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Abstract

In this paper a new approach to Temporal Decomposition (TD) of speech,
called Spectral Stability Based Event Localizing Temporal Decomposition
(S2BEL-TD), is presented. The original method of TD proposed by Atal
(1983) is known to have the drawbacks of high computational cost, and
the high parameter sensitivity of the number and locations of events.
In S2BEL-TD, the event localization is performed based on a maximum
spectral stability criterion. This overcomes the high parameter sensitiv-
ity of events of Atal’s method. Also, S2BEL-TD avoids the use of the
computationally costly singular value decomposition routine used in the
Atal’s method, thus resulting in a computationally simpler algorithm for
TD. Simulation results show that an average spectral distortion of about
1.5 dB can be achieved with line spectral frequencies as the spectral pa-
rameter. It is shown that the temporal pattern of the speech excitation
parameters can also be well described using the S2BEL-TD technique.

1. Introduction

In articulatory phonetics, speech production is considered as a sequence of over-
lapping articulatory gestures, each of which may be thought of as a movement
towards and away from an ideal, but often not reached, articulatory target. The
sound produced by such an articulatory movement corresponds to a phoneme
or a sub-phoneme in speech. In other words, each gesture produces an acoustic
event that should approximate a phonetic target. Adjacent gestures overlap one
another resulting in the characteristic transitions between phonemes that can
be observed in almost any parametric representation of the acoustic speech sig-
nal. Due to co-articulation and reduction in fluent speech, a target may not be
reached before articulation towards the next phonetic target begins. It has long
been a difficult task to determine such targets and their temporal evolutionary
patterns from the acoustic signal alone.
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The so-called temporal decomposition method for analyzing speech achieves
the objective of decomposing speech into targets and their temporal evolutionary
patterns, without any recourse to any explicit phonetic knowledge. This model
of speech takes into account the above articulatory considerations and results in
a description of speech in terms of event targets describing the ideal articulatory
configurations of the successive acoustic events in speech, and event functions
describing their temporal evolutionary patterns. Therefore, it tries to achieve
an optimal transformation from the multidimensional spectral parameter space
to the phonetic space which can be considered for many applications to be a
powerful speech analysis technique.

Suppose that a given utterance has been produced by a sequence of K move-
ments aimed at realizing K acoustic targets. Let us denote the speech param-
eters corresponding to the kth target by a(k), and the temporal evolution of
this event by a function, φk(n). The frame number n varies between 1 and N .
In temporal decomposition of speech, the observed speech parameters, y(n), are
approximated by ŷ(n), a linear combination of event targets as follows.

ŷ(n) =
K∑

k=1

akφk(n), 1 ≤ n ≤ N (1)

In matrix notation the Equation (1) can be written as;

Ŷ = AΦ Ŷ ∈ RP×N ,A ∈ RP×K ,Φ ∈ RK×N

where, P is the dimension of the spectral parameters. In Equation (1), both the
event targets and event functions are unknown and the temporal decomposition
analysis involves the determination of them once the speech parameter sequence
of an utterance is given.

Each acoustic event in speech starts, gradually grows in magnitude and van-
ishes with a certain degree of overlapping between them. Therefore, the event
functions which are representative of the temporal evolutionary patterns of these
events should be; (i) time-limited to describe explicitly, the start and end points
in time and the duration of each event, (ii) non-negative to describe the mag-
nitude of the events during their existence, and (iii) smooth to describe the
gradualness of growth and decay of the events resembling the gradualness of
movement of the articulators in speech production. In the temporal decomposi-
tion analysis point of view, these properties of the event functions can be used
as mathematical constraints in determining the event functions.

The concept of temporal decomposition of speech has attracted many re-
searchers in the recent years, specially in application areas such as speech coding,
recognition and segmentation. The fact that temporal decomposition decomposes
the speech parameters into two elementary components, which occur at a lower
rate than the original speech parameters, gives a means of coding speech effi-
ciently at a lower bit rate (Cheng & O’Shaughnessy, 1991; Shiraki & Honda,
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1993; Ghaemmaghami & Deriche, 1996; Lemma et al., 1997). The strong rela-
tionship between the temporal decomposition representation of speech and the
speech production mechanism has provided the necessary motivation to investi-
gate its application in speech recognition (Bimbot et al., 1988; Dijk-Kappers &
Marcus, 1989). Its usefulness in speech segmentation has also been investigated
(Dix & Bloothooft, 1994).

2. Atal’s Method of Temporal Decomposition

Temporal decomposition of speech was first proposed (Atal, 1983) as a method
for efficient coding of LPC parameters. Although the original implementation
of temporal decomposition of speech (Atal, 1983) was mathematically solid, it
is known to have the following two major drawbacks. (i) The method is com-
putationally costly, making it impractical. (ii) High parameter sensitivity of the
number and locations of the events. In other words, they are very sensitive to
some trivial changes in the analysis parameters.

Atal’s temporal decomposition method involves the following procedure. For a
detailed mathematical treatment, the reader is referred to Atal (1983). First, the
spectral parameter matrix of a windowed speech segment of about 200-300 ms is
decomposed into two orthogonal matrices and a diagonal matrix of eigenvalues,
using the so-called singular value decomposition.

Y T = UDV T

where, Y T is the N × P spectral parameter matrix, U is a N × P orthogonal
matrix, V is a P×P orthogonal matrix, and D is a diagonal matrix of eigenvalues.
N and P are the number of frames in the windowed speech segment and the
order of the spectral parameters, respectively. This allows the event functions to
be expressed as a linear combination of a set of orthogonal functions, and also
allows the number of events, M, to be fixed in the windowed speech segment
under analysis, by taking into account only the number of significant eigenvalues.
Normally, a window of about 200-300 ms gives M = 5.

φk(n) =
M∑
i=1

bkiui(n)

where, ui(n) is the element (n, i) of the matrix U and bki are a set of coefficients.
Next, the nearest event function, φ(n), to the center of the windowed speech
segment, n = nc, is evaluated by considering the minimization of a distance
measure, θ(nc).

θ(nc) =

√∑N
n=1(n− nc)2φ2(n)∑N

n=1 φ2(n)

Minimization of ln(θ(nc)), with respect to the coefficients bi leads to an eigen-
vector problem of a matrix R ∈ RK×K .

Rb = λb
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where the element (i, r) of the matrix R is given by,

Rir =
N∑

n=1

(n− nc)
2ui(n)ur(n),

and b is the vector of coefficients bi. The solution corresponding to the smallest
eigenvalue λ provides the optimum b.

In order to analyze a complete utterance the above procedure should be
repeated with windows located at intervals through out the utterance. Atal’s
method requires the window to be shifted by a small interval, i.e. by a frame
interval, to ensure that no event function is missed. Therefore, if the total num-
ber of windows is L, SVD and eigenvector solving should be performed L times.
SVD is a highly involved computational procedure and this is known to be the
major reason for the high computational complexity of the Atal’s method.

Since the window is shifted at each time by a small interval, the same event
function is generally found for several adjacent windows. In order to find the
locations of the event functions, and to reduce the total set of event functions, a
reduction algorithm based on a zero crossing criterion of a timing function, ν(l),
is incorporated.

ν(l) =

∑N
n=1(n− l)φ2(n)∑N

n=1 φ2(n)

The function ν(l) crosses the ν(l) = 0 axis from positive to negative at each
location l which equals the location of one of the φk(n) for some k.

The spectral targets, ak, are determined by considering the minimization of
the squared error between reconstructed and original spectral parameters, Ei,
with respect to aik’s.

Ei =
N∑

n=1

(
yi(n)−

K∑

k=1

aikφk(n)

)2

, 1 ≤ i ≤ P

where N and K are the total number of frames and events in the entire utterance.
Finally, an iterative refinement procedure is used to improve the event function
shapes and to reduce the reconstruction error. The refined set of event functions
are evaluated by minimizing the reconstruction error, En, of spectral vectors.

En =
P∑

i=1

(
yi(n)−

K∑

k=1

aikφk(n)

)2

, 1 ≤ n ≤ N

The resultant φk(n)’s are used to obtain an even better estimates of the targets,
ak’s. The procedure is repeated until both φk(n)’s and ak’s converge to a set of
stable values.

As described above the high computational cost of Atal’s method (Atal, 1983)
can be mainly attributed to the use of the computationally involved SVD, and
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the repeated evaluation of the event functions at short time intervals before
screening out the redundant event functions using a reduction algorithm. Mar-
cus & Lieshout (1984) investigated the possible validity of TD as a method of
determining phonetically plausible events in speech, but came out with the pa-
rameter sensitivity problem of the original method with respect to the number
and locations of the event functions. In other words, they are very sensitive to
some trivial changes in analysis parameters, i.e analysis window size, number
of parameters retained after singular value decomposition, etc. Dijk-Kappers &
Marcus (1989) improved the TD method to make events more stable, i.e. less
parameter sensitive, but the computational cost has more or less remained the
same because the time consuming SVD was still involved.

3. S2BEL-TD of Spectral Parameters

The proposed new approach to temporal decomposition of speech, called Spectral
Stability Based Event Localizing Temporal Decomposition (S2BEL-TD), intends
to overcome the drawbacks of the original method of Atal by implementing
it in a mathematically simpler way, i.e. by avoiding SVD, while adopting a
spectral stability criterion to determine the number and locations of the events.
Given these number and locations, the subsequent computation of refined event
targets and event functions is much less demanding than the traditional TD
method. Also, this makes the number and locations of the events more parameter
independent.

The S2BEL-TD of Speech involves the following three computational steps.

STEP 1: Determination of the event targets (first approximation).

A(0) =
[

a
(0)
k

]
1≤k≤K

STEP 2: Determination of the event functions (first approximation).

Φ(0) =
[

φk(n)(0)
]

1≤k≤K, 1≤n≤N

STEP 3: Iterative refinement of event targets & event functions.

(A(0),Φ(0)) ⇒ (A(1),Φ(1)) ⇒ · · · (A(S),Φ(S))

The superscript notation indicates the iteration step number. The details of the
Steps 1, 2, and 3 are given in the Sections 3.1, 3.2, and 3.3, respectively.

3.1. Determination of Event Targets

The determination of the first approximation of the event targets is based on a
maximum spectral stability criterion. The spectrally stable points in speech are
used as a hint for the locations where speech events exist. It is assumed that
each acoustic event that exists in speech gives rise to a spectrally stable point in
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its neighborhood. Therefore, the locations of the spectrally stable points and the
corresponding spectral parameter sets can be used as a good approximation to
the event locations and event targets, respectively. Because of this use of points
of maximum spectral stability for event detection, the new approach is termed
spectral stability based event localizing temporal decomposition.

The transition rate of the ith spectral parameter, yi(n), at the time point
n is calculated as the gradient of the best fitting straight line, i.e. regression
line, within the time window [n − M,n + M ], as given in Equation (2). The
squared sum of these transition rates of individual spectral parameters, yi(n),
where 1 ≤ i ≤ P , is defined as the Spectral Feature Transition Rate (SFTR) at
the time point n, and is given by Equation (3).

ci(n) =

∑M
m=−M myi(n + m)∑M

m=−M m2
, 1 ≤ i ≤ P (2)

SFTR : s(n) =
P∑

i=1

ci(n)2, 1 ≤ n ≤ N (3)

The local minima of s(n) indicate the frames with maximum local spectral sta-
bility in speech, and these points are considered as the approximate locations
of the events, and the corresponding spectral parameter vectors as the initial
approximation of the event targets. Therefore, if the local minima of s(n) are at
n1, n2, .., nK , where n1 < n2 < ... < nK , the initial approximation of the event
target matrix, A(0), can be formed as;

A(0) =
[

a
(0)
1 a

(0)
2 · · · a

(0)
K

]

=
[

y(n1) y(n2) · · · y(nK)
]

The number of events, K, and their locations, n1 < n2 < ... < nK , are determined
through the SFTR analysis. Therefore, the window size, 2M , of SFTR analysis
is the only parameter that effects the number and locations of the events in the
S2BEL-TD algorithm.

3.2. Determination of Event Functions

Since the speech events exist only for a limited time duration in continuous
speech, event functions should be time limited. This makes it necessary to add a
constraint to this effect, when evaluating them. This is achieved using a weighting
function, wk(n), corresponding to each event function, φk(n). The weighting
function wk(n) for the kth event function is defined as follows.

wk(n) =





nk−1 − n, if 1 ≤ n < nk−1

0, if nk−1 ≤ n ≤ nk+1

n− nk+1, if nk+1 < n ≤ N
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wk =
[

wk(1) wk(2) · · · wk(N)
]

W =




w1

w2

· · ·
wK


 ∈ RK×N

where, W is called the weighting function matrix. The reason for the above
definition of the weighting function can be justified as follows. It is known that
event function φk(n) exists around its center nk. But, little is known about its
length, i.e. the duration of its existence, at this stage. Since spectral properties
would be less governed by the kth event in the region beyond the centers of the
adjacent events, nk−1 and nk+1, φk(n) should be fairly small in amplitude and
gradually decreasing in this region. Therefore, wk(n) is set to zero in between
the adjacent event centers, and is linearly increased beyond those points. This
provides the event function total freedom to show its temporal behavior between
the points of adjacent event centers, nk−1 and nk+1, but a decreasing degree of
freedom beyond those points.

Although, nk−1 and nk+1 may not be the best limits for the event function
φk(n), they are used at this stage to evaluate the first approximation of the
event functions. In Section 3.3 the use of adaptive weighting functions with
adaptive limits for the events is described as a part of the refinement process.
By considering the columns of the matrix W, diagonal matrices are formed as;

Wn = diag
[

w1(n) w2(n) · · · wK(n)
] ∈ RK×K

The functional J (φn, λ) is formulated by taking into account the sum of the
squared error between the original and the reconstructed spectral parameters,
and a constraint to limit the spreading of event functions in time, as given in
Equation (4).

J (φ(n), λ) =
P∑

i=1

(yi(n)− ŷi(n))2 + λ

K∑

k=1

wk(n)2φk(n)2, 1 ≤ n ≤ N (4)

where λ is a constant weighting factor and,

φ(n) =
[

φ1(n) φ2(n) · · · φK(n)
]T

, 1 ≤ n ≤ N



Nandasena, Nguyen and Akagi: S2BEL Temporal Decomposition 8

yi(n) and ŷi(n) are the ith element of the spectral vectors y(n) and ŷ(n), respec-
tively.

φ(n), where 1 ≤ n ≤ N , is determined by considering the minimization of
the functional J (φ(n), λ) with respect to φ(n) as follows.

∂J (φ(n), λ)

∂φr(n)
=

P∑
i=1

2

(
K∑

k=1

aikφk(n)− yi(n)

)
air + 2λwr(n)2φr(n)

= 0

P∑
i=1

air

(
K∑

k=1

aikφk(n)

)
+ λwr(n)2φr(n) =

P∑
i=1

airyi(n), 1 ≤ r ≤ K (5)

Conversion of Equation (5) into matrix notation results in;

ATAφ(n) + λWT
nWnφ(n) = ATy(n)

φ(n) =
(
ATA + λWn

TWn

)−1
ATyn, 1 ≤ n ≤ N (6)

Therefore, the first approximation of the event function matrix, Φ(0), can be
formed as;

Φ(0) =
(

φ(1) φ(2) · · · φ(N)
)

(7)

The weighting factor λ in the functional J (φ(n), λ) determines the relative
weighting between the two error terms involved. A suitable value for λ is to
be selected, based on simulation results. This value of λ used to determine the
first approximation of the event functions is referred to as λ(0) in the Sections
followed.

3.3. Iterative Refinement Procedure

An iterative refinement procedure is adopted to improve the shapes of the event
functions and the reconstruction accuracy of TD, and to refine the event targets.
The initial event functions show undesirable minor lobes, i.e. negative ripples,
apart from the desirable major lobes as shown in Fig. 1. This violates the non-
negativity property imposed on the event functions. The iterative refinement
procedure effectively smooths-out the minor lobes while allowing the major lobes
to evolve freely. It also improves the reconstruction accuracy of TD and refines
the event targets. This involves the recursive performance of the procedures
described in the Sections 3.3.1 and 3.3.2. Generally, 4 to 5 iterations are required
to shape up the event functions.

3.3.1. Refinement of Event Functions

Event functions are recalculated using the procedure of Section 3.2, but with
an adaptive weighting function and the quantitative balancing of the two error-
terms of the functional J (φ(n), λ), as described below.

(A(l−1),Φ(l−1)) → Φ(l), 1 ≤ l ≤ S
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where, l and S are the iteration step number and total number of iterations,
respectively.

Adaptive Weighting function:
An adaptive weighting function is defined as given in Equation (8). It is adaptive
to the major-lobe limits of the event functions.

w
(l)
k (n) =





l
(l−1)
k − n, if 1 ≤ n < l

(l−1)
k

0, if l
(l−1)
k ≤ n ≤ r

(l−1)
k

n− r
(l−1)
k , if r

(l−1)
k < n ≤ N

(8)

Where, l
(l−1)
k and r

(l−1)
k are the left and right limits of the major lobe of the event

function φk(n)(l−1). This definition of adaptive weighting function restricts the
minor-lobes while allowing the major-lobe to evolve freely. Therefore, it gives
rise to major-lobe expansion and contraction, with a simultaneous minor-lobe
reduction, when the iterations are performed.

Quantitative Balancing of the functional J (φ(n), λ):
Weighting factor λ(l) at the iteration step l is selected so as to balance the
two error terms of the functional J (φ(n), λ) using the results obtained at the
iteration step (l − 1), i.e. Φ(l−1) and A(l−1), as given below.

λ(l) = σ ×




∑N
n=1

∑P
i=1

(
yi(n)− ŷi

(l−1)(n)
)2

∑N
n=1

∑K
k=1 w

(l)
k (n)

2
φ

(l−1)
k (n)

2




where, ŷi
(l−1)(n) =

∑K
k=1 a

(l−1)
ik φ

(l−1)
k (n), and σ is the constant balancing ratio.

The event functions matrix, Φ(l), at the iteration step l is calculated as follows,
similar to the Equations (6) and (7).

φ(n)(l) =
(
A(l−1)TA(l−1) + λ(l)W(l)

n

T
W(l)

n

)−1

A(l−1)Tyn, 1 ≤ n ≤ N

where,

W(l)
n = diag

[
w

(l)
1 (n) w

(l)
2 (n) · · · w

(l)
K (n)

]

Hence,
Φ(l) =

(
φ(1)(l) φ(2)(l) · · · φ(N)(l)

)

3.3.2. Refinement of Event Targets

Refinement of event targets involves the recalculation of them by minimizing the
squared error between the original and the reconstructed spectral parameters,
with respect to the target vectors. Event targets at the lth iteration are calculated
from the event functions at the lth iteration, as described below.

Φ(l) → A(l), 1 ≤ l ≤ S
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The squared error between the original and reconstructed ith spectral parameter
at the iteration step l can be expressed as follows.

E
(l)
i =

N∑
n=1

(
yi(n)−

K∑

k=1

a
(l)
ik φ

(l)
k (n)

)2

, 1 ≤ i ≤ P

By setting the partial derivative of E
(l)
i with respect to air, to zero;

∂E
(l)
i

∂air

=
N∑

n=1

(
yi(n)−

K∑

k=1

a
(l)
ik φ

(l)
k (n)

)
(−2φr(n)(l)

)

= 0
K∑

k=1

a
(l)
ik

N∑
n=1

φ
(l)
k (n)φ(l)

r (n) =
N∑

n=1

yi(n)φ(l)
r (n) (9)

where, 1 ≤ r ≤ K, 1 ≤ i ≤ P
Equation (9) gives P sets of K variable simultaneous equations, using which

a
(l)
ik , where 1 ≤ k ≤ K and 1 ≤ i ≤ P , could be evaluated. Therefore, the event

target matrix at the iteration step l can be formed as follows.

A(l) =
[

a
(l)
ik

]
1≤i≤P, 1≤k≤K

3.3.3. Termination and Convergence of Iterations

The two steps (3.3.1) and (3.3.2) are repeatedly performed until the minor lobe
content, MLC(l), drops below a certain predetermined threshold level, e.g.1%.
Minor lobe content, MLC(l),at the lth iteration step is defined as follows.

MLC(l) =

√√√√
∑K

k=1

∑N
n=1 φ

(l)
k (n)

2
c
(l)
k (n)

∑K
k=1

∑N
n=1 φ

(l)
k (n)

2 × 100%

where,

c
(l)
k (n) =

{
0, if l

(l)
k ≤ n ≤ r

(l)
k

1, otherwise

where, l
(l)
k and r

(l)
k are the left and right limits of the major lobe of the kth event

function, at the lth iteration step. Also, we define the root-mean-squared-error
between the original and reconstructed spectral parameters, at the lth iteration
step as follows.

E(l)
rms =

√√√√ 1

NP

N∑
n=1

P∑
i=1

(
yi(n)− ŷi

(l)(n)
)2

Convergence of MLC(l) and E
(l)
rms with the iteration step number l is an im-

portant property for the iterative refinement procedure. Simulation results show
that good convergence can be achieved by properly selecting the parameters λ(0)

and σ.
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3.4. Segmental S2BEL-TD

The present algorithm of S2BEL-TD analysis takes the total length of the input
speech as a block for the TD analysis. Although there is no problem with this
for word utterances and short sentence utterances, for relatively long utterances
with more than about 500 frames, taking the whole utterance as a single segment
for TD analysis proves time consuming. This can be simply attributed to the
large dimension of the matrices involved in the computational procedure. This
makes it necessary to develop the TD analysis algorithm so that it will work
on short speech blocks, or segments, when analyzing a long utterance of input
speech. This is termed segmental S2BEL-TD analysis. On the other hand, if
S2BEL-TD is to be used in any kind of real time analysis, segmental analysis
becomes inevitable.

The implementation of segmental analysis is based on a mutually non-interacting
events criterion. Let Ei and Ej be two events with event functions φi(n) and
φj(n). The indices i and j describe the chronological order of the two events
Ei and Ej. The two event Ei and Ej are called mutually non-interacting if the
following condition is satisfied.

N∑
n=1

φi(n)φj(n) = 0

i.e φi(n)φj(n) = 0, 1 ≤ n ≤ N

This means that either φi(n) or φj(n) is zero at all time points n. This situation
can be easily visualized as two non-overlapping event functions. Obviously, if
the events Ei and Ej are separated in time by a sufficient number of interme-
diate events they would be mutually non-interacting. We are interested in the
minimum l, let this be L, such that,

N∑
n=1

φi(n)φj(n) = 0, if |i− j| > L

By simple observation of TD results over a large set of speech data it was con-
firmed that L = 3. This means that two event functions with at least 3 interme-
diate events, do not overlap. Therefore, an event could be accurately evaluated
without any unaccounted mutual effects, if the speech segment contains at least 3
adjacent events to both sides. In speech production point of view this may mean
that the feed-forward and feed-back co-articulation do not occur over more than
3 acoustic events.

Using the above result an algorithm for the segmental TD analysis is de-
veloped as follows. Input speech is segmented with at least 2L events in the
overlapping region between two adjacent segments. In each segment we neglect
the first and last L events as inaccurate due to unaccounted mutual effects, ex-
cept for the first and last segment of the input speech. In the first segment, only
the last L events are neglected, and in the last segment, only the first L events
are neglected. The segment size is kept fixed around 100 frames.
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4. Simulation Results

The ATR Japanese and the TIMIT English speech database were used for the
speech data. Both Log Area Ratio (LAR) parameters and Line Spectral Fre-
quency (LSF) parameters were considered as a candidate spectral parameter
for the S2BEL-TD. LAR parameters have given better results, i.e. better re-
construction accuracy, in temporal decomposition (Dijk-Kappers, 1989) over the
other LPC related spectral parameters. LSF parameters have been known to
have the best interpolation properties (Paliwal, 1995; Choi et al., 1995), i.e. lin-
ear combination-ability. S2BEL-TD was implemented on both LAR and LSF
parameters and their reconstruction accuracies are compared as a part of the
performance evaluation of the method. 10th order LAR and LSF parameters
were calculated using a LPC analysis window of 2M = 40 ms at 10 ms frame
intervals, from 8 kHz sampling speech files.

The male Japanese word utterance “aikawarazu” was used with a SFTR
analysis window size of 40 ms to investigate the convergence properties of S2BEL-
TD algorithm. The spectral parameter is LAR and simulations were performed
for λ(0) values of 10, 5, 1, 0.2 and 0.1. The initial minor lobe content, MLC(0), and
the initial RMS error between reconstructed and original spectral parameters,
E

(0)
rms, obtained for different values of λ(0) are shown in the Fig. 2. A high value

for λ(0) causes a high reconstruction error and a relatively low MLC(0), while a
low value for λ(0) causes a relatively low reconstruction error and a high MLC(0).
Fig. 3 shows the typical shape of initial event functions, φk(n)(0) for some k, for
different values of the initial weighting factor λ(0).

The iterative refinement of the event functions and the targets was performed
according to the procedure described in Section 3.3. The initial weighting factor
λ(0) and the balancing ratio σ are constant to be set appropriately according to
the simulation results. Simulation was performed for λ(0) values of 10, 1, 0.2 and
for σ values of 5, 1, 0.2 while maintaining σ = 1 and λ(0) = 0.2, respectively.
The convergence patterns of the reconstruction error (E

(l)
rms against l) are shown

in the Fig. 4 and Fig. 5. Reconstruction error decreases and reaches a certain
minimum after a few iterations. Fig. 6 shows the effect of the iterative refine-
ment on the event function shapes. Minor lobe content decreases and becomes
almost negligible after a few iterations. The minor lobe smoothing and major
lobe reshaping can be observed as desirable effects of the refinement procedure.

In Fig. 7, a plot of SFTR and the final event functions are shown for the fe-
male English sentence utterance “we always thought we would die with our boots
on”. The spectral parameter is LSF, which has the same tendency as LAR but
the magnitude of λ(0) is different. Here λ(0) = 0.005, σ = 1 were selected as ap-
propriate values for the initial weighting factor and balancing ratio, respectively.
SFTR window size of 2M = 40 ms was selected resulting in an average event
rate of about 20 events/sec. The speech waveform of the utterance is also shown
together with the phonetic transcription for reference. The window size, 2M , of
SFTR analysis is the only parameter that effects the number and locations of the
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events in the S2BEL-TD algorithm. It controls the event rate, and can be appro-
priately selected to achieve the optimal performance of S2BEL-TD for different
applications. In speech coding point of view, window size, 2M , can be selected
so as to obtain a certain optimal tradeoff between reconstruction accuracy of the
spectral parameters (spectral distortion) and the bit rate. In speech decoding,
it can be selected to optimize the correlation between phonemes/sub-phonemes
and events.

5. Performance Evaluation

In this section, the performance of S2BEL-TD in terms of interpolation property,
computational complexity, and stability of the number and locations of the events
were evaluated.

Spectral Distortion (SD) is a commonly used measure in evaluating the per-
formance of LPC quantization (Shiraki & Honda, 1993) and interpolation (Pali-
wal, 1995). SD measure is also used for evaluating the interpolation performance
of the proposed S2BEL-TD algorithm. The spectral distortion evaluated is that
between the original spectral parameters, y(n), and the reconstructed, or syn-
thesized, spectral parameters, ŷ(n).

The results are provided in terms of spectral distortion histograms, average
spectral distortion and percentage outliers having spectral distortion greater
than 2 dB. The outliers are divided into the following two types. Type 1: consists
of outliers in the range 2-4 dB, and Type 2: consists of outliers having spectral
distortion greater than 4 dB. Spectral distortion, Dn, for the nth frame is defined
(in dB) as follows.

D2
n =

1

Fs

∫ Fs

0

[10log10(Pn(f))− 10log10(P̂n(f))]2df

where Fs is the sampling frequency, and Pn(f) and P̂n(f) are the LPC power
spectra corresponding to the nth frame of the original spectral parameters, y(n),
and the reconstructed spectral parameters, ŷ(n), respectively.

A set of 250 sentence utterances of the ATR Japanese speech database and
another set of 192 sentence utterances of the TIMIT English speech database
were selected for spectral distortion evaluation. The Japanese speech data set
consists of about 20 minutes of speech from 10 speakers (5 male & 5 female).
Meanwhile, the English speech data set contains 24 speakers, 2 male and 1 female
from each of 8 dialect regions. Each speaker read a different set of 5 phonetically-
compact sentences (the SX sentences) and 3 phonetically-diverse sentences (the
SI sentences). Both LAR and LSF parameters were calculated, and S2BEL-TD
analyzed. SD was calculated on a frame-by-frame basis.

Table I & Table II give the summary of the spectral distortion results obtained
for the above sets of utterances with LAR and LSF as the spectral parameter.
The distribution of the spectral distortion in the form of histograms are shown
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in Fig. 8 and Fig. 9, each for both cases of LAR and LSF parameters concerning
with one speech data set. Results indicate slightly better performance in the case
of LSF parameters over LAR parameters.

(Table I & Table II here)

Since the S2BEL-TD aims at overcoming the two drawbacks of high computa-
tional cost, and the high parameter sensitivity of the number and locations of the
events imposed on the Atal’s method, it is necessary to evaluate the performance
of S2BEL-TD on these aspects. With respect to computational complexity the
S2BEL-TD shows a significant improvement over the original method by Atal.
This can be mainly attributed to the fact that the SVD is the most time con-
suming part of the Atal’s method (Dijk-Kappers & Marcus, 1989) and the SVD
is not required for S2BEL-TD. Moreover, the S2BEL-TD was implemented in a
mathematically simpler way than that of Atal’s method. The instability problem
of the number and locations of the events with respect to TD analysis window
size and the number of parameters retained after SVD, has also been overcome
in S2BEL-TD. It has been emphasized in Section 3.1 that the window size of
SFTR analysis is the only parameter that effects the number and locations of the
events in the S2BEL-TD method. Since SFTR is a local measure, the TD anal-
ysis window size makes no difference in the number and locations of the event
functions found. But this is not the case in the original method by Atal, where
even a trivial change in window size or number of parameters retained after SVD
leads to a dramatic changes in the number and locations of the event functions.
Investigation of Atal’s method by Marcus & Lieshout (1984) has revealed this
fact.

In addition, the S2BEL-TD was used for analyzing a considerable number
of speech utterances spoken by different speakers (male & female) in differ-
ent speech conditions and worked satisfactorily. All speech utterances were well
S2BEL-TD analyzed using the same parameters, i.e. the initial weighting factor
λ(0) and the balancing ratio σ.

6. S2BEL-TD of Excitation Parameters

In this section, the application of S2BEL-TD technique to speech excitation
parameters and some simulation results are presented.

6.1. Determination of Excitation Targets

The S2BEL-TD technique is employed to describe the temporal characteristics
of the speech excitation parameters, i.e gain, pitch and voicing. The same event
functions evaluated for the spectral parameters are used to describe the temporal
pattern of the gain, pitch and voicing parameters also. The speech production
mechanism is assumed to be a synchronously controlled process with respect to
the movement of different articulators, i.e. jaws, tongue, larynx, glottis etc., and
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therefore the temporal evolutionary patterns of different properties of speech, i.e.
spectrum, pitch, gain and voicing, can be described by a common set of event
functions.

Let b(n) be an excitation parameter, i.e. gain, pitch or voicing. Then b(n) is
approximated by b̂(n), the reconstructed excitation parameter for the nth frame,
as follows in terms of excitation targets, bk’s, and the event functions, φk(n)’s.

b̂(n) =
K∑

k=1

bkφk(n), 1 ≤ n ≤ N (10)

In matrix notation, Equation (10) can be written as;

B̂ = AbΦ

where B̂ and Ab are the reconstructed excitation parameter vector and excitation
target vector, respectively.

In Equation (10), the event functions, φk(n)’s, are known and therefore the
excitation targets, bk’s, are determined by minimizing the squared error between
the original excitation parameters and the reconstructed excitation parameters
as follows.

Eb =
N∑

n=1

(
b(n)−

K∑

k=1

bkφk(n)

)2

By setting the partial derivative of Eb with respect to br, to zero;

∂Eb

∂br

=
N∑

n=1

(
b(n)−

K∑

k=1

bkφk(n)

)
(−2φr(n))

= 0,

K∑

k=1

bk

N∑
n=1

φk(n)φr(n) =
N∑

n=1

b(n)φr(n), 1 ≤ r ≤ K (11)

Equation (11) gives a set of K variable simultaneous equations, using which bk,
where 1 ≤ k ≤ K, could be evaluated.

In the case of pitch parameters, linear interpolation was used within the
unvoiced segments to form a continuous pitch contour. In the case of voicing
parameters, a hard limiter with a threshold value of 0.5 was used to determine
the reconstructed binary voicing parameters and binary voicing targets, from
the non-binary results of Equation (10) and (11), respectively.

6.2. Simulation Results

The gain, pitch and voicing parameters, hereafter indicated by g(n), p(n), and
v(n), respectively, were calculated at 10 ms frame intervals with a 40 ms analysis
window, for the sentence utterance “kantan na shiryou wo ookuri shimasu node,
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shibaraku omachi kudasai ”, of the ATR Japanese speech database. Each param-
eter contour was S2BEL-TD analyzed according to the procedure described in
the Section 6.1 with the event functions obtained from S2BEL-TD analysis of
LSF parameters.

Fig. 10 shows the plots of original and reconstructed gain parameters and
the plot of frame-wise gain error, eg(n), where eg(n) = ĝ(n) − g(n). The RMS

gain error,
√

Eg, where Eg = 1
N

∑N
n=1 eg

2(n), was found to be about 4 dB. Fig.
11 shows the plots of original and reconstructed pitch frequency parameters and
the plot of frame-wise pitch frequency error, ep(n), where ep(n) = p̂(n) − p(n).

The RMS pitch error,
√

Ep, where Ep = 1
N

∑N
n=1 ep

2(n), was found to be about
2.3 Hz. In the case of binary voicing parameters, the voicing error, ev(n), where
ev(n) = v̂(n)− v(n), appeared only at, but not all, voiced/unvoiced boundaries
as error spikes of mostly 1 frame. The percentage number of frames with voicing
errors was found to be about 4%.

Moreover, the performance of S2BEL-TD in terms of excitation parameters
has also been evaluated over the set of 250 Japanese sentence utterances and the
set of 192 English sentence utterances used in Section 5. The RMS gain error,
RMS pitch error and percentage number of frames with voicing errors were
found about 4 dB, 6 Hz and 5%, respectively. It was observed that the RMS
gain error and RMS pitch error can be mainly attributed to some discrete time
points, where the corresponding frame-wise gain error and pitch error obtained
very high values. Meanwhile, no voicing errors were observed during continuous
voiced and unvoiced segments, except for the points of voicing transitions.

The significant match between the original and reconstructed excitation pa-
rameters results in the fact that a common set of event functions can be used to
describe the temporal patterns of both spectral and excitation parameters.

7. Conclusions

This paper presents a new approach to temporal decomposition of speech. The
spectral stability criterion used in event localizing, and the use of adaptive
weighting functions in determining the event functions, can be highlighted as
the main features of the proposed S2BEL algorithm for TD. The former makes
the event localization more parameter independent eventually overcoming the
instability problem of the Atal’s method. The latter gives a great degree of
freedom to the event functions to evolve through iterations. Also, the S2BEL
algorithm which makes no use of SVD algorithm and the redundant calculation
of event functions, can be considered as a significant improvement in terms of
computational cost compared to the original method by Atal. On continuous
speech S2BEL-TD can be performed on a segmental basis. The representation
of speech excitation parameters also in terms of excitation targets and event
functions makes S2BEL-TD a complete higher-level parametric model of speech.
With these improvements, S2BEL-TD has the potential to become a strong tool
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in analyzing speech, from which researchers working on speech coding, recogni-
tion and synthesis may profit.
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Table 1: Average spectral distortion and percentage number of outlier frames for LAR’s and
LSF’s. The speech data set consists of 250 sentence utterances spoken by 10 speakers (5 male
& 5 female) of the ATR Japanese speech database

Parameter Avg. SD (dB) ≤ 2 dB 2-4 dB > 4 dB
LAR 1.7831 69.0% 26.8% 4.2%
LSF 1.4643 80.6% 18.5% 0.9%
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Table 2: Average spectral distortion and percentage number of outlier frames for LAR’s and
LSF’s. The speech data set consists of 192 sentence utterances spoken by 24 speakers (2 male
& 1 female from each of 8 dialect regions) of the TIMIT English speech database

Parameter Avg. SD (dB) ≤ 2 dB 2-4 dB > 4 dB
LAR 1.6863 72.7% 23.7% 3.6%
LSF 1.4778 79.9% 19.0% 1.1%
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Figure 1: Typical shape of an initial event function. Note the presence of undesirable minor
lobes, i.e. negative ripples, in addition to the desirable major lobe.
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Figure 2: Initial RMS Error between original and reconstructed spectral parameters, E
(0)
rms

(left), and initial minor lobe content, MLC(0) (right), for different values of λ(0), as bar plots.
Note that MLC(0) decreases, but E

(0)
rms increases with increasing λ(0).
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Figure 3: Typical shape of the Initial event functions, φk(n)(0), for some k. Note that MLC(0)

increases as λ(0) decreases.
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Figure 4: Convergence patterns of the reconstruction error, E
(l)
rms, with iteration step l, for

different values of λ(0). Balancing ratio is σ = 1. Note that after few iterations E
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a minimum.
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rms, with iteration step l, for

different σ. Initial weighting factor is λ(0) = 0.2. Note that after few iterations E
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a minimum, and σ acts as an accelerating factor for convergence.
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Figure 6: Effect of iterative refinement on event function shapes for some k (Top: initial
event functions, φk(n)(0)’s, Bottom: final event functions, φk(n)(S)’s). Weighting functions,
wk(n)(l)’s, are also shown for reference. Note the minor lobe smoothing and major lobe re-
shaping property which finally results in well-shaped and non-negative event functions.
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Figure 7: Plot of SFTR and the final event functions for the utterance “we always thought we
would die with our boots on”. S2BEL-TD analysis has been performed on the utterance on a
segmental basis. The speech waveform is also shown together with the phonetic transcription
for reference. Broken lines in the speech plot show the phoneme boundaries, while the solid
lines in the SFTR plot show the spectrally stable frame locations, i.e. local minima of SFTR.
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Figure 8: Distribution of the Spectral Distortion (SD) between original and reconstructed
spectral parameters in the form of histograms. Left: SD histogram for the LAR parameters,
Right: SD histogram for the LSF parameters. Speech data set consists of 250 sentence utter-
ances spoken by 10 speakers (5 male & 5 female) of the ATR Japanese speech database. LSF’s
show slightly better reconstruction accuracy than LAR’s.
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Figure 9: Distribution of the Spectral Distortion (SD) between original and reconstructed
spectral parameters in the form of histograms. Left: SD histogram for the LAR parameters,
Right: SD histogram for the LSF parameters. Speech data set consists of 192 sentence utter-
ances spoken by 24 speakers (2 male & 1 female from each of 8 dialect regions) of the TIMIT
English speech database. LSF’s also show slightly better reconstruction accuracy than LAR’s.
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Figure 10: Original gain parameters, g(n), reconstructed gain parameters, ĝ(n), and frame-
wise gain error, eg(n) = ĝ(n)− g(n), for the utterance “kantan na shiryou wo ookuri shimasu
node, shibaraku omachi kudasai ”, of the ATR Japanese speech database. The RMS gain error
is 4.051 dB.
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Figure 11: Original pitch parameters, p(n), reconstructed pitch parameters, p̂(n), and frame-
wise pitch error, ep(n) = p̂(n)− p(n), for the utterance “kantan na shiryou wo ookuri shimasu
node, shibaraku omachi kudasai ”, of the ATR Japanese speech database. Pitch error is shown
only for the voiced segments of the utterance. The RMS pitch error is 2.2984 Hz.


