assignment m, the corresponding belief measure bel and
its dual plausibility measure pl are determined by

bel(A) =
∑

∅6=B⊆A

m(B)

pl(A) =
∑

B∩A 6=∅

m(B)

Conversely, given a belief measure bel, the corresponding basic probability as-
signment m is determined via Möbius inversion as follows

m(A) =
∑
B⊆A

(−1)|A\B|bel(B)

In the next section we will briefly present several various interpretations of
the DS model, namely Kohlas and Monney’s hint model [14], Fagin and Halpern’s
model [5] and Smets’ transferable belief model [28]. In this paper we ourselves
confine the consideration to only the finite structures.

3 Belief function based models

Since Shafer introduced the model in the seminal work “A Mathematical Theory
of Evidence” [22], many interpretations of it have been proposed. According to
Smets [29], any model for belief has at least two components: one static that
describes our state of belief, and the other dynamic that explains how to update
our belief given new pieces of information. It has been clear that by restricting
to the static component, various models for belief, despite the differences in
approach and interpretation, lead essentially to mathematically equivalent forms.
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3.1 The hint model

The hint model proposed by Kohlas [12] and developed further by Kohlas and
Monney [13, 14] begins with Dempster’s original structure (Ω,P, Γ, Θ) where Ω
and Θ are two sets, P is a probability measure on Ω and Γ is a multivalued
mapping from Ω into Θ.

The authors assume a certain question, whose answer is unknown. The set Θ
called the frame of discernment is the set of possible answers to the question. One
and only element of Θ is the correct answer but unknown. Ω is interpreted as the
set of possible interpretations allowed from the light of the available information.
Exactly one of the elements ω ∈ Ω must be the correct interpretation, but
it is unknown which one. Furthermore, the assumption that not all possible
interpretations are equally likely induces the known probability measure P on
Ω. In the simplest case, one can assume that if ω is the correct interpretation,
then the correct answer θ must be within some nonempty subset Γ (ω) of Θ, the
focal set of the interpretation. Alternately, for any possible interpretation ω, the
family S(ω) of the subsets of Θ (considered as propositions) implied by ω can
be considered. S(ω) called a filter is simply the family of supersets of the focal
set Γ (ω) and has the following properties:

(1) H ∈ S(ω) and H ⊆ H ′ imply H ′ ∈ S(ω).
(2) H1,H2 ∈ S(ω) imply H1 ∩H2 ∈ S(ω).
(3) Θ belongs to S(ω), ∅ does not belong to S(ω).

Furthermore, one can also look at the family P(ω) of the propositions which
are possible under ω. That is, a subset H of Θ is considered as possible if H
does have a nonempty intersection with the focal set Γ (ω). The family P(ω) has
the following properties:

(1’) H ∈ P(ω) and H ⊆ H ′ imply H ′ ∈ P(ω).
(2’) H1,H2 ∈ P(ω) imply H1 ∪H2 ∈ P(ω).
(3’) Θ belongs to P(ω), ∅ does not belong to P(ω).

Under such an analysis, the quadruple H = (Ω,P, Γ, Θ) is called a hint.
Now if a proposition H ⊆ Θ is fixed as a hypothesis about the correct answer,

then this hypothesis should be judged in the light of a hint H. That is, one can
look at the subsets of interpretations under which H is implied, u(H), or possible,
v(H)

u(H) = {ω ∈ Ω|H ∈ S(ω)}
v(H) = {ω ∈ Ω|H ∈ P(ω)} (4)

Then the degree of credibility (or support), denoted by sp(H), and the degree of
plausibility, denoted by pl(H) are defined as follows

sp(H) = P (u(H))
pl(H) = P (v(H)) (5)

As such the hint model is based on Dempster’s original approach and in this
model degrees of supports (or equivalently, beliefs) are deduced from a filter-
valued mapping and a probability measure on the space of possible interpreta-
tions.
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Remark 2. (i) In the hint model one may implicitly assume a propositional
language LΘ that is derived from the question of concern and is semantically
interpreted by the Boolean algebra of 2Θ. The filter-valued mapping induced
from Γ plays an important role in forming credibility in the light of a hint.
Thus, at the logical level a hint may be seen as a quadruple (Ω, Γ,Θ,LΘ).

(ii) In our opinion, the assumption “not all possible interpretations are equally
likely” is not always available in general, once it is available it should be
considered as the supplemental information and then the probability measure
P on Ω is added to the hint to quantify degrees of credibility in the light
of the hint. Furthermore, although a probability function is assumed on Ω,
the hint model does not explicitly assume there is a probability function on
Θ as upper and lower probabilities model does. Thus the hint model may
be considered as a logical based interpretation associated with supplemental
probabilistic information of the DS model.

3.2 Fagin and Halpern’s model

In [5] Fagin and Halpern introduced a new probabilistic approach to dealing
with uncertainty by using the standard mathematical notions of inner measure
and outer measure induced by the probability measure [8]. Interestingly, inner
measures induced by probability measures turn out to correspond in a precise
sense to DS belief functions. The model is interpreted as follows.

Let Φ = {p1, . . . , pn} be a finite set of primitive propositions thought of as
corresponding to basic events concerning with the situation we want to reason
about. The set L(Φ) of propositional formulas is the closure of Φ under the
Boolean operations ∧ and ¬. For convenience we assume also that there is a spe-
cial formula true, and we abbreviate ¬true by false. To get mutually exclusive
events, we can consider all the formulas of the form p′1 ∧ . . . p′n called atoms5,
where p′i is either pi or ¬pi. Let At denote the set of atoms over Φ.

In Nilsson’s probabilistic logic [16], a probability distribution is assumed
on At. Then the probabilistic truth value of a formula ϕ can be computed by
using the finite additivity property of the probability measure and the equivalent
representation of the formula ϕ as a disjunction of atoms. This formally forms
a probability space of the form (At, 2At, P )6 called a Nilsson structure. Given
a Nilsson structure N = (At, 2At, P ) and a formula ϕ, let WN (ϕ) denote the
probabilistic truth value (or shortly, weight) of ϕ in N , which is defined to be
P (At(ϕ)), where At(ϕ) is the set of atoms whose disjunction is equivalent to ϕ.

Fagin and Halpern have proposed a more general approach by taking a proba-
bility structure as a quadruple (S,X , P, π), where (S,X , P ) is a probability space,
π associates with each s ∈ S a truth assignment π(s) : Φ → {true, false}. The
equation π(s)(p) = true means that p is true at s. The set S is thought of as
consisting of the possible states of the world. We can associate with each state s

5 The terminology by Fagin and Halpern, also called interpretations in the logic liter-
ature.

6 The notation P is used here instead of µ as in [5] to denote a probability measure.
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in S a unique atom describing the truth values of the primitive propositions in
s. Further, there may be several states associated with the same atom. Using the
usual rules of propositional logic we can easily extend π(s) to a truth assignment
on all formulas.

Given a probability structure M = (S,X , P, π), we now associate with each
formula ϕ the set ϕM = {s ∈ S|π(s)(ϕ) = true} with assuming that trueM = S.
If pM is measurable for every primitive propositions p ∈ Φ then so is ϕM for every
formula ϕ. In that case we say that M is a measurable probability structure. In
general, we can not talk about the probabilistic truth value of a formula ϕ if ϕM

is not measurable. In such a case, Fagin and Halpern proposed to use its inner
measure and outer measure as these are defined for all subsets. Intuitively, the
inner and outer measure provide lower and supper bounds on the probabilistic
truth value of ϕ. Particularly, if ϕM is not measurable, we define WM (ϕ) to be
the inner measure of ϕ in M as follows

WM (ϕ)
def
= P∗(ϕM ) = sup{P (X)|X ⊆ ϕM , X ∈ X}

A proof given in [5] following from a more general result in [23] shows that P∗
is indeed a belief measure. On the basis of the ideas above, the authors also
developed a new notion of conditional belief which plays the same role for DS
belief functions as conditional probability does for probability functions [6, 9].

It is of interest that Fagin and Halpern’s model can be viewed as a special
case of Dempster’s structure at least in the finite case as follows.

If S is a finite set, it is easy to see that X has a basis, i.e. a family B of
nonempty and disjoint subsets of S such that every member of X is a union
of members of B. Furthermore, the basis B forms a partition of S, say B =
{B1, . . . , Bk}. We can now associate with each Bi a so-called situation ti, which
may be thought of as a realization of the possible states in Bi. Let T denote
the set {t1, . . . , tk}. In addition we define a probability distribution PT on T as
PT (ti) = P (Bi), and a multivalued mapping Γ from T into S by Γ (ti) = Bi.
Then it is easy to see that the Dempster structure (T, PT , Γ, S) induces a belief
function that coincides with Fagin and Halpern’s proposal via the inner measure
above.

3.3 Transferable belief model

The transferable belief model (TBM, for short) introduced in [24, 28] provides
a model for the representation of quantified belief. This model is based on the
assumption that beliefs manifest themselves at two mental levels: the credal level
where beliefs are entertained and the pignistic level where beliefs are used to
make decisions (from credo, I believe and pignus, a bet both in Latin). Especially,
the TBM justifies the use of belief functions to model subjective, personal beliefs
even in the cases where every probability concept is absent at the credal level.
Once probabilities are defined everywhere the TBM is reduced to the Bayesian
model [29]. The TBM is briefly described as follows.
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Let L be a finite propositional language, and W = {w1, w2, . . . , wn} be the
set of possible worlds that correspond to the interpretations of L. The set W is
called the frame of discernment. Each proposition in L identifies a subset of W ,
and two propositions are logically equivalent iff they identify the same subset.
Given a partition Π of W , we build the Boolean algebra R of subsets of W
generated from Π. The elements of Π are called the atoms of R, and the pair
(W,R) is called a propositional space.

Now assume that You is an ideal rational agent, and all beliefs entertained
by You at time t about which world is the actual world $ are defined relative to
a given evidential corpus (ECY

t ). By the Basic Assumption, the TBM assume
a basic belief assignment m : R → [0, 1] with∑

A∈R
m(A) = 1, m(∅) = 0.

For A ∈ R, m(A) is a part of Your belief that supports A, i.e. that the actual
world $ is in A, and that, due to the lack of information, does not support any
strict subproposition of A. The difference with probability models here is that
masses can be given to any proposition of R instead of only to atoms of R. In
the TBM, once some further evidence becomes available to You and implies that
B is true, the mass m(A) initially allocated to A is transferred to A ∩ B. This
transfer of belief in the TBM satisfies the so-called Dempster rule of conditioning
and results in mB : R → [0, 1] with

mB(A) =

 c
∑

X⊆B

m(A ∪X) for A ⊆ B,

0 otherwise,

where

c =
1

1−
∑

X⊆B

m(X)

Given a propositional space (W,R) and a basic belief assignment m, the
belief function bel : R → [0, 1] is defined as usual by

bel(A) =
∑

R3X⊆A

m(X).

The triple (W,R, bel) is then called a credibility space.
At this juncture we can see that, given the evidence available on a situation

You want to reason about, the TBM claims the existence of a belief function
that describes Your credal state on the frame of discernment. Suppose now a
decision must be made based on this credal state. As is well known [1] that
decisions will be coherent if the underlying uncertainties can be described by
a probability distribution defined on 2W . Based on the Generalized Insufficient
Reason Principle [28], the pignistic probability distribution derived from bel at
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the pignistic state via the so-called pignistic transformation is defined as follows

BetP (x) =
∑

x⊆A∈R

m(A)
|A|

=
∑
A∈R

m(A)
|x ∩A|
|A|

(6)

where x is an atom in R and |A| is the number of atoms of R in A.

Remark 3. If we denote F(x) the principal filter generated by an atom x in the
Boolean algebra R [19], the pignistic probability distribution BetP derived from
m is represented as

BetP (x) =
∑

A∈F(x)

m(A)
|A|

(7)

This may show a logical relation implicitly behind the TBM and the hint model
even though the primitive concepts of these two models are different. While in the
hint model, the primitive concept is the hint from which degrees of supports are
deduced, the TBM assume the degrees of belief as a primitive concept from which
the pignistic probability function is derived. At the same time, as mentioned in
[28] (page 200), the important concept in a propositional space (W,R) is the
algebra R (so is the partition Π), not the set of worlds W . Formally, similar as
mentioned above in Fagin and Halpern’s model, we can view the TBM in the
terms of Dempster’s structure without, however, reference to any probability
concepts.

For the axiomatic justifications and more details on the TBM as well as its
applications, the reader could be referred to, e.g. [4, 25, 27, 29–31].

4 The propagable belief model

In this section we introduce a model called propagable belief model (PBM, for
short) that aims at presenting a new approach to modeling subjective, personal
beliefs in the spirit of the TBM. Essentially, our model is based on Dempster’s
structure, except the assumption of a underlying probability distribution is not
assumed. Instead of this we adopt the basic assumption as in the TBM.

4.1 The model

The PBM concerns the same concepts as considered by previous models that are
specified as follows.

Let W = {w1, w2, . . . , wn} be the set of possible states of the world concern-
ing a situation we want to reason about. We call W the frame of discernment
and may think of elements of W as interpretations of a underlying propositional
language, or possible answers to a given question, or the like. Practically, due to
the complexity of the reasoning situation and/or lack of information, the infor-
mation on W may be encoded into a nonempty finite set of possible observations
O. Each observation Ob in O can cover several possible states of the world, a
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subset Γ (Ob) of W . In addition, we assume that all the available information
allow us to allocate belief masses to subsets of the set of possible observations.
For O ∈ 2O, mO(O) is the belief degree that supports that the true state of the
world $ is covered in the set of observations O. That is, due to lack of informa-
tion, in some cases a belief mass is only assigned in a combined view of several
observations but not any strict subset of these observations. For the discussion
on the origin of the basic belief masses, we could be referred to [28].

Example 1. Assume You, the detective, are dealing with a case of murder. You
may determine a basic evidential structure consisting of W as the set of suspects
who had potential to be the killer,O as the set of observed evidence in which each
observed evidence supposes several suspects to be the killer, and mO : 2O → [0, 1]
as the basic belief assignment, where mO(O), for O ∈ 2O, quantifies Your belief
degree supporting that observed evidence in O constitute the murder.

Example 2. In a medical diagnostic situation, You, the doctor, may determine a
basic evidential structure for diagnosis consisting of W as the set of possible dis-
eases which the present patient may get, O as the set of observed symptoms from
the patient in which, according to Your experience, each symptom may occur
in several diseases, and mO : 2O → [0, 1] as the basic belief assignment, where
mO(O), for O ∈ 2O, quantifies Your belief degree supporting that symptoms in
O causes the unknown disease.

Formally, we define a basic evidential structure as a quadruple (O,mO,W, Γ ),
where O is the finite set of possible observations, mO is an initially basic belief
assignment on 2O, W is the frame of discernment, and Γ is a multivalued map-
ping from O into W that associates to each element Ob in O a subset Γ (Ob) of
W . For any O ∈ 2Dom(Γ ) we call the set Γ (O) to be observable in W , and if A is
observable we denote

Γ−1(A) = {Ob ∈ Dom(Γ )| ∪ Γ (Ob) = A}.

An observation Ob ∈ O is said to be irrelevant (resp., relevant) if Γ (Ob) = ∅
(resp., Γ (Ob) 6= ∅). Naturally, we do not consider any irrelevant observations in
the basic evidential structure, i.e. that we assume as an assumption that every
observations in the basic evidential structure is relevant. However, irrelevant
observations may occur once the conditioning information from a new piece of
evidence becomes available. The set of observations O is said to be complete in
the basic evidential structure if ⋃

Ob∈O

Γ (Ob) = W,

and mutually exclusive if Γ (Ob)∩Γ (Ob′) = ∅ for any Ob,Ob′ ∈ O and Ob 6= Ob′.
Intuitively, the set of observations O is incomplete when the available observa-
tions do not cover completely the situation, and the true state of the world may
be in W \ Γ (O). Consequently, a positive belief mass may be assigned to ∅,
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i.e. mO(∅) > 0 that corresponds to the so-called open world assumption. Here-
after we accept the closed world assumption, namely mO(∅) = 0.

Given a basic evidential structure (O,mO,W, Γ ), as our main concern is on
W , the initially basic belief assignment mO should be propagated to W in a
natural way similar to the case of Dempster’s approach. For any A ∈ 2W , the
set Γ∗(A) = {Ob ∈ O|Γ (Ob) ⊆ A}7 consists of all observations that, according
to available evidence, support (imply) the proposition “$ is in A”, and the set
Γ ∗(A) = {Ob ∈ O|Γ (Ob) ∩ A 6= ∅} consists of all observations in which the
proposition is possible. It is clearly that any nonempty subsets of Γ∗(A) also
support the proposition, whilst any subsets of O having a nonempty intersec-
tion with Γ ∗(A) cause the proposition possible. Thus we can define the degree
of support and the degree of plausibility for A, denoted by Sp(A) and Pl(A),
respectively, as follows

Sp(A) = belO(Γ∗(A)) (8)

Pl(A) = plO(Γ ∗(A)) (9)

where belO and plO respectively are the belief function and the plausibility func-
tion defined on 2O from mO.

Remark 4. – When the belief is probabilistic ([28], page 222), a basic eviden-
tial structure becomes a Dempster’s structure. More especially, the ideal
situation where O is finest, i.e. each observation covers exactly one possible
state of the world, induces a probability model.

– If the set of observations O in the structure (O,mO,W, Γ ) is complete and
mutually exclusive, the model is reduced to the TBM as shown below.

– If the set of observations O is complete and mutually exclusive and belO
is a probability function, then observable subsets in W become measurable
events and the PBM without the dynamic component is equivalent to Fagin
and Halpern’s inner and outer measures model.

Interestingly enough, we have the following theorem.

Theorem 1. Let (O,mO,W, Γ ) be a basic evidential structure. Then we have
Sp : 2W → [0, 1] with Sp(A) = belO(Γ∗(A)) is a belief function.

Proof. Clearly Sp satisfies B1, i.e. Sp(∅) = 0 and Sp(W ) = 1, so it suffices to
show that it satisfies B2. Given subsets A1, A2, . . . , An ∈ 2W , we now show that

Sp(
n
∪

i=1
Ai) ≥

∑
∅6=I⊆{1,...,n}

(−1)|I|+1Sp( ∩
i∈I

Ai).

Indeed, by definition we have

Γ∗(
n
∪

i=1
Ai) ⊇

n
∪

i=1
Γ∗(Ai)

7 Note that, by assumption, Dom(Γ ) = O.
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and, for any ∅ 6= I ⊆ {1, . . . , n},

Γ∗( ∩
i∈I

Ai) = ∩
i∈I

Γ∗(Ai).

These follow that

Sp(
n
∪

i=1
Ai) = belO(Γ∗(

n
∪

i=1
Ai)) ≥ belO(

n
∪

i=1
Γ∗(Ai))

≥
∑

∅6=I⊆{1,...,n}
(−1)|I|+1belO( ∩

i∈I
Γ∗(Ai))

=
∑

∅6=I⊆{1,...,n}
(−1)|I|+1belO(Γ∗( ∩

i∈I
Ai))

=
∑

∅6=I⊆{1,...,n}
(−1)|I|+1Sp( ∩

i∈I
Ai)

This proves the theorem.

Note that Sp and Pl also form a dual pair, i.e. Sp(A) = 1 − Pl(A) for any
A ∈ 2W . Thus Pl is a plausibility function.

The duality shows an one-to-one correspondence between these two functions.
The plausibility function is just another way of presenting the same information
as the support function doing and so could be forgotten.

4.2 Conditioning as belief revision

Now assume that some further evidence becomes available and implies that
B ∈ 2W is surely true. In the PBM, an observation Ob in O such that Γ (Ob) ∩
B = ∅ becomes irrelevant in the light of new evidence. More particularly, the
conditioning on B means that the mapping Γ : O → 2W has been transformed
into the mapping ΓB : O → 2W with ΓB(Ob) = Γ (Ob) ∩ B8. As B is surely
true in the light of new evidence, Your evidential corpus (ECY

t ) must be revised
according to B. Thus the new evidence should be propagated back to 2O and
results in, following Smets’ proposal, the mass mO(O) initially allocated to O is
then transferred to O ∩ Γ ∗(B). Clearly, Γ ∗(B) = Dom(ΓB). The initially basic
belief assignment mO is transformed into mO(·|Γ ∗(B)) : 2O → [0, 1] with

mO(O|Γ ∗(B)) =

 c
∑

X⊆Γ∗(B)

mO(O ∪X) for O ⊆ Γ ∗(B),

0 otherwise,
(10)

where
c =

1
1−

∑
X⊆Γ∗(B)

mO(X)
.

The rule of conditioning is expressed in terms of the belief function belO as
follows

belO(O|Γ ∗(B)) =
belO(O ∪ Γ ∗(B))− belO(Γ ∗(B))

1− belO(Γ ∗(B))
8 This goes back to Dempster [2].
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On the other hand, the conditioning on B with respect to Sp yields, according
to Dempster’s rule of conditioning, the following

Sp(A|B) =
Sp(A ∪B)− Sp(B)

1− Sp(B)
(11)

The following theorem shows that the propagation of conditioning is consistent
with the transfer of beliefs. Hence the name PBM.

Theorem 2. Let (O,mO,W, Γ ) be a basic evidential structure. Then the rule
of conditioning as belief revision above is consistent with the transfer of beliefs.

Proof. Given (O,mO,W, Γ ) and a new piece of evidence that implies B is surely
true. Then by the rule of conditioning as belief revision we have

SpB(A) = belO(ΓB∗(A)|Γ ∗(B))

= belO(ΓB∗(A)∪Γ∗(B))−belO(Γ∗(B))

1−belO(Γ∗(B))

(12)

On the other hand, it follows by definition that

Sp(B) = belO(Γ∗(B))
= belO(Γ ∗(B))

(13)

Furthermore, it is easy to check the following holds

Γ∗(A ∪B) = ΓB∗(A) ∪ Γ ∗(B)

That immediately implies

Sp(A ∪B) = belO(ΓB∗(A) ∪ Γ ∗(B)) (14)

The equations (13) and (14) imply that SpB(A) = Sp(A|B) (review (11) and
(12)). In terms of basic belief assignments, we obtain the following schema

mO
propagation−−−−−−−→ m(Sp) transfer−−−−−→ mB(SpB)

↓ transfer ‖

mO(·|Γ ∗(B))
propagation−−−−−−−−−−−−→ m(·|B)(Sp(·|B))

This concludes the proof.

Remark 5. The PBM is reduced to the TBM when once the set of observations O
in a basic evidential structure (O,mO,W, Γ ) is complete and mutually exclusive.
Indeed, since O is complete and mutually exclusive, i.e. {Γ (Ob)|Ob ∈ O} forms a
partition of W , hence the set of observable subsets in W forms a Boolean algebras
that is isomorphic to 2O. Thus, it is legitimate to define m : 2W −→ [0, 1] as
follows

m(A) =
{

mO(Γ−1(A)) if A is observable,
0 otherwise.

Note that if A is observable then Γ−1(A) = Γ ∗(A) = Γ∗(A). Consequently,
(W,R, Sp) is a credibility space in the sense of Smets and Kennes [28], where R
is the Boolean algebra of the observable subsets of W generated by Γ (O).
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Remark 6. In the case where focal elements of mO are exactly singletons, i.e. that
belO is a probability function, a basic evidential structure becomes a Dempster’s
structure. Then Dempster considered that the conditioning on B ⊆ W means
the transformation of Γ into ΓB , and also postulated that the knowledge of
the conditioning event B does not modify belO. This opened to criticism [29].
Surprisingly, whilst Dempster defined the lower probability of an event A in W
as the conditional probability of Γ∗(A) given the set of only relevant observa-
tions Dom(Γ ) in O (review (3)), he did not take the idea into account once the
conditioning information becomes available.

4.3 Refinements and the three prisoners problem

Let us consider two basic evidential structures BE1 = (O1,mO1 ,W, Γ1) and
BE = (O,mO,W, Γ ) on the same frame of discernment W . We call BE1 is a
refinement of BE if there is a surjection f : O1 → O such that Γ = Γ1 ◦f−1 and
belO(O) = belO1(f

−1(O)), for any O ∈ 2O. An illustrated example is depicted
as below.

We would like to close this section by analyzing the well-known three prison-
ers problem, that is one of the most quoted examples concerning the applicability
of Dempster’s rule of conditioning, e.g. [18, 7]. The problem is stated as follows9.

Let a, b and c be three prisoners. Two of the prisoners are chosen by
the warden to be executed but a does not know which. He therefore says
to the jailer: “Since either b or c is certainly going to be executed, you will
give me no information about my own chances if you give me the name
of one man, either b or c, who is going to be executed.” Accepting this
argument, the jailer truthfully replies: “b will be executed.” Thereupon a
feels happier because before the jailer replied, his own chance of execution
was two-thirds, but afterwards there are only two people, himself and
c, who could be the one not executed, and so his chance of execution is
one-half.

Is the prisoner a justified in believing that his chance of escaping has improved?
Before analyzing the problem in terms of a basic evidential structure. We

note that, as discussed in [6], in order for a to believe that his own chance
of execution was two-thirds before the jailer replied, he seems to be implicitly
assuming that the one to get pardoned is chosen at random from among a, b
and c. This assumption means that each prisoner would be randomly selected
with probability 1

3 to be pardoned. Further, following [6] we model a possible
state by a pair (x, y), where x, y ∈ {a, b, c}, that represents a state where x is
pardoned and the jailer replies that y will be executed to a’s question. Since the
jailer answers truthfully and will never tell a directly that a will be executed,
we have the set of possible states is W = {(a, b), (a, c), (b, c), (c, b)}.

9 This description of the story is taken from [6] and our discussion is based on that of
Fagin and Halpern [6] and Smets [26]
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We now construct a basic evidential structure for a before getting the answer
from the jailer as BE = (O,mO,W, Γ ), where O = {Oba, Obb, Obc} with Obx

corresponds to “x is pardoned”, mO(Obx) = 1
3 , for every x ∈ {a, b, c}, and

Γ (Oba) = {(a, b), (a, c)}, Γ (Obb) = {(b, c)}, Γ (Obc) = {(c, b)}. Let us denote
says-b the event {(a, b), (c, b)} corresponding to the jailer’s answer. Then two
situations could be arisen when the jailer gave the answer to a’s question [26].

Context 1. a has learnt that the jailer’s answer is surely true (e.g., the jailer saw
the result of the selection from the judge), i.e. that says-b is surely true. Then a
should revise his belief by conditioning on says-b from BE, that results in

Spsays-b({(a, b), (a, c)}) =
1
2
.

Hence he feels happier realistically.

Context 2. a has learnt that the jailer chooses at random between saying b
and c if a is pardoned. This is because the jailer would like to satisfy the pris-
oner a while making sure that the answer does not change a’s belief about
his chance of saving. Then a has been just updated a piece of uncertain in-
formation that “the probability that jailer chooses at saying b will be exe-
cuted is 1

2”. This uncertain information helps a just refining his basic evi-
dential structure, say BE′ = (O′,mO′ ,W, Γ ′), that is a refinement of BE,
where O′ = {Obab, Obac, Obb, Obc} with Obax corresponds to “a is pardoned
and the jailer says x”, mO′(Obax) = 1

6 , mO′(Obx) = 1
3 for x ∈ {b, c}, and

Γ ′(Obab) = {(a, b)}, Γ ′(Obac) = {(a, c)}, Γ ′(Obb) = {(b, c)}, Γ ′(Obc) = {(c, b)}.
This yields a probability model, and then one gets

Spsays-b({(a, b), (a, c)}) =
Sp({(a, b)})

Sp({(a, b), (c, b)})
=

1
6
1
2

=
1
3
.

5 Conclusions

In this paper we have proposed a new approach to belief modeling based on
Smets’ view of the origin of beliefs and the notion of a multivalued mapping.
Interestingly enough, the model also induces a belief function that quantifies
our degrees of support in subsets of the frame of discernment given a basic
evidential structure. Furthermore, it has been shown that the propagation of
conditioning in the model is consistent with the transfer of beliefs. As we have
mentioned in Remarks 4–5, the approach proposed in this paper has provided a
generalization of a number of existing models. This may allow us to understand
their commonalities and differences, and to facilitate the formal comparison of
these models. We do hope that this will also support a better understanding of
existing models of beliefs and serve as a bridge of the gap between well-known
approaches. More details on the model as well as the problem on the combination
of evidence in the model will be presented in a forthcoming paper.
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