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Abstract. In this paper, we discuss a viewpoint to regard individuals
in a society as cognitive agents having internal dynamics, in order to
study the dynamic nature of social structures. Internal dynamics is the
autonomous changes of an agent’s internal states that govern his/her
behavior. We first discuss the benefit of introducing internal dynamics
into a model of humans and the dynamics of society. Then we propose a
simple recurrent network with self-influential connection (SRN-SIC) as
a model of an agent with internal dynamics. We report the results of our
simulation in which the agents play a minority game. In the simulation,
we observe the dynamics of the game as a macro structure itinerating
among various dynamical states such as fixed points and periodic motions
via aperiodic motions. This itinerant change of the macro structures is
shown to be induced by the internal dynamics of the agents.

1 Introduction

The spontaneous social structures in a society, such as institutions, classes, and
markets, usually cannot be separated from the individuals in the society, since in-
dividuals both shape and are influenced by such structures. The key notion when
considering spontaneous structures is the micro-macro loop[14][15]. However, we
think that this notion alone cannot explain some changes in social structure seen
in an actual society. In this paper, we introduce internal dynamics in addition
to the micro-macro loop and illustrate with a multi-agent simulation where both
the social structure at a macro level and the individuals’ behavior at a micro
level keep changing.

In traditional economics, individuals are often assumed to be isolated from
each other, with independent utilities and preferences. On the other hand,
Egashira and Hashimoto[3] propose the notion of socially developmental individ-
uals whose cognitive frameworks, including utilities and preferences, are shaped
through their interaction among themselves. They show the emergence of an
institution as a pattern of cognitive frameworks common to the individuals[7].
However, once organized, the institution in their model never changes. In general,
if influences from the macro structure to the micro level have a self-enforcement
function to regulate the behavior of individuals, it is thought that an institution
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2 Takashi Sato and Takashi Hashimoto

can emerge and be maintained[1]. But, spontaneous changes of the social struc-
tures are not seen in such a case. In reality, social structures change dynamically.
Changes in the macro structures are often thought to be caused by changes com-
ing from outside the micro-macro loop, but a mechanism of endogenous change
is not explained.

In addition to the idea of socially developmental individuals, we introduce
the notion of internal dynamics, representing the basic nature of cognitive in-
dividuals in a society, in order to understand the endogenous change of social
structures. Internal dynamics refers to autonomous changes of the individuals’
internal states. Recent cognitive science has developed into clarifying the dy-
namic nature of cognitive systems. Gelder, for example, advocates that humans
are regarded as a kind of dynamical systems, since the complex behavior of dy-
namical systems can well express cognitive phenomena[17][18]. Varela manifests
the importance of structural coupling, which appropriately connects the internal
states of a cognitive system to its environment through the interaction between
them[19]. These studies place importance on the dynamic change of cognitive
systems. In the present study, we also focus on internal dynamics, which has
received attention in the field of cognitive science1. In the next section, we dis-
cuss how internal dynamics is important in considerations of human behavior.
Further, we propose a model of an agent with internal dynamics which can be
used in multi-agent simulations.

The purpose of this study is to illustrate the importance of viewing individ-
uals in a society as cognitive agents having internal dynamics. In this paper, we
perform the following. 1) We propose a simple model of an agent having inter-
nal dynamics. This model is expressed by a kind of recurrent neural network.
2) We construct a dynamic social simulation by a multi-agent system which is
composed of the agents proposed in 1). Here, a simulation showing the dynamics
of social structure is referred to as a dynamic social simulation. We adopt the
minority game as a social interaction among the agents. 3) We use this dynamic
social simulation to study what causes the macro level dynamics.

The rest of the paper is organized as follows. In section 2, we discuss the
internal dynamics and propose a model of agent having internal dynamics. In
section 3, a multi-agent system for dynamic social simulation is introduced.
Results of the simulations are depicted in section 4. We present a discussion of
the results in section 5 and deliver our conclusions in section 6.

1 An example of a cognitive phenomenon which supports the effect of internal dy-
namics on cognition is the experiment using a reversible figure. In this experiment,
although the figure never changes objectively, the subjective vision of the figure
changes with time. This result suggests that cognitive processing is evoked by au-
tonomous changes in the internal states. Moreover, there are some studies about a
perception of ambiguous patterns by using chaotic neural network, namely, a network
with internal dynamics[11][10].
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2 Internal Dynamics

2.1 Importance of Internal Dynamics

From a mechanistic viewpoint, humans can be regarded as a kind of state tran-
sition machine. They have internal states that change with external stimuli and
return some responses that have one-to-one correspondences with the stimuli.

However, this viewpoint is not always appropriate, since the internal states
of humans do not change only in response to external stimuli. It is difficult to
explain such characteristics of human behavior as diversity and consistency by
regarding humans as mere state transition machines. The term diversity means
here that humans can and often do show various behaviors in the same situation.
The sequence of behaviors is usually not random, but has a certain causality.
We call this feature of human behavior consistency.

The internal states of humans change even in situations in which the same
external stimuli are constantly given or when no external stimuli are given. We
refer to this autonomous change of the internal states as internal dynamics. By
taking the internal dynamics into consideration, we can account for some fea-
tures of human behavior. Humans can behave variously, even if the same stimuli
are given, since their internal states, on which their behavior depends, change au-
tonomously. Accordingly, the human can form a one-to-many relationship among
a stimulus and his/her responses by means of internal dynamics. The internal
states change with actions as well as the external situation. Namely, various in-
fluences from the past actions, internal states, and external stimuli are stored in
the current internal states. Thus, causality of the human behavior arises, since
the actions depend on the internal states and correlate with a history of the past
internal states.

2.2 Architecture of Agent having Internal Dynamics

We conceptualize an architecture of an agent with internal dynamics. As we
discussed above, the agent’s internal states change autonomously. In addition,
the internal states are affected by the agent’s past action and the present exter-
nal stimuli. These assumptions lead to a basic architecture of an agent having
internal dynamics, as shown in Fig. 1. In the figure, the agent is regarded as a
kind of dynamical system. Thus, we model the agent by means of a dynamical
system.

A recurrent network, which is regarded as a kind of dynamical systems, agrees
with Gelder’s approach of treating humans as dynamical cognitive systems. The
recurrent network is known to have various functions such as pattern recognition,
motion control, and time series prediction. It is often used in the field of compu-
tational cognitive science [13][16][8]. Although recurrent networks can produce
many behaviors, their computational cost is typically prohibitive for modeling a
great number of agents necessary for a large-scale social simulation. On the other
hand, the computational cost of a simple recurrent network (SRN) designed by

New Frontiers in Artificial Intelligence: Joint Proceeding of the 17th and 18th 
Annual Conferences of the Japanese Society for Artificial Intelligence 

A.Sakurai (Ed.) Springer (2007)
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Fig. 1. The basic architecture of agent having internal dynamics. The symbols s, x and
a are external stimuli, the agent’s internal states and his/her actions, respectively. The
boxes labeled by G and F are functions to change the internal states and to decide
how the agent behaves when he/she has certain internal states, respectively. The arrows
indicate the direction of interactions between the elements.

Elman[4] is comparatively less. Furthermore, the SRN is as effective in simulat-
ing dynamic phenomena, since it has a powerful ability to learn/predict a time
series[4][5][6]. In spite of these advantages, the SRN is not often used in social
simulations.

We propose a concrete agent model corresponding to the basic architecture
illustrated in Fig. 1. The model is a modification of the SRN. We call this model
a SRN with self-influential connection (SRN-SIC ). Figure 2 shows the proposed
architecture of the agent. The SRN has an input layer to accept external stimuli;
an output layer to decide the output value based on received signals; and a hidden
layer to process input values and to pass them to the output layer. Further, the
SRN has a context layer in which each neuron has one-to-one connections with
each neuron of the hidden layer, in order to copy a previous state of the hidden
layer. Therefore, the state of the network at a certain time is decided by mixing
current stimuli and a history of the past states. Moreover, the SRN-SIC has an
additional recurrent connection between the output and the input layers so that
the agent decides its own action based on his/her past action.

We show a mathematical form of the SRN-SIC. Each layer has its own index
variable: l for recursive output nodes, k for output nodes, j for hidden nodes, i for
input nodes, and h for context nodes. The output function of each neuron other
than the input and the context neurons is the differentiable nonlinear function
L whose range is between -1.0 and 1.0. The function L is defined by

L(net) = tanh(βnet) , (1)

where net is the sum of weighted input values, and β decides the nonlinearity of
the function L. The output of SRN-SIC is determined by

ok(t) = L(netk(t)) , (2)

netk(t) =
∑
j=0

wkjvj(t) + θk , (3)
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   (Weights are fixed at 1.0)
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   (By normal BP)
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Fig. 2. The SRN-SIC as the proposed architecture of the agent. This is a particular
Elman-type network with an additional recurrent connection between the output and
the input layers. The symbol L represents a nonlinear function to output a real number
between -1.0 and 1.0. The symbol C represents a step function which classifies an
output value into two value -1 or 1 in order to be suited for the minority game. Not
all connections are shown.

where ok(t) is the k-th output neuron’s value at time t, wkj is the connection
weight between the k-th output and the j-th hidden neurons, vj(t) is the j-th
hidden neuron’s value at time t, and θk is a bias of the k-th output neuron. The
hidden neuron’s activation is calculated by

vj(t) = L(netj(t)) , (4)

netj(t) =
∑
i=0

wjixi(t) +
∑
h=0

wjhuh(t) +
∑
l=0

wjlzl(t) + θj , (5)

where wji is the connection weight between the j-th hidden and the i-th input
neurons, xi(t) is the i-th input neuron’s value at time t, wjh is the connection
weight between the j-th hidden and the h-th context neurons, uh(t) is the h-th
context neuron’s value at time t, wjl is the connection weight between the j-th
hidden and the l-th recursive output neurons, zl(t) is the l-th recursive output
neuron’s value at time t, and the θj is a bias of the j-th hidden neuron. Each
value of u and z can be replaced by the past hidden and the past output neuron’s
activation, respectively. Therefore, the equation (5) is rewritten as

netj(t) =
∑
i=0

wjixi(t) +
∑
h=0

wjhvh(t − 1) +
∑
l=0

wjlol(t − 1) + θj . (6)
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When we consider the context layer as a type of input layer at each time
step, the network can be regarded as a kind of feedforward type neural network.
Therefore, as a learning method, we adopt the error Backpropagation learning.
Each weight of all recurrent connections is fixed at 1.0 and is not adjusted by
learning.

3 Multi-Agent System for Dynamic Social Simulation

We show a dynamic social simulation by using the multi-agents with internal
dynamics proposed in the previous section. In this simulation, we adopt the
minority game (MG) proposed by Challet and Zhang[2] as a social interaction
among the agents. The game is characterized by the following two basic rules:

1. N (odd) players must choose one out of two alternatives (-1/1 meaning
buy/sell, or etc) independently at each step2.

2. Those who are in the minority side win.

To consider a micro-macro loop in our system, we establish influence from
the macro level to the micro level by the following two ways. One is that the
previous move of minority side is given to all players as an external stimulus at
each step. The other is that all players learn a time series of the past minority
move.

This simulation is concretely carried out by the following procedure:

1. Each agent independently decides a move (-1 or 1) based on its own past
action and the move of minority side at the last play.

2. A current move of minority side is determined from all players’ moves.

We call this flow one step. All agents learn a time series of the minority moves
for the past 100 steps per every 10000 steps. We refer to the 10000 steps between
the learning processes as one turn.

4 Simulation Results

In this section, we report the results of the multi-agent simulation. In the simu-
lation, the population size of the agents is 101. The SRN-SIC of each agent has
one output neuron, five hidden neurons (i.e., there also are context neurons) and
two input neurons, as illustrated in Fig. 2. At the beginning of the simulation,
all the input values including the feedback input values from the output and
the hidden neurons are set to be 0.0. The initial connection weights are set to
be random real numbers between -0.5 and 0.5, but only recurrent connection
weights are fixed at 1.0.

We distinguish several observable dynamics in the micro and the macro levels,
as indicated in Table 1.
2 An output value from the SRN-SIC, which is a real number, is converted to either

-1 or 1 in order to correspond to a move in the MG. In this conversion, we regard
0.0 as a border.
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Table 1. The range of the macro and the micro level.

4.1 Dynamics at Macro Level
– Classification of Change Patterns and Itinerant Dynamics –

The time series of the minority move shows various patterns. We classify these
into six different patterns, as illustrated in Fig. 3. In order to understand the
dynamics at the macro level in detail, we examine in this figure the transition
of minority move (-1 or 1) multiplied by the number of agents belonging to the
minority side, namely, the winners.

We focus our attention on Fig. 3(b) and (c), in which the minority side never
changes. Although all agents continuously receive the same external stimulus,
the number of winners changes periodically in Fig. 3(b) and aperiodically in Fig.
3(c). These dynamics imply that the agents can autonomously alter the way they
interpret the external information utilizing their internal dynamics, even if the
same information is successively given to them. This resembles a human’s vision
of a reversible figure. Note that the periodic/aperiodic changes happen in one
turn in which no learning was executed.

We observe various patterns in the dynamics of the minority move, even
in one turn. Figure 4 depicts typical itinerant dynamics at the macro level in
one turn3. As can be seen, the patterns in the time series of the game itinerate
among various dynamical states. The transitions among fixed points and periodic
changes are mediated by aperiodic dynamics4.

The dynamics illustrated in Fig. 4 is observed in one turn. That is to say, it
is confirmed that very complex changes at the macro level are induced by the
internal dynamics of each agent, though the internal structures of the agents are
not modified by learning.

3 To draw the graphs in Fig. 4, we encode the time series of the minority move. At first,
the minority moves, -1 and 1, are coordinated to 0 and 1 as binary digit, respectively.
Next, a 20 steps series of the minority move is regarded as a binary fraction. Then,
it is converted to a decimal fraction.

4 These changes resemble the chaotic itinerancy proposed by Kaneko and Tsuda[9].
We still could not clarify whether the dynamics observed in our system is precisely
chaotic itinerancy.
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Fig. 3. The patterns of time series of the minority move in different turns. The x-axis
is the steps. The y-axis is the minority move (-1 or 1) times the number of winners, i.e.,
agents in the minority side. The positive (negative) value in the y-axis signifies that
the minority move is 1 (-1). (a) Both the minority side and the number of winners are
fixed. (b) The minority side is fixed, and the number of winners periodically changes.
(c) The minority side is fixed, and the change of the number of winners is aperiodic.
(d) Both the minority side and the number of winners show periodic changes. (e) The
change of the minority side is periodic, and that of the number of winners is aperiodic.
(f) Both the minority side and the number of winners aperiodically change.

4.2 Dynamics at Micro Level – Emergence and Transition of Agent’s

Strategy –

In this section, we investigate the behavior of the agents. At first, we show
that agents obtain particular strategies through learning and interaction in the
minority game. A strategy is a way to determine how an agent reacts to external
stimuli.

Figure 5 shows examples of two different agents’ strategies, expressed as
the relationship between the output value and the internal dynamics, namely,
the changes of two hidden neurons’ values. The agent exemplified in Fig. 5(a)
acquires a simple strategy which can be denoted by a deterministic finite state
transition machine with two states. He/She behaves regularly, depending on the

New Frontiers in Artificial Intelligence: Joint Proceeding of the 17th and 18th 
Annual Conferences of the Japanese Society for Artificial Intelligence 

A.Sakurai (Ed.) Springer (2007)



Dynamic Social Simulation with Multi-Agents having Internal Dynamics 9

 0
 0.2
 0.4
 0.6
 0.8

 1

 284000  284050  284100  284150  284200  284250

 0
 0.2
 0.4
 0.6
 0.8

 1

 284250  284300  284350  284400  284450  284500

 0
 0.2
 0.4
 0.6
 0.8

 1

 284500  284550  284600  284650  284700  284750

 0
 0.2
 0.4
 0.6
 0.8

 1

 284750  284800  284850  284900  284950  285000

Fig. 4. An example of itinerant dynamics at the macro level in one turn. The x-axis
and the y-axis of each figure are the steps and the minority moves converted to real
numbers, respectively. The dynamical states of the game change frequently among fixed
points and various periodic cycles via aperiodic motions.

input values. That is to say, there is a one-to-one correspondence between the
external stimulus and the action. The other type of strategy, illustrated in Fig.
5(b), accurately uses two rules depending on two kinds of input value, -1 and
1. While the rules described by two closed curves seem simple at a glance, the
agent’s behavior is complex. The points on the closed curves are so dense that the
output sequence of the agent is quasi-periodic. Further, since each closed curve
ranges over almost the entire area of the output, the strategy creates a one-to-
many relationship from an input to the agent’s moves. We also found agents
whose strategies are expressed by deterministic finite state transition machines
with many states and complex forms like strange attractors.

We illustrate examples of the transitions of two different agents’ strategies in
several turns in Fig. 6. These strategies vary through the learning process. An
interesting agent behavior is found in the 24th turn. Although the minority move
in this turn is fixed on ‘-1’, namely, the same stimulus is continuously given, the
trajectory of the agent’s internal dynamics drawn in Fig. 6(a) shows a chaotic
motion. Time series analyses confirm that this motion is a low dimensional chaos
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Fig. 5. Examples of two different agents’ strategies. The x, y and z-axis of each figure
are the values of the output neuron, the third hidden neuron and the fourth hidden
neuron, respectively. (a) A strategy described by a simple deterministic finite state
transition machine with two states is depicted in the phase space. The small circles
show the actual outputs of network. The large circles and the arrows stand for the
output values of the agent and the input value that he/she receives, respectively. The
dotted circle is the initial state of the agent. The agent behaves periodically. (b) This
is a strategy that has two closed curves corresponding to two input values. This means
that the agent having the strategy can switch two output sequences according to the
external stimuli.

with weak nonlinearity. In contrast, the other agent in the same turn depicted
in Fig. 6(b) acquires a simple deterministic finite state transition machine with
three states. In this turn, these agents alter their actions depending on only their
past actions. In other words, they attain one-to-many relationships between an
input and outputs.

5 Discussion – Causes of Dynamics at Macro Level –

Time series of the minority move show definite features such as fixed points and
periodic motions. This suggests that the agents have certain internal structures
and form certain relationships with other agents, because the time series of the
minority move is decided by the sequence of all agents’ moves. Besides, since fixed
points and periodic cycles can be described by some rules of dynamical systems,
an agents’ society showing such dynamics is considered as in some structuralized
states with macro level rules. Accordingly, the feature of time series can reflect
a macro structure in the agents’ society. In our system, the feature of the time
series changes with time, as shown in Fig 3 and 4. That is to say, the system
realizes the dynamics of the macro structure in the agents’ society.

It is thought that the dynamics of the macro structure is brought about by
some instability in the system. If so, where is the instability? From the result
showing different features of the time series for each turn (Fig. 3), instability must
be caused by the learning between turns. Further, there seems to be another
instability that is produced by the internal dynamics and interaction of the
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Fig. 6. Transitions of two different agents’ strategies in turns 23∼26. All axes are the
same as those in Fig. 5. The strategies of each agent vary through the learning process
among various deterministic finite state transition machines and complex forms like
strange attractors. The agents do not have the same strategy in one turn. For example,
in the 24th turn the strategy in (a) forms a strange attractor and in (b) a deterministic
finite state transition machine with three states. Although both of the strategies in (a)
and (b) in turn 26 are deterministic finite state transition machines with 12 and 30
states, respectively, the number of the states is too many to illustrate. Therefore, we
draw the trajectories instead of circles and arrows.
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agents, since the system itinerate among various dynamical states in one turn
(Fig. 4). In the following section, we discuss both of the instabilities.

5.1 Instability between Turns –Effect of Learning–

In the learning process, each agent independently forms a prediction model from
the sequence of minority moves of the past 100 steps, to estimate the transition
of the game. The model is based on a static expectation that the past structure is
preserved as is. All agents try to predict the macro structure in the future from
a part of the past events. The structure is, however, constructed by all agents
whose behavior has been modified by the learning process. Therefore, a static
expectation model does not work well to predict the transition of the game.

This is structurally the same destabilization mechanism that is seen in Taiji
and Ikegami’s studies of the coupled dynamical recognizers[16][8]. There are two
agents playing the iterated prisoners’ dilemma game in their model. The agents
try to make models of their opponents mutually through learning. For each agent,
the opponent model used in the previous game is often different from the current
opponent. Thus, the dynamics of the game becomes unstable, since the opponent
model cannot predict the current opponent’s move correctly. Our model can be
thought of as an extension from the relationship between two persons in the
model of Taiji and Ikegami[16][8] to one among many people. Even though only
the moves of the minority side are input to each agent, the minority side is
constructed from the moves of all agents. Accordingly, each agent relates to all
agents indirectly.

The static expectation is an expression of the agent’s bounded rationality.
In actual societies, no one can make a complete prediction model that takes the
consequences of behavioral changes of all people into consideration. Therefore,
the cause of destabilization discussed here is inevitable when social structures
are endogenously formed.

5.2 Instability in One Turn –Effect of Chaotic Actions–

To know what feature at the micro level causes the itinerate dynamics at the
macro level in one turn, we investigate the configuration of the agents’ actions
at the micro level. Table 2 shows the configuration corresponding to the clas-
sification in section 4.1. When the itinerant dynamics is shown at the macro
level, the number of agents with aperiodic actions is much larger than the other
cases. The aperiodic action may be chaotic dynamics as indicated in section 4.2.
Chaotic dynamics has orbital instability, which expands small differences in the
trajectories of agents’ actions[12]. Therefore, even a small displacement at the
micro level can induce a change in the macro level dynamics.

Let us discuss the aperiodic action from the viewpoint of the relationship
between inputs and outputs. A strategy with one-to-many relationships emits
aperiodic actions. Periodic actions are, however, also derived from a strategy
with one-to-many relationships, as shown in Fig.6(b), the 24th turn. The dis-
tinction of these strategies is that the one with aperiodic action, characterized
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Table 2. The correspondence between changing patterns at the macro level and the
configuration of agents at the micro level. The left-hand side of the table indicates the
classification at the macro level dynamics (see section 4.1). The first and the second
columns are the dynamical states of the minority side and that of the number of
winners, respectively. Each number in the right-hand side of the table stands for the
number of agents whose actions are in the specific dynamical states. In the case of
itinerant macro dynamics (the bottom row), the number of agents showing aperiodic
actions is much larger than in the other cases.

by strange attractors, forms a one-to-infinity relationship from an input to out-
puts. Accordingly, the condition for the dynamics of macro structure to appear
may be that there exists a certain number of agents having a one-to-infinity
relationship between an external stimulus and their actions. Internal dynamics
is indispensable for obtaining such complex behavior.

5.3 Other Instabilities

In our system, there are also other causes of destabilization. One candidate is the
nonlinearity of the SRN-SIC. It is a nonlinear dynamical system and has high
dimensional nonlinearity if there are many neurons. Thus, we have to elucidate
how this nonlinearity affects an agent’s behavior and dynamics of the macro
structure by explicating the mathematical structure of the SRN-SIC through
experiments such as changing the number of neurons.

A feature of the MG may also be a cause destabilization. In the MG, there is
a threshold at half of the players’ population. When the number of agents in the
minority side is around the threshold, the result of a game changes if only a few
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players alter their behavior. The similar effect of such a threshold works when
output value of the SRN-SIC is divided into ‘-1’ or ‘1.’ Thus, behavior of the
SRN-SIC is easily changed by a small fluctuation in the input when the output
value is around 0.0.

6 Conclusion

In this paper, we have discussed the effectiveness of viewing a human as a cog-
nitive agent having internal dynamics when we account for the emergence and
dynamical changes of social structures. We have proposed a model of a social
agent having internal dynamics in terms of a simple recurrent network with
self-influential connection (SRN-SIC) in order to illustrate the effectiveness con-
cretely. Using a dynamic social simulation considered a micro-macro loop involv-
ing such agents, we have shown that complex dynamics emerged at both a micro
and a macro levels.

The cause of the macro-level dynamics is conjectured as follows. First, each
member of the society does not consider the behavioral change of all the other
members to predict the future constructed by them; second, a one-to-infinity
relationship between an external stimulus and the actions of each member leads
to a chaotic behavior.

Our simulation results substantiate the significance of internal dynamics for
forming and maintaining a dynamic social structure. Thus, we conclude that
internal dynamics is necessary to form and maintain a dynamic social structure.
We also argue that our proposed SRN-SIC is an efficient architecture of a social
agent with internal dynamics to construct dynamic social simulations.

We have shown endogenous dynamics of social structures represented by
itinerant dynamics, even though the agents’ internal structures do not change
by learning. It is not yet clear, however, how this dynamics emerged. In further
studies, we will clarify the influence of the internal dynamics on agents’ behavior
and on the macro structure. By solving these problems, we will be able to better
perform dynamic social simulations to address the essence of the dynamics in
actual societies.
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