
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An agent-based approach for predictions based on

multi-dimensional complex data

Author(s) Ma, Tieju; Nakamori, Yoshiteru

Citation Information Sciences, 176(9): 1156-1174

Issue Date 2006-05-08

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/5025

Rights

NOTICE: This is the author’s version of a work

accepted for publication by Elsevier.

Changes resulting from the publishing process,

including peer review, editing, corrections,

structural formatting and other quality control

mechanisms, may not be reflected in this

document. Changes may have been made to this work

since it was submitted for publication.

A definitive version was subsequently published

in Tieju Ma, Yoshiteru Nakamori and Wei Huang,

Information Sciences, 176(9), 2006, 1156-1174,

http://dx.doi.org/10.1016/j.ins.2005.07.011

Description



Tieju Ma and Yoshiteru Nakamori, An agent-based approach for predictions based on 
multi-dimensional complex data, International Journal of Information Science, Elsevier 
Science. (In Press) 



An Agent-Based Approach for Predictions

Based on Multi-Dimensional Complex Data ?

Tieju Ma ∗, Yoshiteru Nakamori
School of Knowledge Science, Japan Advanced Institute of Science and Technology,

1-1, Asahidai, Tatsunokuchi, Ishikawa 923-1292 Japan

Abstract

This paper presents an agent-based approach to the identification of prediction
models for continuous values from multi-dimensional data, both numerical and cat-
egorical. A simple description of the approach is: a number of agents are sent to
the data space to be investigated. At the micro-level, each agent tries to build a lo-
cal linear model with multi-linear regression by competing with others; then at the
macro-level all surviving agents build the global model by introducing membership
functions. Three tests were carried out and the performance of the approach was
compared with a neural network. The results of the three tests show that the agent-
based approach can achieve good performance for some data sets. The approach
complements rather than competes with existing Soft Computing methods.

Key words: agent-based approach, membership function, prediction

1 Introduction

Prediction can be viewed as the construction and use of a model to assess
the class of an unlabeled sample, or to assess the value or value ranges of
an attribute that a given sample is likely to have[4]. Prediction of discrete
or nominal values is commonly dealt with by classification techniques, and

? This research was sponsored by the 21st century COE programme in JAIST.∗ Corresponding author. Address before January 2005: School of Knowledge Sci-
ence, Japan Advanced Institute of Science and Technology, 1-1, Asahidai, Tat-
sunokuchi, Ishikawa 923-1292 Japan. Address from January 2005: International In-
stitute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg, Austria.
Email addresses: tieju@jaist.ac.jp (Tieju Ma), nakamori@jaist.ac.jp

(Yoshiteru Nakamori).

Preprint submitted to Elsevier Science 18 October 2004



for the prediction of continuous values, statistical techniques of regression are
widely used.

Modeling by statistical techniques of regression is a top-down method. Re-
searchers first observe the distribution of all the data, form the whole structure
of the data space in their minds, then select a certain function to fit the data
using experience and specific knowledge. But sometimes it is very difficult or
impossible to find a function that fits the distribution of all the data (like the
data in Fig.1) using statistical regression techniques in a top-down way. Cer-
tainly we can divide all the data in Fig. 1 into several parts, and for every part
we can find a function to fit it. But when we deal with high-dimensional data,
for example 6-dimensional data, how can we know where we should separate
the data?

Fig. 1. A case which is difficult to model.

As a foundation component for the emerging field of conceptual intelligence,
Soft Computing (SC) which includes Fuzzy Logic (FL), Neural Computing
(NC), Evolutionary Computation (EC), Machine Learning (ML), and Proba-
bilistic Reasoning (PR) [7] can be used to deal with the kind of data shown in
Fig. 1. For example, the “hyperellipsoidal clustering method” described in [6]
assists modelers in finding fuzzy subsets suitable for building a fuzzy model.
The approach presented in this paper complements rather than competes with
existing Soft Computing methods.

During the 1980s and 1990s, many disciplines converged into an interdisci-
plinary research field, called complex adaptive systems. The belief underlying
this complex adaptive systems research is that the macro-level complexity of
the system may be spontaneously derived from interactions at the micro-level;
and that this fundamental mechanism should be common among different sys-
tems in different fields. In the research on complex adaptive systems, scientists

Table 1. An example of “complex” data

Attribute 1 (Length) Attribute 2 (Color) · · · Attribute m (Size)

object 1 85 Black · · · Large

object 2 90 Red · · · Small
...

...
...

. . .
...

object n 77 Blue · · · Middle

2



have obtained myriad heuristics from nature. Many algorithms and proposals,
especially in the domains of optimization, telecommunication networks and
robotics, were inspired by modeling the collective behaviors of social insect
colonies and other animal societies [1—3,8]. Enlightened by that thinking, we
developed an agent-based approach to the identification of prediction models
for two-dimensional numerical data [5]. The main purpose of this paper is
to develop an agent-based approach to the identification of prediction mod-
els for multi-dimensional complex data. Here, “complex” means that some of
the dimensions are numerical while others are categorical. Table 1 shows an
example of “complex” data. The data in attribute length is numerical. The
data in attribute color is nominal, which is treated as categorical data in this
paper. And the data in attribute size is ordinal, in that we can use a number
to denote each size; for example, we can use the number 3 to denote the size
“Large”, 2 to denote “Middle”, and 1 to denote “Small”. Thus, the distance
between different sizes may be different. In this paper, categorical data only
refers to nominal data, and ordinal data are treated as numerical data. While
there is no clear border between nominal and ordinal data, people sometimes
need to determine whether the data is nominal or ordinal. For example, if
the objects in Table 1 are clothes, it is most likely that people will treat the
attribute color as nominal. But if the attribute color in Table 2 denotes a
physical feature in some chemical test, it is most likely that people will treat
it as ordinal data, considering the visible light spectrum as shown in Fig. 2.

Fig. 2. Colors are ordinal when considering the visible light spectrum.

The previous work in [1—3,8] mainly tried to capture the features of the co-
operative behaviors of insect or animal societies, while our work applies the
natural law of survival of the fittest. There is both competition and cooper-
ation in our approach. Agents compete with each other to build local linear
models, and those agents who have good performance in building local models
will be the survivors. Surviving agents cooperate with each other in building
the global model, since in most cases, the global patterns of the data cannot
be explained by any individual agent’s local model.

3



2 The Agent-Based Approach

2.1 Basic definitions

Following are some basic definitions of the approach:

• Data space & data object. A data space is a data set with several cat-
egorical/numerical dimensions (or attributes), and a data object is a data
record within a data space.
Suppose N is the number of data objects in a data space, and each data

object has s categorical attributes/dimensions and u numerical attributes,
Table 2 shows a data space and data objects in it.

Table 2. A data space

Data Categorical Numerical

Objects Ac1 · · · Acs An1 · · · Anu

O1 ac11 · · · ac1s an11 · · · an1u
...

...
. . .

...
...

. . .
...

ON acN1 · · · acNs anN1 · · · anNu

• Agent. In this paper, an agent is a programmed unit, or an instance of
a class from the object-oriented programming perspective. It has a vision,
a grade, a territory, and the knowledge for doing linear regression. It can
adjust its vision, find data objects in its vision, build a local linear model
in its territory, increase its grade, compete with other agents for survival
(eat other agents or be eaten by them) and cooperate with other surviving
agents to build the global model.

• Local model. A local model means a model built by an individual agent.
In a broad sense, a local model can be of different types, i.e., it can be
either linear or nonlinear. In this paper, however, the local model built by
any individual agent is linear, and agents built their local models by least
square regression.

• Agent’s territory & agent’s core territory. An agent’s territory is the
data set used by the agent to build its local linear model. Not all of the
dimensions/attributes of an agent’s territory are used for building the local
linear model. When carrying out multi-linear regression, agents will select
attributes to build local models according to a variance-covariance matrix.
An agent’s core territory includes all the data objects in its territory, but it
does not cover the attributes which are not used to build the agent’s local
model.
Fig. 3 shows an example of an agent’s territory and core territory. The

agent builds its local linear model on data objects O2, O3, O4, O5, and O6

4



with attributes A1 and A2. So both the agent’s territory and the agent’s
core territory are composed of the 5 data objects, but the latter doesn’t
cover attribute A3.

Fig. 3. An agent’s territory & core territory.

A simple description of the approach presented in this paper is as follows. A
number of agents are sent to the data space under investigation. At the micro-
level, individual agents use multi-linear regressions to build local linear models
in their territories; at the same time, they try to expand their territories by
moving in their territories and finding new data objects in their vision. Corre-
lation coefficients are used as rules to decide whether or not agents succeed in
expanding their territories. During the process of expanding their territories,
there is survival competition among agents. Then at the macro level, the lo-
cal linear models built by those surviving agents are integrated into a global
model by introducing membership functions.

2.2 Initialization

Considering the data space in Table 1, N agents are sent into it with each
agent mounting on a data object. Each agent’s grade is initialized as

G = 1. (1)

And each agent’s vision is initialized as the average distance among all data
objects

V0 =

N−1P
i=1

NP
j=i+1

D (Oi, Oj)

C2n
. (2)

Here D(Oi, Oj) denotes the distance between the two data objects Oi and
Oj. There are various ways to define D(Oi, Oj). When using the approach,

5



users can define different D(Oi, Oj) according to their informed knowledge
and experience. In the tests which will be introduced in the next section,
D(Oi, Oj) is defined as

D(Oi, Oj) =
sX
h=1

dch(Oi, Oj) +

vuut uX
h=1

Ã
anih − anjh

Anh∗max − Anh∗min

!2
. (3)

The first item in Eq. (3) denotes the distance on all categorical attributes;
dch(Oi, Oj) denotes the distance between two data objects in categorical (nom-
inal) attribute Ach. d

c
h(Oi, Oj) is simply defined as:

dch(Oi, Oj) =

 0 (a
c
ih = a

c
jh)

1 (acih 6= acjh)
. (4)

The second item in Eq. (3) denotes the distance on all numerical attributes.
The Anh∗max/A

n
h∗min is the maximum/minimum value in numerical attribute

Anh. The purpose of introducing A
n
h∗max and A

n
h∗min is to map the distance in

each numerical attribute to the range [0, 1]. If the values in an attribute are
all the same, i.e.,

Anh∗max − Anh∗min = 0,
then this attribute will not be considered for modeling.

2.3 Building local linear models

After initialization, every agent tries to build a local linear model according
to the following steps:

• Step 1: The agent counts the number of objects in its vision. If the number
is smaller than 3, this agent dies; otherwise it goes to step 2.

• Step 2: An agent does a multi-linear regression analysis of all the data
objects in its vision. If the correlation coefficient r ≥ p, it goes to step 4;
otherwise it goes to step 3.
Here p is a design parameter, with a value set by the user. In the tests

described in Section 3, we think a local linear model with the correlation
coefficient r ≥ 0.88 is of enough linearity, so we set p = 0.88.

• Step 3: The agent decreases its vision by q% (q < 100) of the initialized V0.
If its vision becomes negative, it is removed; otherwise it goes to step 1.
Here q is another design parameter. In the tests in Section 3, we think a

q = 10 is reasonable, thus an grade-1 agent has 10 chances to build a local
linear model by decreasing its vision before it is removed from the data
space.

6



• Step 4: The agent builds a local linear model and evolves into a grade 2
agent, i.e.,

G = 2.

This progression is illustrated in Fig. 4. The t denotes how many times the
agent has decreased its vision.

Fig. 4. The process of building a local linear model.

Agents will select attributes for building local linear models according to a
variance-covariance matrix. In an agent’s territory, if there are large covari-
ances between one attribute and all other attributes (except that which we
want to predict), then that attribute will not be considered when building lo-
cal models. In the tests in Section 3, we defined a large covariance as 0.75. The
categorical attributes are treated as discrete variables when doing multi-linear
regression.

2.4 Expanding territory

Those agents that evolve into grade-2 agents try to expand their territories
according to the following steps:

• Step 1: The agent finds all frontier data objects of its territory, and mem-
orizes them in a list fo. The agent also memorizes its current territory as
T0. At the same time, the agent checks to find other agents whose core
territories are covered by (not equal) its core territory. If it finds some,
it eats them, i.e., those agents are removed from the data space. If two
agents have the same core territory, then the agent with a better local
model, i.e., a larger correlation coefficient r, will be the winner of the
survival competition, and it will eat the other. If two agents have the
same core territory and have the same correlation coefficient r for their
local model, then the winner is randomly decided.

7



Fig. 5. The process of expanding territory.

An agent finds the frontier data objects of its territory in the following
way: If the number of all data objects in its territory is M , then there is
a distance matrix:

D =


D(O1, O1) · · · D(O1, OM)

...
...

...

D(OM , O1) · · · D(OM , OM)

.

The agent ransacks D and finds the biggest distance values. The data
objects that form these values are marked as frontier data objects by the
agent. For example, if there are 5 data objects in one agent’s territory,

8



and the distance matrix D is like the following,

D =



0 2.3 3.4 2.7 1.8

2.3 0 2.6 4.2 2.0

3.4 2.6 0 3.4 4.2

2.7 4.2 3.4 0 1.6

1.8 2.0 4.2 1.6 0


,

we can see that both D(O2, O4)/D(O4, O2) and D(O3, O5)/D(O5, O3) are
the maximal distances (= 4.2) in the matrix D, then the agent will mark
data objects O2, O3, O4 and O5 as frontier data objects.
Since D(Oi, Oj) = D(Oj, Oi), a distance matrix D is symmetric. So an
agent only need ransack half of it to find the biggest distance values.

• Step 2: The agent moves to a frontier data object which it hasn’t visited
and looks for new data objects in its vision. If it finds new data objects,
it goes to step 3; otherwise it goes to step 4.

• Step 3: The agent does linear regression analysis with the data objects in
T0 and the newfound data objects. If the correlation coefficient r ≥ p, the
agent adds the newfound data objects into its territory and goes back to
step 1; otherwise it goes to step 4.

• Step 4: If there are other frontier data objects in list fo that the agent
has not visited, it goes to step 2; if the agent has visited all the data
objects in the list fo, it memorizes its current territory as T1 and goes to
step 5.

• Step 5: If T1 = T0, the agent goes to step 6; otherwise it goes to step 1.
T1 = T0 denotes that the agent has visited all frontier objects for expand-
ing its territory, but its territory still remains the same, i.e., it can not
expand its territory any more.

• Step 6: The agent stops expanding its territory and evolves into a grade-3
agent, i.e.,

G = 3.

This progression is shown in Fig. 5.

All grade-2 agents operate at the same time. The survivors are those that not
only build their local linear models faster and better but also expand their
territories more efficiently.

9



2.5 Forming the global model

When there are only grade-3 agents left in the data space, they begin to build
the global model that is formed by integrating local linear models. Here the
integration is done by introducing membership functions (Fuzzy model). Fig.
6 shows a simple example with two local linear models [9]. For the first local
linear model (or rule: x is small), the membership function is µ1(x); for the
second local linear model (or rule: x is large), the membership function is
µ2(x). For a certain x value x = x∗, if µ1(x∗) = w1, µ2(x

∗) = w2, then the
estimation of y is:

y∗ =
w1f1(x

∗) + w2f2(x∗)
w1 + w2

. (5)

Fig. 6. An example of fuzzy model [9].

If there are H grade-3 agents left in the data space and each of them holds
a local linear model fi, these H agents can be denoted in set {B1, · · · , BH}.
Suppose that µi(O) is the data objects’ membership function for fi, then the
global model is:

y =

HP
i=1
µi(O)fi

HP
i=1
µi(O)

. (6)

When using this approach, as in the case of distance definition, users can
define various membership functions according to their informed knowledge
and experience. In the following tests (Section 3), the membership function
µi(O) is simply defined as:

µi(O) =
ri

edi(O)
, (7)

10



where ri is the correlation coefficient of the local linear model built by agent
Bi; di(O) is the distance between data object O and agent Bi, defined as the
average distance between data object O and the data objects in agent Bi’s
territory. The ri indicates the quality of the linear model. The larger the ri,
the higher the linearity. The purpose of introducing ri in Eq. (7) is to let a
better local linear model play a more important role in forming the global
model. It is possible that the di(O) is very small (very close to zero), so we
use it as an exponent of e (e ≈ 2.87).

3 Testing the Approach

3.1 Tests on three data sets

To test the approach, we applied it to the following three data sets, all available
at the UCI machine learning repository [10]. The performance of the approach
will be compared with that of a backpropagation neural network which is
programmed into a commercial software program named Neunet 1 .

• 1985 Auto Imports Data. This database was created by Jeffrey C.
Schlimmer in 1987. There are 205 records (data objects) of different au-
tomobiles; each data object is composed of 26 numerical attributes and
10 categorical attributes. This data set has been used as a sample for the
software Neunet. The sample used 13 attributes (6 numerical attributes
and 7 categorical attributes) to predict the price of automobiles. In the
test to compare our approach with the neural network in Neunet, we
predicted the price of automobiles using the same attributes as in the
sample. Eight data records lacked data in the 13 attributes. In this paper
we do not consider the situation of missing data, so these 8 data records
were deleted from the original data set, with 197 data records remaining.

• Auto-Mpg Data. This dataset was taken from the StatLib library which
is maintained at Carnegie Mellon University, and it was created on July
7, 1993. The data set has 398 instances (data records) and 9 attributes:
(1) MPG: continuous
(2) cylinders: multi-valued discrete
(3) displacement: continuous
(4) horsepower: continuous
(5) weight: continuous

1 Neunet provides a free level-1 registration which allows users to
create neural networks using up to 250 rows of data (available at:
http://www.cormactech.com/neunet/). All the tests we carried out were based on
data sets up to 250 records.

11



(6) acceleration: continuous
(7) model year: multi-valued discrete
(8) origin: multi-valued discrete (Japan, Europe, USA)
(9) car name: string (unique for each instance)
The 6 records which had missing values were deleted before carrying out
the test. For comparison with Neunet, we used only the first 250 data
records after deleting the 6 records. In this test, we predicted automobiles’
“MPG” (miles per gallon), using all the other attributes except “car
name”. The first seven attributes were treated as numerical data, with
the “origin” attribute as categorical data.

• Relative CPU Performance Data. This dataset was created by Phillip
Ein-Dor and Jacob Feldmesser in October 1987. It includes 209 instances
with the following 9 attributes:
(1) vendor name: 30 nominal values
(2) model name: unique symbols
(3) MYCT: machine cycle time in nanoseconds
(4) MMIN: minimum main memory in kilobytes
(5) MMAX: maximum main memory in kilobytes
(6) CACH: cache memory in kilobytes
(7) CHMIN: minimum channels in units
(8) CHMAX: maximum channels in units
(9) PRP: published relative performance
In this test we predicted the “PRP” attribute, using all of the other
attributes except the “model name”, which has unique values for each
instance. The “vendor name” attribute was treated as categorical data,
with the others as numerical data.

We used Root-Mean-Square Error (RMSE) to evaluate the performance of
the prediction models. The smaller the RMSE, the better the performance of
the model. In Eq. 8, yi and ŷi denote the real value and the predicted value
respectively. Nt is the size of the testing set. For example, if Nt = 10, then the
final 10 data records are used as testing data, while the rest of the data set is
used as training data.

RMSE =

vuut 1

Nt

NtX
i=1

(ŷi − yi)2. (8)

Fig. 7, Fig. 8, and Fig. 9 show the results obtained on the above three
databases. The backpropagation neural network programmed in Neunet was
trained for 5 × 104 times for each Nt before making the prediction. In Fig.
7, the RMSE of the agent-based approach is smaller than that of the neural
network for each Nt; that is to say, for the Auto Imports Data, the agent-
based approach has better performance than the neural network. In Fig. 8,
the neural network shows better performance for most Nts: the RMSE of

12



the neural network is smaller than that of the agent-based approach when
Nt = 10, 20, · · · , 70, while it is bigger when Nt = 80, 90, 100. In Fig. 9, the
RMSE of the agent-based approach is smaller than that of the neural net-
work for each Nt, i.e., for the Relative CPU Performance Data, the agent-
based approach also has better performance than the neural network in terms
of RMSE.

Fig. 7. Result on Auto Imports Data.

Fig. 8. Result on Auto-Mpg Data.

“No single method has been found to be superior over all others for all data
sets” [4], or as Y. Nakamori and M. Ryoke pointed out, “It is impossible in
principle, due to the nature of the data, to specify a criterion and procedure
to obtain an ideal fuzzy model” [6]. (The global models identified by the
agent-based approach are, in fact, fuzzy models, as discussed in subsection
2.5.) Keeping those arguments in mind, we did not expect the agent-based

13



Fig. 9. Result on Relative CPU Performance Data.

approach to make better predictions than other methods for all data sets. The
results of the three tests show that the agent-based approach can achieve good
performance for some data sets. Since we used linear models as local models,
the approach has better performance when it deals with data which have good
local linearity.

3.2 Sensitivity Analysis of Design Parameters

Two design parameters, p and q were introduced in subsection 2.3. The p
denotes the threshhold of correlation coefficients of good local linear models,
i.e., a local linear model with a correlation coefficient not smaller than the p
is considered to be of enough linearity (or simply speaking, it is a good one).
The q denotes the step size with which a grade-1 agent decreases its vision
for building a good local linear model. In the above three tests, the value of
p was set to be 0.88 since we thought a local linear model with its correlation
coefficient not smaller than the 0.88 is a good one, and the value of q was
set to 10 since we believed that it was reasonable to give a grade-1 agent 10
chances to build a local linear model by decreasing its vision. The values were
set depending on our informed intuition. In this subsection, we will give the
sensitivity analysis of these two design parameters with the three data sets
introduced in subsection 3.1.

First, we give the sensitivity analysis of p. For the three data sets introduced
in the sub-section 3.1, we vary the value of p from 0.98 to 0.78 for each Nt,
with 0.02 as the interval and q = 10. Table 3 shows the result on Auto Imports
Data. We can roughly see that 0.84, 0.86 and 0.88 are good values for p in terms
of RMSE. Similar tables can be drawn based on the Auto-Mpg Data and the

14



Table 3. RMSEs with different values of p — Auto Imports Data

0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 0.78

10 3872 2182 3401 2689 3628 2782 3058 3350 3451 3730 3152

20 3668 2409 3052 2354 2794 2848 3289 3142 2988 3127 4347

30 4582 4387 3641 4557 3495 2482 3251 3702 3937 4081 3381

40 6832 7802 7116 7469 4420 4456 4530 3326 2979 7816 5373

50 34224 32990 31276 64560 70681 3480 2845 2664 4153 4453 4857

60 32960 31520 29765 57132 60563 4601 2833 2231 2626 3695 6600

70 4289 5398 6237 5683 3288 3360 3381 3427 4462 6186 6186

80 7031 7305 6630 9473 5052 4914 4677 5430 5802 5894 6259

90 5538 5872 5535 5995 4845 5029 5058 5491 5801 5954 5954

100 6721 5533 6909 7181 7664 7035 7343 7343 4149 7455 7455

Fig. 10. RMSEj for each of the three data sets.

Relative CPU Performance Data. Users can employ statistical techniques to
more precisely define good values for p. Instead of doing this, this paper will
establish a figure to demonstrate the sensitivity of p with the three data sets.
To get a figure which is easy to understand, we normalize the RMSE for each
Nt into the range [0, 100] according to Eq. 9.

RMSEij
0
=
(RMSEij − RMSEimin)× 100
RMSEimax − RMSEimin

, (9)

where i = 10, 20, · · · , 100 and j = 0.98, 0.96, · · · , 0.78.

15



Then we sum all RMSEs for each p according to Eq. 10.

RMSEj =
100X
i=10

RMSEij
0
. (10)

Fig. 10 shows the RMSEj for each of the three data sets, with p varied from
0.78 to 0.98. We can see that for the Auto Imports Data, 0.88 is the best value
for p in terms of RMSEj; for the Auto-Mpg Data, 0.82 is the best; and for the
Relative CPU Performance Data, 0.82 is the best. Summarizing the results on
the three data bases, the authors suggest that p’s value be set in the range
[0.8, 0.9].

For the sensitivity analysis of q, we varied the value of q from 0.02 to 0.20 for
each Nt, with 0.02 as the interval and p = 0.88. We found that the results are
exactly the same as q = 10.

Based on the above analysis, here we suggest two ways for setting the values of
the design parameters p and q. The first way is to set the values as suggested
in this paper, i.e., to select a value from [0.8, 0.9] for p and set q = 10. The
second way is to set the values based on the sensitivity analysis for each data
sets, i.e., to find different values for different data sets. For example, users can
find good values for p and q using a neural network in the second way.

4 Conclusion and Remarks

This paper presented an agent-based approach to the identification of fuzzy
prediction models for multi-dimensional complex data, inspired by the disci-
pline of complex adaptive systems and survival of the fittest in nature. Each
individual agent tries to build its local model, competing with other agents for
survival, then all surviving agents cooperate with each other to form the global
model by introducing membership functions. Three tests were carried out and
the agent-based approach showed good performance in terms of RMSE.

In this paper, linear models were selected as local models. For data with low
linearity, the authors suggest that non-linear local models could improve the
performance of the approach. Furthermore, agents in the approach could be
equipped with more intelligence; for example, they could have the ability to
build not only linear local models but also non-linear local models, and they
could decide what kind of local models (linear or non-linear) should be built,
depending on different situations. Different techniques to identify membership
functions could be applied; for example, a genetic algorithm was used when
we applied the approach to two-dimensional numerical data [5].

16



To date, the approach has only been used to predict continuous values. In the
future work, it will be developed for predicting discrete or nominal values. This
approach complements rather than competes with existing Soft Computing
methods.

Acknowledgements

We appreciate the help of Ms. Judith Steeh in reading the manuscript. We got
a lot of good advice from Mr. Wei Huang in the research. We owe him many
thanks.

References

[1] R. Becker, O.E. Holland and J.L. Deneubourg, From Local Actions to Global
Tasks: Stigmergy and collective robotics, Artificial Life IV, (Eds. R. Brooks and
P. Maes, ) MIT Press, 1994.

[2] E. Bonabeau, M. Dorigo, G. Theraulaz, Inspiration for Optimization from social
insect behavior, Nature, vol 406, no 6, 2000.

[3] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press, New York, 1999.

[4] J. Han and K. Micheline, Classification and Prediction, Data Mining — Concepts
and Techniques., Morgan Kaufmann Publishers, 2000, pp. 279-333.

[5] T. Ma and Y. Nakamori, An Agent-Based Approach to Identification Prediction
Models, The International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, World Scientific, Vol. 11, No. 4, 2003, pp. 495-514.

[6] Y. Nakamori and M.Ryoke, “Identification of Fuzzy Prediction Models
Through Hyperellipsoidal Clustering”, IEEE Transaction on Systems, Man, and
Cybernetics, vol. 24, No. 8, August 1994.

[7] N.K. Sinha, M.M. Gupta and Lotfi A. Zadeh (Eds.), Soft Computing and
Intelligent Systems: theory and applications, Academic Press, 2000.

[8] T. Stutzle and H. Hoos, MAX-MIN Ant Systems, Future Generation Computer
Systems, vol 16, 2000, pp. 889-914.

[9] T. Takagi and M. Sugeno, “Fuzzy identification of Systems and its applications
to modeling and control”, IEEE Transaction on Systems, Man, and Cybernetics,
vol. SMC-15, No. 1, pp.116-132, 1985.

[10] UCI machine learning repository, available at:
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

17


