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Abstract. Arguing that various ways of using context in word sense dis-
ambiguation (WSD) can be considered as distinct representations of a
polysemous word, a theoretical framework for the weighted combination
of soft decisions generated by experts employing these distinct repre-
sentations is proposed in this paper. Essentially, this approach is based
on the Dempster-Shafer theory of evidence. By taking the confidence
of individual classifiers into account, a general rule of weighted combi-
nation for classifiers is formulated, and then two particular combination
schemes are derived. These proposed strategies are experimentally tested
on the datasets for four polysemous words, namely interest, line, serve,
and hard, and obtained the better result in comparison with previous
studies for all cases, with an exception of the word line.

Keywords: Computational linguistics, Weighted combination of classifiers, Word
sense disambiguation, Dempster-Shafer theory of evidence.

1 Introduction

Word sense disambiguation is a computational linguistics task recognized since
the 1950s. Roughly speaking, word sense disambiguation involves the association
of a given word in a text or discourse with a particular sense among numerous
potential senses of that word. As mentioned in [5], this is an “intermediate task”
necessarily to accomplish most natural language processing tasks. It is obviously
essential for language understanding applications, while also at least helpful
for other applications whose aim is not language understanding such as ma-
chine translation, information retrieval, among others. Since its inception, many
methods involving WSD have been developed in the literature (see, e.g., [5] for
a survey). During the last decade, many supervised machine learning algorithms
have been used for this task, including Näıve Bayesian (NB) model, decision
trees, exemplar-based model, support vector machine, maximum entropy, etc.
As observed in studies of machine learning systems, although one could choose
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one of learning systems available to achieve the best performance for a given
pattern recognition problem, the set of patterns misclassified by the different
classification systems would not necessarily overlap. This means that different
classifiers may potentially offer complementary information about the patterns
to be classified. This observation highly motivated the interest in combining
classifiers during the recent years. Especially, classifier combination for WSD
has been unsurprisingly received much attention recently from the community
as well, e.g., [6, 4, 13, 8, 3, 16].

As is well-known, there are basically two classifier combination scenarios. In
the first scenario, all classifiers use the same representation of the input pattern.
In the context of WSD, the work by Kilgarriff and Rosenxweig [6], Klein et
al. [8], and Florian and Yarowsky [3] could be grouped into this first scenario.
In the second scenario, each classifier uses its own representation of the input
pattern. An important application of combining classifiers in this scenario is the
possibility to integrate physically different types of features. In this sense, the
work by Pedersen [13] can be considered as belonging to this scenario, although
the difference of representations here is only in terms of size of context windows.
Also, Wang and Matsumoto [16] used similar sets of features as in Pedersen [13],
but proposed a new strategy of voting based on kNN method.

An important issue in combining classifiers is the combination strategy used
to derive a consensus decision. In this paper, we focus on the weighted combina-
tion of classifiers for WSD in the second scenario mentioned above. Particularly,
we first consider various ways of using context in WSD as distinct representations
of a polysemous word under consideration, then all these representations are used
as providing individual information sources to identify the meaning of the target
word. We then develop a general framework for the weighted combination of
individual classifiers corresponding to distinct representations. Essentially, this
approach is based on Dempster-Shafer (DS) theory of evidence [14], which has
been recently increasingly applied to classification problems, e.g. [2, 17]. More-
over, two combination strategies are developed and experimentally tested on the
datasets for four polysemous words, namely interest, line, serve, and hard, and
compared with previous studies.

The paper is organized as follows. In the next section, basic notions of DS
theory will be briefly recalled. Section 3 necessarily reformulate the WSD prob-
lem so that the general framework for the weighted combination of classifiers
can be formulated, and the two combination strategies can be developed. In Sec-
tion 3, we describe a multi-representation scheme for context in WSD problem.
Section 4 first proposes an effective computation of necessary probabilities, and
then presents experimented results and some comparison with previous known
results on the same test datasets. Finally, some conclusions are presented in
Section 5.
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2 Dempster-Shafer Theory of Evidence

In DS theory, a problem domain is represented by a finite set Θ of mutually
exclusive and exhaustive hypotheses, called frame of discernment [14]. In the
standard probability framework, all elements in Θ are assigned a probability.
And when the degree of support for an event is known, the remainder of the
support is automatically assigned to the negation of the event. On the other
hand, in DS theory mass assignments are carried out for events as they know, and
committing support for an event does not necessarily imply that the remaining
support is committed to its negation. Formally, a basic probability assignment
(BPA, for short) is a function m : 2Θ → [0, 1] verifying

m(∅) = 0, and
∑

A∈2Θ

m(A) = 1

The quantity m(A) can be interpreted as a measure of the belief that is commit-
ted exactly to A, given the available evidence. A subset A ∈ 2Θ with m(A) > 0
is called a focal element of m. A BPA m is called to be vacuous if m(Θ) = 1 and
m(A) = 0 for all A 6= Θ.

Two evidential functions derived from the basic probability assignment m
are the belief function Belm and the plausibility function Plm, defined as

Belm(A) =
∑

∅6=B⊆A

m(B), and Plm(A) =
∑

B∩A 6=∅
m(B)

The difference between m(A) and Belm(A) is that while m(A) is our belief
committed to the subset A excluding any of its proper subsets, Belm(A) is
our degree of belief in A as well as all of its subsets. Consequently, Plm(A)
represents the degree to which the evidence fails to refute A. Note that all the
three functions are in an one-to-one correspondence with each other.

Two useful operations that play a central role in the manipulation of belief
functions are discounting and Dempster’s rule of combination [14]. The discount-
ing operation is used when a source of information provides a BPA m, but one
knows that this source has probability α of reliable. Then one may adopt (1−α)
as one’s discount rate, which results in a new BPA mα defined by

mα(A) = αm(A), for any A ⊂ Θ (1)
mα(Θ) = (1− α) + αm(Θ) (2)

Consider now two pieces of evidence on the same frame Θ represented by two
BPAs m1 and m2. Dempster’s rule of combination is then used to generate a
new BPA, denoted by (m1⊕m2) (also called the orthogonal sum of m1 and m2),
defined as follows

(m1 ⊕m2)(∅) = 0,
(m1 ⊕m2)(A) = 1

1−κ

∑
B∩C=A

m1(B)m2(C) (3)
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where
κ =

∑

B∩C=∅
m1(B)m2(C) (4)

Note that the orthogonal sum combination is only applicable to such two BPAs
that verify the condition κ < 1.

It is worth noting that Dempster rule of combination has some attractive
features such as: it is commutative and associative; given two BPAs m1 and m2,
if m1 is vacuous then m1 ⊕m2 = m2.

3 Weighted Combination of Classifiers for WSD

In this section, after reformulating the WSD problem in terms of a pattern recog-
nition problem with multi-representation of patterns. The general framework for
weighted combination of classifiers is developed for WSD problem and then, two
particular combination schemes are explored.

3.1 WSD with Multi-Representation of Context

As is well-known, in WSD problem, context plays an essentially important role
to identify the meaning of a polysemous work. Given an polysemous word w,
which may have M possible senses (classes): c1, c2,. . . , cM , in a context C, the
task is to determine the most appropriate sense of w.

Generally, context C can be used in two ways [5]: in the bag-of-words ap-
proach, the context is considered as words in some window surrounding the
target word w; in the relational information based approach, the context is con-
sidered in terms of some relation to the target such as distance from the target,
syntactic relations, selectional preferences, phrasal collocation, semantic cate-
gories, etc. As such, for a target word w, we may have different representations
of context C corresponding to different views of context. Assume we have such
R representations of C, say f1, . . . , fR, serving for the aim of identifying the right
sense of the target w. Clearly, each fi can be also considered as a semantical rep-
resentation of w. Each representation fi of context has its own type depending
on which way context is used (for the detail, see Section 4). In the sequent, we
can use a set of features and a representation interchangeably without danger of
confusion.

Now let us assume that we have R classifiers, each representing the context
by a distinct set of features. The set of features fi, which is considered as a
representation of context C of the target w, is used by the i-th classifier. Due to
the interpretation of fi’s and the role of context in WSD, quite naturally, we shall
assume that the individual models corresponding to different representations of
context are independent. Furthermore, assume that each i-th classifier (expert)
is associated with a weight αi, 0 ≤ αi ≤ 1, reflecting the relative confidence in
it, which may be interpreted as reliable probability of the i-th classifier in its
prediction.
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As such representations fi’s (i = 1, . . . , R) are considered as distinct infor-
mation sources associated with corresponding weights serving for identifying the
sense of the target w. The problem now is how to combine these information
sources to reach a consensus decision for identifying the sense of w.

3.2 A General Framework

Given a target word w in a context C and S = {c1, c2, . . . , cM} is the set of its
possible senses. Using the vocabulary of DS theory, S can be called the frame
of discernment of the problem. As mentioned above, various ways of using the
context could be considered as providing different information sources to identify
the meaning of the target word. Each of these information sources does not by
itself provide 100% certainty as a whole piece of evidence for identifying the
sense of the target. Formally, we have the available information for making the
final decision on the sense of w given as follows

– R probability distributions P (·|fi) (i = 1, . . . , R) on S,
– the weights αi of the individual information sources (i = 1, . . . , R)3.

From the probabilistic point of view, we may straightforwardly think of the
combiner as a weighted mixture of individual classifiers defined as

P (ck) =
1∑
i αi

R∑

i=1

αiP (ck|fi), for k = 1, . . . , M (5)

Then the target word w should be naturally assigned to the sense cj according
to the following decision rule

j = arg max
k

P (ck) (6)

However, by considering the problem as that of weighted combination of
evidence for decision making, in the following we will formulate a general rule
of combination based on DS theory. To this end, we first adopt a probabilistic
interpretation of weights. That is, the weight αi (i = 1, . . . , R) is interpreted
as reliable probability of the i-th classifier. This interpretation of weights seems
to be especially appropriate when defining weights in terms of the accuracy of
individual classifiers.

Under such an interpretation of weights, the piece of evidence represented
by P (·|fi) should be discounted at a discount rate of (1− αi). This results in a
BPA mi verifying

mi({ck}) = αiP (ck|fi) , pi,k, for k = 1, . . . , M (7)

mi(S) = 1− αi , pi,S (8)
mi(A) = 0, ∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (9)

3 Note that the constraint
P

i αi = 1 does not need to be imposed.
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That is, the discount rate of (1 − αi) can not be distributed to anything else
than S, the whole frame of discernment.

We are now ready to formulate our belief on the decision problem by ag-
gregating all pieces of evidence represented by mi’s in the general form of the
following

m =
R⊕

i=1

mi (10)

where m is a BPA and ⊕ is a combination operator in general.
As such, by applying different combination operations for ⊕, we may have

different aggregation schemes for obtaining the BPA m which modelled our belief
for making the decision on the sense of w. Therefore, we must also deal with
the problem of how to make a decision based on m. As m does not in general
provide a unique probability distribution on S, but only a set of compatible
probabilities bounded by the belief function Belm and the plausibility function
Plm. Consequently, individual classes in S can no longer be ranked according
to their probability. Fortunately, based on the Generalized Insufficient Reason
Principle, we may define a probability function Pm on S derived from m for the
purpose of decision making via the pignistic transformation [15]. That is, as in the
two-level language of the so-called transferable belief model [15], the aggregated
BPA m itself represented the belief is entertained based on the available evidence
at the credal level, and when a decision must be made, the belief at the credal
level induces the probability function Pm for decision making.

3.3 The Discounting-and-Orthogonal Sum Combination Strategy

As discussed above, we consider each P (·|fi) as the belief quantified from the
information source fi and the weight αi as a “degree of trust” of fi supporting
the identification for the sense of w as a whole. As mentioned in [14], an obvious
way to use discounting with Dempster’s rule of combination is to discount all
BPAs P (·|fi) (i = 1, . . . , R) at corresponding rates (1−αi) (i = 1, . . . , R) before
combining them.

Thus, Dempster’s rule of combination now allows us to combine BPAs mi

(i = 1, . . . , R) under the independent assumption of information sources for
generating the BPA m, i.e. ⊕ in (10) is the orthogonal sum operation.

Note that, by definition, focal elements of each mi are either singleton sets or
the whole set S. It is easy to see that m also verifies this property if applicable.
Interestingly, the commutative and associative properties of the orthogonal sum
operation with respect to a combinable collection of BPAs mi (i = 1, . . . ,M)
and the mentioned property essentially form the basis for developing a recursive
algorithm for calculation of the BPA m. This can be done as follows.

Let I(i) = {1, . . . , i} be the subset consisting of first i indexes of the set
{1, . . . , R}. Assume that mI(i) is the result of combining the first i BPAs mj , for
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j = 1, . . . , i. Let us denote

pI(i),k , mI(i)({ck}), for k = 1, . . . , M (11)

pI(i),S , mI(i)(S) (12)

With these notations and (7)–(8), the key step in the combination algorithm
is to inductively calculate pI(i+1),k (k = 1, . . . ,M) and pI(i+1),S as follows

pI(i+1),k =
1

κI(i+1)
[pI(i),kpi+1,k + pI(i),kpi+1,S + pI(i),Spi+1,k] (13)

pI(i+1),S =
1

κI(i+1)
(pI(i),Spi+1,S) (14)

for k = 1, . . . ,M, i = 1, . . . , R− 1, and κI(i+1) is a normalizing factor defined by

κI(i+1) =


1−

M∑

j=1

M∑

k=1
k 6=j

pI(i),jpi+1,k


 (15)

Finally, we obtain m as mI(R). For the purpose of decision making, we now
define a probability function Pm on S derived from m via the pignistic transfor-
mation as follows

Pm(ck) = m({ck}) +
1
M

m(S) for k = 1, . . . ,M (16)

and we have the following decision rule:

j = arg max
k

Pm(ck) (17)

It would be interesting to note that an issue may arise with the orthogonal
sum operation, that is the use of the total probability mass κ associated with
conflict as defined in the normalization factor. Consequently, applying it in an
aggregation process may yield counterintuitive results in the face of significant
conflict in certain situations as pointed out in [18]. Fortunately, in the context of
the weighted combination of classifiers, by discounting all P (·|fi (i = 1, . . . , R) at
corresponding rates (1− αi) (i = 1, . . . , R), we actually reduce conflict between
the individual classifiers before combining them.

3.4 The Discounting-and-Averaging Combination Strategy

In this strategy, instead of using Dempster’s rule of combination after discounting
P (·|fi) at the discount rate of (1 − αi), we apply the averaging operation over
BPAs mi (i = 1, . . . , R) to obtain the BPA m defined by

m(A) =
1
R

R∑

i=1

mi(A) (18)
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for any A ∈ 2S . By definition, we get

m({ck}) =
1
R

R∑

i=1

αiP (ck|fi), for k = 1, . . . , M (19)

m(S) = 1−
∑R

i=1 αi

R
, 1− α (20)

m(A) = 0, ∀A ∈ 2S \ {S, {c1}, . . . , {cM}} (21)

Note that the probability mass unassigned to individual classes but the whole
frame of discernment S, m(S), is the average of discount rates. Therefore, if
instead of allocating the average discount rate (1−α) to m(S) as above, we use
it as a normalization factor and easily obtain

m({ck}) =
1∑
i αi

R∑

i=1

αiP (ck|fi), for k = 1, . . . , M (22)

m(A) = 0, ∀A ∈ 2S \ {{c1}, . . . , {cM}} (23)

which interestingly turns out to be the weighted mixture of individual classifiers
as defined in (5). Then we have the decision rule (6).

It should be worth noting that since the average discount rate (1 − α) is a
constant, the decision rule based on the weighted mixture of individual classifiers
is the same as that based on the probability function Pm with m is defined by
(19)–(21) via the pignistic transformation.

In the following we will experimentally test the proposed combination strate-
gies on the datasets for four polysemous words, namely interest, line, serve, and
hard, and also compare the experimental results with previous studies.

4 Representations of Context for WSD

As mentioned previously, context plays an essentially important role in WSD,
therefore, the representation choice of context is a factor which may be more
important than the algorithm used for the task itself on the aspect of affecting the
obtained result. For predicting senses of a word, information usually used in all
studies is the topic context which is represented by bag of words. In [12], Ng and
Lee proposed a use of more linguistic knowledge resources, which then became
popular resources for determining word sense in many papers. The knowledge
resources used in their paper included topic context, collocation of words, and a
syntactic relationship verb-object. In [10], the authors use another information
type, which is words or part-of-speech and each is assigned with its position
in relation with the target word. However, in the second scenario of classifier
combination, according to our knowledge, only topic context with different sizes
of context windows is used for creating different representations of a polysemous
word, such as in Pedersen [13] and Wang and Matsumoto [16].
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It is worth to emphasize that, two of the most important kinds of information
for determining the sense of a polysemous word are the topic of the context and
relational information representing the structural relations between the target
word and the surrounding words in a local context. A bag of unordered words in
the context can determine the topic of the context and collocation can determine
grammatical information. Ordered words in a local context are also an important
resource for relational information. We did not use syntactical relations such as
verb-object, which are used by Ng and Lee in [12], because this information can
be found in collocation features and a syntactic parser does not always output
a correct result. In this work we use five kinds representations corresponding to
five classifiers each represents a set of features as proposed in Le and Shimazu [9],
as following:

– f1 is a set of unordered words in the large context, namely

f1 = {w−n1 , . . . , w−2, w−1, w1, w2, . . . , wn1}

– f2 is a set of words assigned with their positions in the local context, namely

f2 = {(w−n2 ,−n2), . . . , (w−2,−2), (w−1,−1), (w1, 1), (w2, 2), . . . , (wn2 , n2)}

– f3 is a set of part-of-speech tags assigned with their positions in the local
context, namely

f3 = {(p−n3 ,−n3), . . . , (p−2,−2), (p−1,−1), (p1, 1), (p2, 2), . . . , (pn3 , n3)}

– f4 is a set of collocations of words, namely

f4 = {w−l · · ·w−1ww1 · · ·wr|l + r ≤ n4}

– f5 is a set of collocations of part-of-speech tags, namely

f5 = {p−l · · · p−1wp1 · · · pr| l + r ≤ n5}

Where wi is the word at position i in the context of the ambiguous word w
and pi be the part-of-speech tag of wi, with the convention that the target word
w appears precisely at position 0 and i will be negative (positive) if wi appears
on the left (right) of w.

In the experiment, we design the window size of topic context (for both
left and right windows) as 50 for the representation f1, i.e. n1 = 50, while the
window size of local context as 3 for remaining representations, i.e. ni = 3, for
i = 2, 3, 4, 5. Our representations for the individual classifiers are richer than
the representation that just used the words in context because we also use the
feature containing richer information about structural relations. Even that the
unordered words in a local context may also contain structure information, but
collocations and words and part-of-speech tags assigned with their positions of
course will bring richer information.
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5 Experiments

5.1 Data

We tested on the datasets for four words, namely interest, line, serve, and hard,
which are used in numerous comparative studies of word sense disambiguation
methodologies such as Pedersen [13], Ng and Lee [12], Bruce & Wiebe [1], and
Leacock and Chodorow [10]. We have obtained those data from Pedersen’s home-
page 4. There are 2369 instances of interest with 6 senses, 4143 instances of line
with 6 senses, 4378 instances of serve with 4 senses, and 4342 instances of hard
with 3 senses.

5.2 Computing the probabilities and determining weights

As obviously seen above, in the weighted combination of classifiers we need
to compute the a posteriori probabilities P (ck|fi). For the context C, sup-
pose that the representation fi of C is represented by a set of features fi =
(fi,1, fi,2, . . . , fi,ni), and that the features fi,j are conditionally independent, we
have:

P (ck|fi) =
P (fi|ck)P (ck)

P (fi)
=

P (ck)
ni∏

j=1

P (fi,j |ck)

P (fi)
(24)

However, due to the nature of multiplication with small numbers, if we com-
pute P (ck|fi) directly, it may cause undesirable errors which strongly affects the
final results, for example, the obtained value may be much far from the true
value because the product of P (fi,j |ck), j = 1, . . . , ni, may be too small. To
avoid such an effect during the computation, in the following we provide an in-
directly alternative way to compute P (ck|fi) more exactly. This can be done as
follows.

For simplicity, assume that we are working on the representation fi, we then
have

m∑

k=1

P (ck|fi) = 1

Let us denote

rk =
P (ck|fi)
P (c1|fi) , for k = 1, . . . , M

With this notation, we immediately obtain

P (c1|fi) =
1∑m

k=1 rk
(25)

Clearly, r1 = 1. We will then compute rk (k = 2, . . . , M) based on the
following formulation. From (24), we have

rk =
P (ck|fi)
P (c1|fi) =

P (ck)
∏ni

j=1 P (fi,j |ck)
P (c1)

∏ni

j=1 P (fi,j |c1)

4 http://www.d.umn.edu/∼tpederse/data.html
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Logarithmizing the last expression we obtain

log(rk) =
ni∑

j=1

log(P (fi,j |ck))+log(P (ck))−
ni∑

j=1

log(P (fi,j |c1))−log(P (c1)) (26)

which is easy to compute more exactly. Once all rk are computed via (26), it is
easily to derive probabilities P (ck|fi), for k = 1, . . . , M , from (25).

The probability of sense ck, P (ck), and the conditional probability of a fea-
ture fi,j with observation of sense ck, P (fi,j |ck), are computed via maximum-
likelihood estimation as:

P (ck) =
count(ck)

N

and

P (fi,j |w = ck) =
count(fi,j , ck)

count(ck)

where count(fi,j , ck) is the number of occurrences of fi,j in a context of sense
ck in the training corpus, count(ck) is the number of occurrences of ck in the
training corpus, and N is the total number of occurrences of the polysemous
word w or the size of the training dataset. To avoid the effects of zero counts
when estimating the conditional probabilities of the model, when meeting a new
feature fi,j in a context of the test dataset, for each sense ck we set P (fi,j |w = ck)
equal to 1

N .
In the experiment, we used 10-fold cross validation on the training data and

then the obtained accuracies of the individual classifiers are used for weights αi.
Although we determine the weights based on the accuracies of individual classi-
fiers, other methods of identifying the weights αi such as using linear regression
and least-squares-fit could be used. However, this is left for the long version of
this paper.

5.3 Result and Comparison

In the experiment, we obtained the results using 10-fold cross validation. Data
included four datasets corresponding to four polysemous words interest, line,
hard, and serve. Table 1 shows the results obtained by using two strategies of
weighted combination of classifiers and the best results obtained by individual
classifiers respectively. It is shown that both combination strategies give better
results than the best individual classifier in all cases. Interestingly also, the re-
sults showed that in all cases the orthogonal sum based combination strategy is
better than that based on weighted sum. This can be experimentally interpreted
as follows. In our multi-representation of context, each individual classifier cor-
responds to a type of features so that the conditional independence assumption
seems to be realistic and, consequently, the orthogonal sum based combination
strategy is a suitable choice for this scheme of multi-representation of context.

In Table 2, we show the obtained results in comparison with those taken
from previous studies, which were only tested on several of these four words. It
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Table 1. Results using the proposed method

Best individual classifier Orthogonal sum combiner Weighted sum combiner

(% ) (% ) (% )

interest 86.8 90.9 90.7

line 82.8 87.2 85.6

hard 90.2 91.5 91

serve 84.4 89.7 89

is shown that both combination strategies also give better results than previous
methods in all cases, with the exception of line which corresponds to Pedersen’s
method as the best.

Table 2. The comparison with previous studies

(%) BW5 M NL LC P
The proposed method

based on weighted sum based on orthogonal sum

interest 78 – 87 – 89 90.7 90.9

line – 72 – 84 88 85.6 87.2

hard – – – 83 – 91 91.5

serve – – – 83 – 89 89.7

6 Conclusion

In this paper we first argued that various ways of using context in WSD can be
considered as distinct representations of a polysemous word under consideration,
then these representations are used jointly with taking weights into account
to identify the meaning of the target word. Based on DS theory of evidence,
we developed a general framework for the weighted combination of individual
classifiers corresponding to distinct representations. Moreover, two combination
strategies have been developed and experimentally tested on the datasets for
four polysemous words, namely interest, line, serve, and hard, and compared
with previous studies. It has been shown that considering multi-representation
of context significantly improves the accuracy of WSD by combining classifiers, as
individual classifiers corresponding to different types of representation suitably



13

offer complementary information about the target to be assigned a sense, this
consequently helps to make more correct decisions.
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