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Abstract

We present a new and complete proof of Chew’s theorem, which states that a
compatible term rewriting system has a unique normal form property, i.e., a <* b
implies ¢ = b for any normal forms a,b.

1 Introduction

A term rewriting system (TRS) is a set of directed equations. As a compu-
tation/inference mechanism of an equational specification/logic, the natural
question is whether its computation/inference terminates, and the next ques-
tion is whether its result is unique.

The unique normal form property (UN), i.e., ¢ «<* b implies a« = b for any
normal forms a,b, guarantees that the result is unique. If a TRS is terminat-
ing, UN can be tested by using the critical pair lemma [13]. However, UN is
undecidable without termination [14,10].

A frequently used concept in proving UN is the Church-Rosser property (CR),
which says that any two convertible terms ¢, s are joinable, i.e., 1 —%; «* s.
CR obviously implies UN. When a TRS does not terminate, most of the known
sufficient conditions for CR require that a TRS be:

— non-overlapping (i.e., it has no critical pairs) or its extensions, and
— left-linear.
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For instance, the next theorem is well-known and has been extended to loosen
the non-overlapping restriction [30,13,31,28,29.25].

Theorem 1.1 [30] A left-linear non-overlapping TRS is CR.

However, the non-overlap assumption alone is not sufficient for concluding
CR. In [13], the following two counter examples are presented:

dz,z) —0 d(z,x) — 0
Bo={d f@) =1 (o Re={ ) — d ()
2 — f(2) 1 — f(1)

In R; (from Huet), d(2,2) possesses two distinct normal forms 0 and 1. Thus
Ry is not UN, hence Ry is not CR. In R, (from Klop and Barendregt), 1
possesses two distinet reduction paths 1 —% 0 and 1 —%  f(0). Since the
only possible reduction sequence from f(0) is the infinite sequence

[(0) =, d(0, f(0)) —r, d(0,d(0,f(0))) —r, d(0,d(0,d(0, [(0)))) =g, -+

0 and f(0) cannot be joined, hence R, is not CR. Note that since 0 is a normal
form and f(0) has no normal forms they do not violate UN of R,.

Chew’s statement that a strongly non-overlapping TRS is UN [5] distinguishes
between them. A TRS is called strongly non-overlapping it two linearizations of
its rules have no critical pairs. For example, R, is strongly non-overlapping, so
is UN, too; however, Ry is not strongly non-overlapping because of an overlap
between linearizations of the first and the second rules.

As an extension, Chew also stated that UN holds for a compatible TRS, where
a TRS is compatible if, for each pair of rules, some linearization of a pair of
rules is almost non-overlapping. However, there is a general feeling of doubt
about the original proof in [5]. In fact, there is a “gap” in the proof of a key
lemma (see Appendix for details).

There have been several attempts at providing a new proof of Chew’s theorem,
and partial answers have been obtained [37,22.32].

De Vrijer refined Chew’s methodology in terms of conditional linearization
[37]. The conditional linearization R of a TRS R is a semi-equational condi-
tional TRS (CTRS) such that RY and R are the same in convertibility and
in the set of normal forms. Accordingly, UN of R is reduced to CR of R”.
Based on this observation, UN of combinatory logic with parallel-conditional
is proved using a model-theoretic argument.

Toyama and Oyamaguchi proposed a variant of conditional linearization, called



left-right separated CTRS (LRCTRS). They gave a sufficient condition for UN
of non-duplicating TRSs [32].

Ogawa stated that UN holds for a larger class than compatible systems, called
weakly compatible systems [22]; however, his proof is insufficient and the state-
ment is still an open problem (see Note 7.9).

This paper presents a new complete proof of UN of compatible TRSs by
showing CR of compatible LRCTRSs. We design a peak elimination system
(PES) Pgr for a reduction system R, which is a reduction system on proofs
t; «* t, in R. If a proof is reduced to a normal form of Pg, it must be
valley-shaped t; —*;«* t,,, hence R is CR.

Then we introduce a binary relation on reduction steps called an independence.
Intuitively, an independence of two reduction steps is a sufficient condition so
that one reduction step does not go into a subproof (conditional part) of
the other. We also show that the existence of an independence implies the
termination of PES Pgr of an (labeled) abstract reduction system (ARS) R
under certain restrictions, whereas most conventional proofs of CR have direct
weight constructions to show the diamond property [27,2].

Our construction of the independence is 1l; for non-overlapping LRCTRSs
and 1, for compatible LRCTRSs. Let «,  be reduction steps in a proof A.
Intuitively, o 1L; 3 means that a and 3 are separated by positions, that is,
their positions are parallel to each other and no intermediate reduction steps
cover either of them. An independence L, is defined as 1l; U 15, and o 15 3
means that a and [ are separated by a special term called barrier, that is,
there is a barrier between a and 3 in a proof.

This paper is organized as follows. Section 2 provides basic definitions and
states the main result. Section 3 introduces notions of LRCTRS and a con-
ditional linearization. Section 4 demonstrates the peak elimination method
of an (labeled) ARS, and we provide the criteria to show termination of a
PES in terms of an independence. Section 5 presents our basic methodology
of constructing an independence for an LRCTRS.

In Section 6, we construct an independence 1y and prove CR of a non-
overlapping LRCTRS as an introductory application. In Section 7, we prove
CR of a compatible LRCTRS by extending the independence 1, with 1,
and by supplementing the argument of the overlapping case. As a result we

derive UN of a compatible TRS.

Section 8 describes related work, and Section 9 concludes this paper. Appendix
describes Chew’s original proof and its gap.



2 Basic definitions and Main result

In this section, we introduce basic notions and then state our main result.
The definitions and terminology of abstract reduction systems, terms, and
term rewriting systems are taken from [16].

An abstract reduction system (ARS) (D, —) is a tuple of a domain D and a
binary relation — called a reduction relation on D. The domain D is often
omitted. Each element of the reduction relation is called a reduction step,
denoted by d — d'. The symmetric closure, the reflexive transitive closure,
and the reflexive transitive symmetric closure of — are written as «», —*, and
—*, respectively. If there is no d' such that d — d’, then d is a normal form
of —. The set of all normal forms of — is denoted by NF_. If d —* d' and
d' € NF_, then we say d has a normal form d', and d' is called a normal form

of d.

An ARS — has the unique normal form property (UN) if d <= d' implies
d = d' for each pair of normal forms d and d’, where = is the identity on D.
We say — has the Church-Rosser property (CR) if dy and dy have a common
reduct ds (i.e., d; —=* d3 «* dy) for any d; < d,.

An ARS — is strongly normalizing (or terminating, SN) if there is no infinite
reduction sequence dy — dy — - - -, and weakly normalizing (WN) if any d € D
has a normal form.

The sequence A : dy < dy < -+ < d, is called a proof (of length n — 1).
A proof of length 0 is called an empty proof. We often write A as d; <" d,.
Each step in a proof is assumed to have a direction, that is, — or «, even if
it is not specified. A proof d; < dipq « -+ > d; is a subsequence of a proof
dy & dy & - d,ifl <1< 5 < n. A proof of the form dy «+— dy — ds is
called a peak.

Let F' be a set of function symbols, and let V be a countably infinite set
of variables. Each function symbol f is supposed to have its arity ar(f). A
function symbol ¢ such that ar(c) = 0 is called a constant symbol. The set of
all terms built from F' and V' is defined as follows:

(i) Constant symbols in F' and variables in V are terms.
(ii) If ty,...,t, are terms, and f is a function symbol in F' such that ar(f) =
n, then f(ty,...,t,) is a term.

V(t) denotes the set of variables occurring in a term t.

Let O be a fresh special constant symbol. A context C[ ] is a term built from
FUD and V. When C[ ] is a context with n Os and ¢,---,t, are terms,



Clty, -+, 1,] denotes the term obtained by replacing the ¢th O from the left in
C[] with ¢; for all ¢ = 1,...,n. For a term ¢, Cy[ ] is the context obtained by
replacing all variables in ¢ with O.

N denotes the set of all natural numbers and N* denotes the set of all finite
sequences of N. ¢ denotes the null sequence. For p, p’ € N*, p; p’ denotes their
concatenation, and |p| is the length of p. N* encodes positions in a term. The
set of all positions Pos(t) in a term ¢, the subterm ¢/p occurring at p in ¢, and
the head symbol head(t) € F'UV are defined simultaneously as follows:

(i) If t is a constant or a variable, then
Pos(t) = {c,

head(t) = t,
t/e =1.

(ii) Ift = f(ty,...,t,), then

Pos(t) = {e} U{ig|1 < ¢ <nand g € Pos(t;)},

head(t) = f,
t/e =1,
t/ip = t;/p.

For terms t, s and position p € Pos(t), t[p < s] is the term obtained from ¢
by replacing the subterm at p with s.

A substitution is a set of the form {z; := ty,...,2, = t,} with distinct
variables z; and terms ¢;, and t{xy :=t;,..., 2, :={,} denotes a term obtained
by replacing all occurrences of x; in ¢t with ¢; for all e =1,... n.

For positions p; and py, py < po if py is a prefix of p,. We write p; < py if
p1 < pz and p; # py. When neither p; < py nor py < py, p1 and py are called
parallel; denoted by p1 || pa. p1 A p2 denotes the longest common prefix of p;
and py.

A term rewriting system (TRS) is a set R of rewrite rules. A rewrite rule is
a pair of terms denoted by [ — r satisfying two conditions: (1) [ is not a

variable and (2) V(1) 2 V(r). We call [ and r the left-hand side (LHS) and
the right-hand side (RHS) of [ — r, respectively.

A TRS R defines the reduction relation — g on the set of terms as

—pr = {C[l0] =g C[r0] | C]]is a context, @ is a substitution, and
I —re R}



A term [0 is called a redex of Rif [ — r € R. Suppose a redex [;0; of a rule
l; — r; occurs at position p; in t (2 = 1,2). If p1 || p2, then [16; and 1,0, are
called parallel. If ;/q¢ = « € V and py > py;q for some ¢, then we say that
1101 nests [,05 and (36, occurs in a substitution part 6, of [16;. Otherwise, [0,
and [,0, are overlapping.

When we think of a pair of rewrite rules Sy : [; — r; and S3 : [; — 7y, their
variables are appropriately renamed so that S; and 5, do not share variables.

For rewrite rules S; : [} — 1,5, : [ — 74, suppose there is a non-variable
subterm ly/p such that {; and I;/p are unifiable with the most general unifier
6. Then, (lz[p < r1]0,r20) is called a critical pair of S; and Sy (obtained by an
overlap of S; on S, at position p) unless Sy and 5, are the same rules modulo
renaming of variables and p = e. A critical pair (t1,1;) is trivial if t; = 5. A
critical pair of two rules in a TRS R is called a critical pair of R.

A TRS R is non-overlapping if it has no critical pairs. If each critical pair of
a TRS R is an overlay, that is, an overlap at the head position ¢, then R is
called overlay.

A term t is linear if every variable occurs in ¢t at most once. A rewrite rule
(a TRS R, respectively) is left-linear if its LHS (the LHS of each rule in R,

respectively) is linear.

Definition 2.1 A substitution p is called a variable substitution if xp € V for
any x € V. A variable substitution 8 is called a renaming of variables if 6 is
injective, that is, 0 # 2’0 for any distinct =, 2’ € V.

Definition 2.2 A term { is a linearization of a term ¢ if ¢ is linear and there
is a variable substitution p such that {p = t. For a rewrite rule [ — r, [ — 7 is
called a linearization of [ — r if there is a variable substitution p such that

— [ is a linearization of [ satisfying Ip = [, and
—Tp=r.

Example 2.3 For a rewrite rule f(x,z,y) — ¢(y,x, ), all of the following
are its linearizations: f(x1,22,y) — gy, x1,21), f(x1,22,y) — g(y, 71, 72),
flar2a,y) = gy, 22, 21), and f(21, 22, y) — g(y, 2, 72).

Definition 2.4 [5,36,37] A TRS R is compatible' if for any two rules S :
Iy, - r; and Sy : I, — 7y in R there exist linearizations S; : [, — 7; of S,
(: = 1,2) such that S; and S, are almost non-overlapping, that is, any critical
pair of S and S, is a trivial overlay.

1 De Vrijer’s terminology [36] is used here. The corresponding notion in Chew’s
original paper is “strongly non-overlapping and compatible”.



Example 2.5 Combinatory logic
CL={Szyz — az(yz), Kay — «, [z — x}

can be regarded as a TRS by letting the symbols S, K, and I be constants
and by introducing a new binary function symbol expressing the function

application (e.g., Ap in [16]). A TRS CL-pc, which is the union of CL and the

parallel-conditional rules
{CTzy — z, CFzy —y, Czax — x}

is compatible since the linearization C'T'ry — x of the first rule and a lin-
earization C'zxyxy — x7 of the third rule are almost non-overlapping, and
CFry — y and Czzyx9 — 49 are also almost non-overlapping.

The aim of this paper is to present a complete proof of Chew’s theorem [5].

Main Theorem A compatible TRS is UN.

3 Left-right separated CTRS and conditional linearization

This section introduces conditional linearization using a slightly extended ver-
sion of left-right separated conditional term rewriting systems [32]. The idea
of conditional linearization originated with de Vrijer [36,37].

3.1  Left-right separated CTRS

Definition 3.1 A left-right separated conditional term rewriting system (LRC-
TRS) is a set of conditional rewrite rules with extra variables

[—r<x1=y,  ,Tpn = Yn

with V(1) = {xy,...,2,} and V(r) C {yy,...,y,} satisfying the following

conditions?.

(i) 1 is a linear non-variable term,
(i) {z1,..., 2z} N {y1,...,yn} =0, and
(itl) @; Za;ifi#75.°
?In the definition of LRCTRS in [32] there is an additional condition (iv) that

restricts LRCTRSs to be “non-duplicating” (see Note in [32]).
3y; = y; may hold for i # j.




[ — r is called the unconditional part, and 1 = y1,---, 2, = y, is called the
condition partof | - r < xy = y1,---, 2, = y,. The unconditional part of R
is the set of all unconditional parts of its rewrite rules.

For convenience,

(i) a condition part is often abbreviated to @, Q’, ..., and
(ii) variables in the left-hand side of a rule are indexed by N in a left-to-right

manner, e.g., f(l’l,g(l'z,l'?,)), g(h(xllv l’/z),l'é), ete.

N

Definition 3.2 Let R be an LRCTRS. The reduction relation lfzi in R at
level v is inductively defined as follows.

v
— B = @7

C[]is a context, )
z}RHl = C[ZG]XA C[fe] Zﬁfﬁxlzylv"'vxn:ynER, and

Ry *
v .
;0 —p oy fori=1,... n.

The proof ;6 X); y;0 is called the jth subproof of 0[20] lf?wrl C[ro] for j =

1,...,n. For the left-oriented reduction step C'[70] XR;‘+1 C[i@], y,;0 g; x;0
is called the (n — j + 1)-th subprooffor yj=1,...,n

Subproofs of reduction steps at level 1 are caused by taking the reflexive closure

of the empty relation. Thus, X)RI corresponds to a reduction relation of a
possibly non-left-linear TRS. In the sequel, most definitions are only defined
for right-directed reduction steps, but they are easily extended to left-directed
reduction steps.

The reduction relation lR is often treated as more than a relation; we assume
that a reduction step « : C[l@] 7 C[70] due to Sl = ¢« Q, is implicitly

associated with the following mformatlon the rule 5’ the position pos(a) of
the redex 10 in C[l@] and the subproofs. A reduction step in R is often denoted

as t —> #if it is due to the rewrite rule S € R.

We simultaneously deﬁne the set Addr(A) C N* of addresses of the reduction

steps in a proof A : t; HR t,, and the function red4(o) mapping an address
o € Addr(A) to the reduction step at o in A:

Addr(A) ={1,....n =1} U{iyo |l <t < nand o € Addr(A;;)},
reda(i) = t; Z> tiggfori=1,....n—1,

reds(1jo) = redy, (o),



where A;; is the jth subproof of red4(¢).

Thus we say a reduction step « is in A when o = redy(o) for some o €
Addr(A). The reduction step red4(i) is called the ith top reduction step of A
fori=1,...,n — 1. A reduction step reds(o) with |o| = 3 is called a subtop
reduction step of A. Top reduction steps and subtop reduction steps are called
visible. For a proof A in fx’, we define size(A) as the number of elements in

Addr(A).
Here we introduce some notational conventions.

— We call t; is the ¢th term in A : ¢, X% t,, and write t; € Afori =1,...,n.

— The set of all reduction steps in A is denoted by A itself when no confusion
will arise, so we write, e.g., @ € A. The set of all top (subtop, visible, re-
spectively) reduction steps of A is denoted by top(A) (subtop(A), visible( A),
respectively).

— The set of all reduction steps in «, that is, a and all reduction steps in its
subproofs, is denoted by sub(«). The set of all reduction steps in all proper
subproofs of « is denoted by sub™(«), i.e., sub™(a) = sub(a) \ {a}.

— When we refer to the position of a reduction step, we adopt ‘automatic
type-cast’ and omit pos() when no confusion will arise. For instance, we
write a < p instead of pos(a) < p for a reduction step a and a position p.
Moreover, we write A < p (A < p, A £ p, A £ p, respectively) if v < p
(v <p,v£p, v LDp, respectively) for any reduction step v € top(A).

3.2  Conditional linearization

In this section, we introduce (left-right separated) conditional linearization
of a TRS. We show that UN of a TRS is reduced to CR of its conditional

linearization.

Definition 3.3 For a rewrite rule S : [ — r, its conditional linearization
Sl — 1< @ is aleft-right separated conditional rewrite rule constructed as
follows.

(i) [ is a linearization of I such that V(Z) NV({) =0 and Ip = 1 for some
variable substitution p,
(ii) = r, and
(iii) @ = xp is added to the condition part @ for all x € V(i)

Note that conditional linearizations of S are unique modulo renaming of vari-
ables in [. The set of conditional linearizations of all rules in R is called the
conditional linearization of R.



Example 3.4 The LRCTRS R below is the conditional linearization of R.

d(z,x) — 0 d(xy,29) — 0 = vy =a,a9 =2
R=3 fly) = dy, f(y)) {- B=13 fly) = d(y, f(y)) = n =y
1= f(1) 1 — f(1)

The following theorem is a slight extension of Theorem 18 in [32]. In fact, both
theorems (and their proofs) are easy reformulations of Theorem 3.8 in [37].

Theorem 3.5 Let R be the conditional linearization of a TRS R. [ffx’ is UN,
then R is UN.

Proof. We denote the sets of normal forms of R and R by NFgr and N Fp,
respectively. As with Theorem 3.8 in [37], the proof is done using the following
claim.

Claim R is UN if all of these conditions hold:

(i) S5 2 oh
(ii) R is UN.
(iii) NFs D NFp.

Proof of Claim. Suppose there are distinct normal forms ¢ and ¢’ such that
t <5 1. Then t X)R t from (i). From (iii), ¢,#' € NFp. Thus, t = ¢’ from (ii).
This leads to a contradiction. 0O

Now we show that R and R satisfy the above properties. Since the reduction
relation lf%l of R at level 1 coincides with —p, (i) apparently holds. (ii) holds
from the assumption of the theorem. We assume for (iii) that a term exists
in NFg but not in NIy, and derive a contradiction. Let ¢ be such a term
that is minimal wrt the number of function symbols in it. Then ¢ = 10 for
some substitution # and a rule S : [ — 7 < Q € R that is the conditional
linearization of S : [ — r € R. Thus, there exist positions p; and p, such that
[/py =1/py = x and t/py # t/py for some non-linear variable x in [; otherwise
t would be a redex of R. t/p1,t/p2s € NFg and t/p; X% t/ps. Since R is NF,
either t/py or t/p, is not in N F. This contradicts the minimality of t. O

We say an LRCTRS is non-overlapping (overlay, respectively) if its uncondi-
tional part is non-overlapping (overlay, respectively).

Definition 3.6 An LRCTRS R is compatible if for every two rules Sl —
7:1 = 11 = Y115 - - .,l’lnl = ylnl and 52 . 12 — 7A"2 = To1 = Y215 - .,l’gnZ = y2n2

10



in R there exist terms 1, 79 such that

(1) 772'{1'2']‘ = y2]|]:},,n2}5f2 (1: 1,2),and
ii) the rewrite rules [y — 7, and [ — 75 are almost non-overlapping.
g

With Definition 2.4 and the above definition, it is easy to prove the following
lemma.

Lemma 3.7 A TRS R is compatible iff its conditional linearization R is com-
patible.

In the above definition, 7 and 7 are not generally unique. For convenience, we
assume that the choice function y maps a pair (S, S3) of rules in a compatible
LRCTRS to a pair (rq, r,) that satisfies the conditions of the above definition.
We call x({S7,S2)) the standard pair of compatibility of (S, Ss).

In Section 7, we prove CR of compatible LRCTRSs. Since CR implies UN,

Main Theorem will be derived from Theorem 3.5.
3.3 Operations on proofs of an LRCTRS

In this section, we introduce operations on proofs that we freely use in later
sections.

Definition 3.8 For proofs Ay,..., A,, a context C[ | with n O’s, and a
position p, we define operations, namely, concatenation A;; Ay, embedding
C[Ay, ..., A,], and restriction A;/p as the following. The operator ; is as-
sumed to have higher priority than /. We associate a mapping called parent
with each of them.

For proofs Ay : t; X)R t, and A, : 1, XU% tutm, the concatenation Aq; As of Ay

and A, is the proof ¢, X)R tn X)R totm- The parent of reda, .4, (i0) is reda, (1)
if ¢+ < n, otherwise red,({t +1 — n}o).

For proofs A; : ¢; X% t (¢ = 1,...,n), the embedding C[Ay,...,A,] of the
proofs Ay, ..., A, into C[ ] is the concatenation C'Ay;---;CA,, where
CAi = C[t,, .t tintipns ] S Ittt o L],

and the kth top reduction step of C'A; and that of A; are the same ex-
cept for the context. We call C'A; the A;-segment of the embedding. Suppose
that redoga, ... a,7(m;) is the first top reduction step of the A;-segment. If
redcepay,...a,]({mi+k}o) is also in the A;-segment, then its parent is redy, (ko)
(t=1,...,n).

11



Let Ay : t4 X% t, be a proof and let p be a position such that A; £ p. Note
that p € Pos(t;) for i = 1,...,n since Ay £ p. The restriction A1/p of Ay to
pisty/p X% t,/p. Here, red, (¢) is the parent of ¢;/p X>R t;11/p and they are
the same except for the context if pos(reda, (1)) > p. Otherwise, t;/p = t;11/p,
i.e., the ‘step’ is empty. If redy, (7) is the parent of reda,/,(7), then redy, (io)
is the parent of redy, /,(jo) (1 =1,...,n—1).

It a proot A occurs more than once in concatenations or embeddings, we as-
sume that each occurrence is an isomorphic copy of A and we distinguish
between them. Thus, the parent mapping is injective. For simplicity, we iden-
tify a reduction step with its parent in the sequel.

Now, we introduce an operation called flattening that flattens the top reduc-
tion steps, which will be extensively used in Section 6 and Section 7. This
operation decreases the maximal level of a proof by 1.

A~

Definition 3.9 For a rule S : | — # < 21 = Y1y, Ty = Y, and a right-
oriented reduction step a : C[Cj[z10,. .., z,0]| lg ClCily;,0,....y,,0]] with
subproofs AS; : x;0 Xﬁ% y:0 (i = 1,...,n), the flattening of «, denoted by o,
is an embedding of subproofs into the substitution parts of the LHS followed
by the reduction step below:

C[[CZ[[Aslv sy ASTL]]]]’ C[Ci[ylev s 7yn0]] R C[C;[y]‘l@, s 7yjm0]]7

where S is applied in the last step whose subproofs are trivial. In a similar
way, we define the flattening of a left-oriented reduction step, that is, a re-
duction step with trivial subproofs followed by an embedding of subproofs.
The flattening of a proof A, denoted by A, is obtained by replacing all top
reduction steps of A with their flattenings.

Each right-oriented (left-oriented, respectively) reduction step a € top(A) is
identified with the last (first, respectively) reduction step of o’ in A’. For any
reduction step in any subproof of o € top(A), the identification is defined
according to the reduction step of the embedding. Accordingly, the position
of B € subtop(A) is defined as the position of 3 in A’.

We define b, to map each term ¢; € A : t4 X% t, to an occurrence of the
same term #; in A°. The first and last terms t1,t, are mapped by b4 to the
first and last terms in A°, and the jth term ¢; is mapped to the term between
the flattenings of the ;7 — 1th and jth reduction steps for j =2,....,n — 1.

Example 3.10 Let R be the same as the one in Example 3.4. For a reduction
step a : d(d(1, f(1)),1) lé 0 with subproofs d(1, f(1)) <5 f(1) and 1 — 5
f(1), its flattening is o’ : d(d(1, f(1)),1) <5 d(f(1),1) — 5 d(f(1), f(1)) =4

0, as shown in Fig. 1. The dash-arrows indicate identification of reduction

12



A1 (1)) =0

d(d(1, F(1)). 1) < d(r(1),1) — d(F(1). (1)) = 0
Fig. 1. Flattening
steps.

The next lemma follows from the definition of flattening and the fact that the
left-hand side of each rewrite rule is not a variable.

Lemma 3.11 Suppose o € top(A) and 8 € sub(a)Nsubtop(A). Then, a < 3.

4 Abstract peak elimination

In this section we introduce a variant of ARS called LARS, which is an ab-
straction of conditional rewriting. We demonstrate a peak elimination method
and present a sufficient condition for CR of a LARS.

4.1 Labeled ARS and Peak elimination system

Definition 4.1 A (set-)Labeled ARS (LARS) is a triple RY = (D, H,—) of
a domain D, a set H of tags, and a relation —: D x 27 x D called a labeled
reduction relation. Fach element of a labeled reduction relation is called a

labeled reduction step, denoted by d A q (d,d" € D, H C'H), and H is called

the label of d 25 d'. We suppose that each label contains a special tag root(H)
called the root of H.

Note that a label is non-empty since it has at least its root.

Example 4.2 An LRCTRS R induces an LARS RY as the following: for
every reduction step « : 1 l]% t', RY has o : 1 A, t', where H = sub(a) and
root(H) = a. That is, a reduction step in R corresponds to a tag of RY .

Once we forget the label, an LARS is a conventional ARS, so the notions
related to proofs of LARSs are defined in the same way as ARSs. For example,

if d; H d;y1 or d; & diyq for o = 1,...,n — 1, then the sequence A : d; &
Hp_ . . H;_ g .
ds & d,, is called a proofin RY. A subsequence d;_q &, H ditq 1s

called a peak.

13



Fig. 2. Peak rewrite rule

H H, Hp_q .
For any proof A : dy & dy 3 -+ &7 d,, we assume for convenience that

H; and H; are disjoint for any ¢ # j, and define the label of A as the disjoint
union Hy U---U H,_1, denoted by label( A).

Definition 4.3 A peak elimination rule of an LARS RY is a triple (A, J, A’)
that satisfies the following properties.

(i) Ais a peak, say d L
(ii)) A’ is a proof d; o e d, such that dy =d and d, = d'.
(iii) J is a mapping, called ancestor mapping from label(A’) to label(A). If
J(h') = h, then h is the ancestor of ', and ' is a descendant of h.

A peak elimination rule is denoted as A gy Al (J is often omitted), and A
and A’ are called the left-hand side (LHS) and the right-hand side (RHS)
of the rule, respectively. We also call A" a replacement sequence of A. Fig. 2
illustrates a peak elimination rule and each dash-arrow goes from an ancestor
to its descendants.

Let B : d4 ri S e d,, be a proof with a peak A : d;_; Moz d; H d;y1 and let
P:AY Abea peak elimination rule. Suppose that B’ is obtained from B by

replacing the peak A with A’. Then B 2o B’ is called a peak elimination step,
where the ancestor mapping J’ coincides with .J on the label of the replacement
sequence and J' is the identity mapping on HyU---UH; ;UH;;4U---UH,_;.

Definition 4.4 Suppose that Ppv is a set of peak elimination rules of RV,
and for any peak A there is P € Pgv such that A is the LHS of P. Then Pgv
is called a peak elimination system (PES) of RV. A peak elimination step of
Prv is a peak elimination step of a rule in Pgv.

Definition 4.5 If A" — A is a peak elimination step in a PES Pgv for
i = 1,2,..., then the sequence A! — A? s ... is called a peak elimination

sequence. The ancestor mapping of a finite peak elimination sequence A’ 2

14



Jk—l

ST AR (k2 g)is Jor o R IR € label(AF) and Jio- -0 JFTN (1) = h,

then h is the ancestor of h', and h' is a descendant of h.

As a special case, a tag h is the ancestor and the descendant of & itself with
respect to an empty peak elimination sequence.

A PES Pgv can be regarded as an ARS with the set of all proofs in RV as the
domain. Since a PES can replace any peak by definition, a proof A is a normal
form of a Prv iff A is ‘valley-shaped’, that is, of the form d; Hy Mg d; &

‘ HL—I d,. Thus, the next lemma follows.

Lemma 4.6 If a PES of an LARS RV is WN, then RV is CR.

4.2 Termination of PES by independence

We present a sufficient condition for SN of a PES (hence CR of an LARS) in

terms of a certain binary relation on tags, called independence.

In Section 6 and Section 7, we introduce PESs of non-overlapping and compat-
ible LRCTRSs, whose rules are classified into three categories: parallel, nest,
and critical. The former two cases are injective, i.e., the ancestor mapping is
injective, and simple, i.e., one step divergence closes with at most one step
valley. The difficulties are in the last case; some reduction steps may be multi-
plied by a critical peak elimination. The independence is a sufficient condition
so that one reduction step does not go into a subproof (i.e., conditional part)
of the other. Thus, it guarantees that the multiplication of reduction steps
does not create unexrpected peaks.

In this section, we present this idea in an axiomatic way and show how to
construct the well-founded weight on proofs that decreases at each step of
the PES if the independence exists. Therefore, SN of a PES (hence CR of an
LARS) is reduced to the construction of the independence, which is the main

topic in Section 6 and Section 7. We denote {u € S|u & S’} by S\ 5.

Definition 4.7 Suppose a binary relation 1L is defined on label(A) for any

proof Ain an LARS RY. Then 1L is called an independence for a PES Pgv of

RY if the following properties hold for any proof A : d; o d, in RY

and tags h,g € label( A).

(i) (dominance) root(H;) )L hif h € H,.
(ii) (adherence) If A Il root(H;) and g € H;, then h 1L g¢.
(iii) (non-incest) Suppose that A — A’ and that A, h” € label(A’) are distinct
descendants of h. Then A’ 1L A",

15



(iv) (preservation) Suppose that A +— A’ and that A" and ¢’ in label( A") are
descendants of h and ¢, respectively. Then h 1L ¢ implies A’ 1L ¢'.

Definition 4.8 Let P : A% A’ be a peak elimination rule with A = d &
a2 q We say P is injective if J is injective. We say P is root-erasing if
neither root(H ) nor root(H') have descendants in the label(A’). A peak elim-
ination step due to an injective (root-erasing, respectively) peak elimination
rule is called injective (root-erasing, respectively).

1 2
In the rest of this section, A' LAzl isa peak elimination sequence in a
PES Pgrv with an independence 1.

Definition 4.9 The origin of a tag h € label( A7) (j = 1,2,...) is the ancestor
in label(A') of h, denoted by orig(h).

We use [ and | to represent multisets and ¥ for the multiset union. For example,

[a7 a? b] H—J [a7 b? c] = [a7 a? a? b? b7 c]'

Definition 4.10 We define the weight for the proofs A’ for : = 1,2,... and
their tags.

(i) The weight w(h) of a tag h is defined as
(a) w(h) = label(A') for h € label(A').
(b) Let h € label( A**1) (k = 1,2,...). Assume that A* 25 AR elimi-

! k
nates a peak d E g g 1 AF 5 AR s root-erasing, then

w(J*(h))\{orig(root(H))} if J5(h) € H,
w(h) = < w(J*(h)\{orig(root(H'))}  if J¥(h) € H',
w(J*(h)) otherwise.

Otherwise, w(h) = w(J*(R)).
(ii) Then w(A*) = Whetaperam[w(h)] for b =1,2,...

Let Cow be the multiset extension [9] of the proper subset relation C on
finite sets, and let C,,,; be the reflexive closure of C,,,;. Note that C,,.; is

well-founded.

Lemma 4.11 [f A* 25 AR g injective, then w(A*) 2w w(AMY) for k =
1,2, ...

Proof. Since w(A¥) D w(A**1), the result follows. O

Lemma 4.12 Let h* € H. Suppose that a root-erasing peak elimination rule
! k
is applied to a peak d Ear L @ in AR5 AL If ¥ € H (H', respectively)
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: \\ // H//
| S

Fig. 3. Proof of Lemma 4.12

has a descendant h' in a label H" of a reduction step in A for some | >
k, then orig(root(H)) # orig(root(H")) (orig(root(H')) # orig(root(H")),
respectively).

Proof. We assume that orig(root(H)) = orig(root(H")) = ¢" and derive a
contradiction. Let g* € label( A¥) be the ancestor of root(H").

Since the peak elimination rule of A* s A**! is root-erasing, root(H) has no
descendant after A**1) so g% # root(H). Thus, ¢* and root(H) are distinct
descendants of g, and ¢* I root(H) due to the property of non-incest and
preservation. Since h* € I, g* 1l h* because of adherence. Hence, root(H") 1L
h! according to preservation. However, root(H") JL h' due to the property
of dominance. This leads to a contradiction. The case h* € H' is similarly
proved. O

Lemma 4.13 If A* &5 A1 is root-erasing, then w(AF) D w(AMYY for
k=12, ..

! k
Proof. Let d & d" 2 d' be the eliminated peak in A* L5 AF1. Note that
H U H' is non-empty.

If the replacement sequence in A¥+! is an empty proof, then the result is obvi-
ous. Let h be any tag of the replacement sequence. Suppose J*(h) € H. Then
w(h) = w(J*(h))\{orig(root(H))}, and from Lemma 4.12 orig(root(H)) €
w(J*(h)). Thus, w(J*(h)) D w(h). When J*(h) € H’, this is similarly proved.
Therefore, w(A*) D, w(AMY). O

For an injective and non-root-erasing peak elimination, we prepare simpleness

as defined below.
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Fig. 4. Mass

Definition 4.14 A proof of the form d —= d' «= d" is called simple, where
—= is the reflexive closure of —. A peak elimination rule is simple if its RHS
is simple. A peak elimination step resulting from a simple peak elimination
rule is also called simple.

Definition 4.15 A labeled reduction step « is left-oriented (right-oriented,
respectively) if a is d b (d LN d', respectively) for some d, d’, and H. For
a proof A, the height(A) > 0 and mass(A) > 0 is simultaneously defined as
the following.

(i) If A is an empty proof, then height(A) = mass(A) = 0.
(ii) If A= A’;a for some proof A and reduction step «, then
— height(A) = height(A’) + 1 and mass(A) = mass(A") if « is left-
oriented, and
— height(A) = height(A’) and mass(A) = mass(A’) + height(A’) if o is
right-oriented.

In other words, the mass is the number of tiles as shown in Fig. 4.
Lemma 4.16 [f A* — A" is simple, then mass(A) > mass(A’).

Theorem 4.17 Suppose every peak elimination rule in a PES Pgrv is either
root-erasing or simple and injective. If Prv has an independence 11, then Prv

s SIV.

Proof. Let C be the lexicographic extension of C,,; and <. Then {w(A*), mass(A")) 3
(w(AMY), mass(A+1)) for k= 1,2,... from Lemma 4.11, Lemma 4.13, and
Lemma 4.16. Therefore, the result follows. 0O

5 Basic construction of independence for LRCTRSs

Before constructing the independences of non-overlapping and compatible
LRCTRSs, we prepare the methodology for their simplification. That is, we
first define the binary relation 1L on visible reduction steps, and next extend L
using the subproof closure 1 °, which we introduce in this section. Finally, we
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check whether 11° satisfies the conditions in Definition 4.7, where most of the
conditions are reduced to those in terms of 1. For LRCTRSs, Definition 4.7
is reformulated in the manner in Example 4.2.*

Definition 5.1 An independence 1L is a binary symmetric relation on reduc-
tion steps satisfying the following conditions.

(i) (dominance) o fL 3 if a € sub(/3).
(ii) (adherence) If o 1L 5 and v € sub(/3), then o 1L ~.
(iii) (non-incest) Suppose that A — A’ and that «, 5 € A" are distinct de-
scendants of 4. Then a 1L 3.
(iv) (preservation) Suppose that A — A’ and that o’ and ' in A" are descen-
dants of @ and  in A, respectively. Then « 1 # implies o 1L (3.

The constructions of the independence in Section 6 and Section 7 are context-
sensitive, i.e., o 1L 3 (or a 1L* 3) cannot be decided without mentioning the
proof A, which contains o and 3. If o 1L 3 is invariant under concatenation,
restriction, and embedding, we say it is structural. If o 1L 3 is also invariant
under the subproof, we say it is local.

Section 5.1 shows that dominance is inherited from 1L to 1L° (Lemma 5.3),
and this section gives a sufficient condition for 1l° as local in terms of 1L
(Lemma 5.6). The adherence of 1° immediately follows from the construc-
tion of the subproof closure. Section 5.2 gives a sufficient condition for the
preservation of 1L° in terms of I (Lemma 5.10). Proving preservation of in-
dependences is the main technical difficulty in Section 6 and Section 7.

Throughout this section, we assume Il is a symmetric binary relation defined
in the reduction steps in a proot A for any proof A in an LRCTRS.

5.1  Subproof closure

Definition 5.2 The subproof closure 1.° of 1L is inductively defined as the
following.

(base) If o I 3, then o 17 f.
(adhere) Suppose that a 1L° 3.
(a) If p' € sub(B), then o IL° 7.
(b) If o € sub(a), then o’ 1L° 3.
(subproof) Suppose that a, 3 € sub(v) for some v € A.
(a) If @ and /3 are in distinct subproofs of v, then o 1% § in A.
(b) If a, 8 € B for a subproof B of ~, then a 1L° gin Aif o 1L° 3 in B.

4 The symmetric assumption is added that will be used in Lemma 5.3.
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Note that 1L° is also symmetric and the subproof closure operation commutes
with the union, i.e., 11° U 1= (1L U 1L")%.

The next lemma guarantees that dominance in Definition 5.1 is preserved by
the subproof closure.

Lemma 5.3 [If AL satisfies dominance, then the subproof closure 1.° of 1L
also satisfies dominance.

Proof. We assume that the result does not hold. Suppose A is a minimal
proof wrt size(A) in which a 1° 3 for some 3 € sub(a). Also suppose that
a = reda(c) and 3 = reda(o’) are minimal wrt |o| 4 |o’|. According to the
assumption of the lemma, o 1L* 3 is inductively generated using (adhere) or
(subproof). Let us consider the last step of its generation.

Neither (subproof)-(a) from 8 € sub(a) nor (subproof)-(b) from the minimal-
ity of size(A) performs the last step. Suppose that (adhere)-(a) performs the
last step. The case of (adhere)-(b) is treated symmetrically. Then o 1° 3 is
derived from « 1L° ' such that 8 € sub(/#') for some . From 3 € sub(a), ei-
ther ' = «, 8 € sub(a), or a € sub(/3’"). However, in any case a contradiction
is derived from the minimality of |o| 4+ |o’| using the symmetry of 1°. O

We identify a parent of a reduction step o (wrt concatenation, embedding, and
restriction) with . If a binary relation is local, then the relation is well-defined
under such an identification.

Definition 5.4 If 1l satisfies
(i) o I Bin Aiff « 1L 5 in A’; A; A” for any reduction steps «, 3 € A, and
proofs A, A’, A", and

(ii) a L Bin A iff & 1L B in A/p for any reduction steps a, 3 € A/p, proof
A, and position p satisfies A £ p,

then 1L is called structural. If 1L subsequently satisfies

(iii) a 1L g in A iff o 1L B in B for any reduction steps «, 8 in any subproof
B of any reduction step in any proof A,

then 1L is called local.
The following technical lemma is prepared for proving Lemma 5.6.
Lemma 5.5 Let 1L.° be the subproof closure of 1. Assume that

(i) o P 3 if o € sub(B) for any reduction steps a, 3, and
(ii) o 1L 3 in A implies a A 3 in B for any reduction steps o, 3 in any
subproof B of any reduction step in any proof A.
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Then o 1L.° B in A implies o 117 8 in B for any subproof B of a reduction
step in a proof A.

Proof. We assume that the result does not hold. Suppose A is a minimal
proof wrt size(A) such that o 1L° fin A and o * 3 in B. From (ii), o 1L° 3
in A is not derived by (base). Thus, o 1L* 3 in A is inductively generated using
(adhere) or (subproof) of the subproof closure. Also suppose that o = red (o)
and [ = red,(o’) are minimal wrt |o| 4 |o'].

Suppose that (subproof)-(a) performs the last step. Then, o and 3 are in
distinct subproofs of some reduction step + in A. Since B is a subproof of a
reduction step in A, v € B. Thus, o 1L.* 3 in B is derived by (subproof)-(a),
which leads to a contradiction. The last step is not (subproof)-(b) from the
minimality of size(A). Thus, we suppose that (adhere)-(a) performs the last
step. The case of (adhere)-(b) is treated symmetrically. Then o 1L° 5" in A
and 3 € sub(f’) for some . If 3’ ¢ B, B must be in some subproof of 3’
since # € B. Thus o € B implies o € sub(/3’), which violates o 1L* 3’ by (i),
and ' € B. As aresult, a 1L° 4" in B from the minimality of |o|+ |¢’|. Then,
a 1% #in B, which leads to a contradiction. O

The next lemma presents a sufficient condition for that a subproof closure is
local.

Lemma 5.6 Let 1L.° be the subproof closure of 1. Assume that

(i) 1L satisfies dominance,
(it) 1L is structural, and
(tii) o 1L 3 in A implies o 1L 3 in B for any reduction step in any subproof
B of any reduction step in any proof A.

Then 1% is local.

Proof. From (i), IL° satisfies dominance by Lemma 5.3. Let B be a subproof
of a reduction step in A. From (ii), it is easy to see that 1L° is structural.
Through (subproof)-(b), a 1L* 8 in B implies o 1L $in A. From (iii), o 1L° 3
in A implies o 1L* #in B by Lemma 5.5. O

5.2 Simplifying case analysis of preservation

Here we show how to simplify the exhaustive case analysis in the proof of
preservation. When proving the preservation of a 1° J such that « and
are not in the same subproof of a top reduction step, we restrict ourselves to

a 1L g for «, f € visible(A).
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Definition 5.7 If 1L is a relation on visible reduction steps, that is, 1L C
U4 visible(A) x visible( A), then AL is called a wvisible relation.

Definition 5.8 For a reduction step o in A, m4(a) = a if a € visible(A);
otherwise, 74(«) is the subtop reduction step such that o € sub(w4(«)).

Lemma 5.9 Let 1.° be the subproof closure of a visible relation IL. For any
a, 3,y € visible(A), assume that

(i) o 1L 3 and 3" € sub(B) imply o 1L 3, and
(i) o I 3 for a and B in distinet subproofs of a top reduction step in A.

Then for any o, 3 € A not in the same subproof of a top reduction step in A,
a lL? B iff mala) L wa(f).

Proof. If-part is trivial. We assume that the only-if part does not hold. Sup-
pose A is a minimal proof wrt size(A) in which o 1L° 7 and 7wa(a) /L m4(5)
for some «, 3 not in the same subproof of a top reduction step in A. Also
suppose that a = reds(o) and § = reds(o’) are minimal wrt |o| 4+ |o’|. Since
Al is a visible relation and m4(a) AL wa(f), a LL* 3 cannot be derived by
(base). Then « 1L* 3 is inductively generated using (adhere) or (subproof) of
the subproof closure. Consider the last step of its generation.

Neither (subproof)-(a) from (ii) nor (subproof)-(b) performs the last step since
a and 3 are not in the same subproof. Suppose that the last step is (adhere)-
(a). The case of (adhere)-(b) is treated symmetrically. Then o 1° " and
B € sub(p’) for some . From the minimality of |o| 4 |0/, ma(a) 1L w4 (/).
Since 3 € sub(f’), either m4(3) = wa(p') or m4(3) € subtop(3'). In either case,
ma(a) UL 74(53) holds from (i), which leads to a contradiction. O

Lemma 5.10 Let 1L° be the subproof closure of a wvisible relation 1L. Let
A= A" be a peak elimination rule with proofs A, A" in an LRCTRS. Assume
that

(i) o 1L 3 and 3" € sub(B) imply o 1L 3" for o, 3, 3" € visible(A),

(i) o 1L 3 for visible reduction steps a and 3 in distinct subproofs of a top
reduction step in A,

(iii) for any~y € A\ visible(A), if v has a descendant v in A" then wa(v) has
a descendant 4" in A" with 4" € sub(v"), and

(iv) for any o, B € visible(A) not in the same subproof of a top reduction step
in A, if a and 8 have descendants o' and (', respectively, then o 1 3
implies o 1L° 3.

Then, A A’ preserves ay IL° g for any aq, ag € A not in the same subproof
of a top reduction step in A.
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Proof. Suppose reductions oy, ay € A are not in the same subproof of a top
reduction step and a; 1L° as. Also suppose that «; has a descendant o/ for
i = 1,2. By Lemma 5.9, m4(aq) 1L 7m4(ag) from (i) and (ii). If a; is a visible
reduction step then let o = of; otherwise, let o be a descendant of 74 ()
such that of € sub(a!) (from (iii)) for ¢ = 1,2. Then, of 1° o} from (iv), and
we obtain o IL° o) by (adhere) of the subproof closure. O

6 The Church-Rosser property of non-overlapping LRCTRS

In this section, we define a PES of a non-overlapping LRCTRS and construct
its independence . Therefore, by the result of Section 4, we complete SN
of the PES and hence CR of a non-overlapping LRCTRS. For CR of non-
overlapping semi-equational CTRSs without extra variables, see [1]. Through-
out this section, R denotes a non-overlapping LRCTRS.

6.1 Peak elimination of non-overlapping LRCTRS

Lemma 6.1 Let AS; be the ith subproof of a reduction step with a rule S
[l =7 < a1 =y, 2, =y, fort =1,...,n. Suppose that r{z; := y; |1 =
Li...on} =7 and r = Cixj,,...xj,]. Then Ci[AS;, ..., AS;.] is a proof of

the form r0 gé .

Proof. Let 7 = Cilyk,, ... yi,,]. Note that C:[ | = C;[ |. Then, y;, = @ {z; :=
yile=1,...,n} =y for t: =1,...,m, and the result follows. O

Definition 6.2 We define a PES Py of R as the following. Let S ZZ —
Fi <= T = Yit, o Tin, = Yin, be any rewrite rule in R (¢ = 1,2), and let
At Xél 19 ng t3 be any peak, where t; = C[r0], t; = 0[21(9] = C’[ig@],
and t3 = C'[ry0]. We denote t; Xél 15 and £, ng t3 as v, and vy, respectively.

Then, Py has the peak elimination rule A s A" as follows. Peak elimination
rules are classified into three categories; Fj, Pc, and Py, according to the
relative positions of the redexes of v, and ;.

(P)) [parallel] If the redexes of 41 and 7, are parallel, then A" = % ng

t, Xél t31s obtained by exchanging the order of 74 and ~;. For any reduction

step a € A,
reds(lo if a =redy(20),
Ja) = a(lo) 4(20)
reda(20) if a =reda(lo).

23



(P<) [nest] Suppose that ;s redex nests 71’s and that the redex of 4, occurs
below the substitution part z916. Also suppose that C'[]/p = O and l,/q =

x9g. Then, A" = ng t3, which is the same as v, except for the kth

subproof modified into ¢;/p;q Xél o1 X)R y2xf. For any reduction step
aec A,

reda(lo) if o =redy(lklo),
J(a) = reds(2kjo)  if a = redy(1k{j + 1}o) for some j > 2,

reda(20) otherwise, assume a = reda/(10).

The case when ~’s redex nests v,’s is dealt with symmetrically.

(P;) [critical] Suppose that the redexes of v and 72 are overlapping. This
kind of peak is called eritical. Since R is non-overlapping, C[ ] = C'[ ], and 54
and 53 are the same modulo renaming of variables. Since different subproofs
yield different reducts in LRCTRSs, t; and t3 can still be different.

Let ASy; : y1,0 <_>R x1;6 be the jth subproof of y1 (j = 1,...,nq),
and let ASyj @ 24,0 <_>R y2;:0 be the j'th subproof of 2 (' = 1,...,n9).
Let 7 = Cilyin, - i) (0 = 1,2). C[Cy[AS1j,, .-, AS1j,]] is of the form
th X% ClCs 21,0, ..., 2;.0]], and C[Cx[ASq;,, ..., ASq;,]] is of the form
ClCsy 290, . .., 22, 0] X% t3 by Lemma 6.1. Moreover, C[Cy, [21,,0, ..., 2;,0]] =
ClCs 22440, .., 22;0]]. Thus, we define A’ as

C[[Cf"l [[ASUU SR ASljk]]]]; C[[Cfb [[ASQJU s 7A52jk]]]]‘
For a reduction step a € A, if & = redys,;(0), then J(a) = redy(ijo).

Note 6.3 (i) v and v, have no descendants when P, is applied to a critical
peak 713 7.

(ii) @ may have multiple descendants only when P; is applied to a critical
peak v1;v2 and o € sub™ (1) U sub™ (y2).

We often refer to the rules in P (Pc, P, respectively) as simply B (P<, B,
respectively). Observe that P and P. are simple and injective while P is
root-erasing.

Example 6.4 We illustrate the peak elimination steps shown above in ex-
amples. Let R be the same as the one in Example 3.4 and let the :th rule

from the top be S (1 = 1,2,3) Suppose that there are proofs AS; : 1 X%

AS, it HR s, and ASs :u X>R t for some terms s, £, and u. In the following, a
line under a subterm (a line over a subterm, respectlvely) indicates the redex
of the left-oriented (right-oriented, respectively) reduction step in the peak.
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A, F)) <25 d(t, ) <Cm d(t, 1(1) <o d(s, (1) = d(s, (5))

Fig. 7. Rule P
(P)) Let us consider a peak d(f(1), f(1)) g d(L, F(1) g, d(1,d(s, f(5))),

where the right-oriented reduction step has a subproof AS,. Then, it is re-
v v

placed with d(f(1), £(1)) s, d(f(1),d(s, F(5))) s, d1,d(s, f(s))) usin
P as shown in Fig. 5.

(P<) Consider a peak d(f(1),1) Zﬁa d(1,1) X)Sl 0, where the right-oriented
reduction step has the subproofs AS; and AS;. Using P, the peak is re-
placed with d(f(1),?) lél 0 as shown in Fig. 6.

(P;) With the different subproofs AS; and ASs, S, has a critical peak d(u, f(u)) Zﬁz
@ X@Z d(s, f(s)). The peak is replaced with the concatenation of d(u, f(u)) X>R
A(t, f(u)) g d(t, f(1) and d(t, F(1)) S d(s, [(1) &g d(s, [(5) using P

as shown in Fig. 7.

The following lemma directly follows from the definition of peak elimination
rules.

Lemma 6.5 The PES Pp of a non-overlapping LRCTRS R defined above

works monotonically downwards wrt the position, that is, if a peak ~1;7y, is
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replaced with A by Pp, then o« > v or a > 7, for any reduction step o €
top(A).

6.2 Independence 1y of non-overlapping LRCTRS

Here we introduce a relation 1L, which is proved to be an independence for a
PES Py of a non-overlapping LRCTRS R. Intuitively, o 1y 8 means that «
and (3 are separated by positions, that is, their positions are parallel to each
other and no intermediate reduction steps cover either of them. This is first
defined for the top reduction steps, then extended to the visible reduction steps
using flattening, and finally extended to all reduction steps by the subproof
closure.

Definition 6.6 Let A : #; X)R t, be a proof in fx’, and let «; be the 2th top
reduction step. Suppose j # k. An open interval A(a;, oy) is the subsequence

it X)R tp of Aif j <k, and otherwise 154 X)R t;. A closed interval Ala;, o]

b b
is t; X)R tre1 if 7 < k, and otherwise 1, Xn% Liy1

In an open interval, instead of the reduction step «;, we admit the term ¢;. They
are defined as the following: A(a;, ) = A(ay, ty) = A(tj41, o) = A(tj11, tr)
if 7 < k, and otherwise A(aj, ap) = A(ay, tpy1) = A, ag) = AL, teyr)-

Definition 6.7 For any proof A in R and a, 8 € top(A), a AT B in A if
Ala, f] £ a A 3, that is, no reduction steps in Ala, 5] occur above or equal to
a A f.

a AT ain A for any o € top(A) since Ala,a] = a and pos(a) = a A a.
If the proof A is clear from the context, “in A” is often omitted. There are

some direct consequences of the above definition: (1) J_LlT is symmetric, and
(2) a 1Ly B implies a || 8. In addition, v £ o A B if v || a or v || 5.

Lemma 6.8 Let «, 3,y € top(A). Suppose that € A(a,v) and 5 < Ala, f].
Then o 1T~ iff B ALT ~.

Proof. If a 1y v, B £ aAv. Since f < Ale, 8], B < a. Thus, BAy=a A7y,
and § 1L ~.

If 3 114 5, then || 7. Since 8 < Ala, ], # < a, then 3 Ay = a A 5. Since
BAy<p < Ala, ], then o 1Ly . O

We extend 1L] to visible reduction steps using flattening. Note that halar) €
top(A®) iff o € visible(A).

Definition 6.9 For a, 3 € visible(A), a I Bin Aifby(a) 1] b4(B) in A°
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Lemma 6.10 1| and 1LY are structural.

Note 6.11 By definition, it is easy to see that the PES and J_LIIVI satisfy the as-
sumptions (i), (ii), (iii) in Lemma 5.10. In the sequel, we will apply Lemma 5.10
without mentioning these assumptions.

Definition 6.12 We define 1L as the subproof closure of 1},

Example 6.13 For proofs A; : s; X% st let us consider an embedding A :
C[Ay, ..., A,]. Let a be a reduction step in an A;-segment of the embedding
and 3 be one in an A;-segment such that « # j. If both a and g are top
reduction steps in A, then « 14 3 since A £ o A . Otherwise, o 14 3 is
derived by (adhere) of the subproof closure. Therefore, o 1L 5 in A.

We show that a non-overlapping LRCTRS is CR by proving that 1l is an
independence.

Theorem 6.14 The relation 1Ly is an independence for the PES Py of a
non-overlapping LRCTRS R.

To prove the above theorem, we show in the following that 1L, satisfies the
four properties in Definition 5.1. The hardest part is (iv) preservation, which
will be proved in Section 6.3.

Lemma 6.15 11, satisfies dominance.

Proof. Let o, 3 € visible(A). If 5 € sub(a) then by () < bu(S) form Lemma 3.11.
Thus, a ,lill\/[ B. Therefore, the dominance of 4 follows from Lemma 5.3. O

Lemma 6.16 1, is local.

Proof. By Lemma 5.6 and Lemma 6.10. O

Lemma 6.17 1L, satisfies adherence.

Proof. Obvious since 11, satisfies (adhere) of the subproof closure. O
Lemma 6.18 1l satisfies non-incest.

Proof. By using Note 6.3, it is sufficient to consider the descendants of «
when P, is applied to some critical peak ;72 and o € sub™(v1) U sub™ (7).

However, two distinct descendants of «, oy, oy reside in different segments of
the embedding in the replacement sequence for the peak. Therefore, oy 14 .

(See Example 6.13.) O
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(a)-(1) ay, Qg

(a)-(2) o g
(a)-(3) a1, Qg

(b)-(1) o o

(b)-(2) ol P

(b)-(3) o Q9

Fig. 8. Case analysis in Lemma 6.16

6.3 Preservation of independence 14

Lemma 6.19 11 satisfies preservation.

Proof. Let oy and ay be reduction steps in a proof A. Suppose that A — A’,
and that o in A" is a descendant of o; (¢ = 1,2).

Let A = Ay;71;792; Ay, where 71; 72 is the eliminated peak. Let By; By be the
replacement sequence. We perform a case analysis depending on where oy and
ay occur in A. The following cases must be considered:

o; € AZ (Z == 1,2)

ay, o € sub(yy).

a; € Ay and az € sub(vyy).
ay € Ay and az € sub(ys).
a; € sub(y;) (2 =1,2).

Fig. 8 shows an analysis of the above cases. The other cases are obtained by
exchanging oy and ay and /or reversing A. Claim 6.20, Claim 6.21, Claim 6.22,
and Claim 6.23 prove preservation.

Claim 6.20 Preservation of 1Ly holds in cases (a)-(1) to (3).

Proof. In case (a)-(1), preservation follows since L4 is local by Lemma 6.16.
In case (a)-(2), preservation holds since Pp works monotonically downwards
because of Lemma 6.5. In case (a)-(3), if a; and a5 are in the same subproof
and «] and o} are in the same copy of that subproof, preservation again
follows since 1L is local by Lemma 6.16. Otherwise, o) and o}, are in different
segments of the embedding, so of 14 o). O

Claim 6.21 Preservation of ALy holds in cases (b)-(1) to (3) when P is ap-
plied.
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Proof. When P is applied, B; is the same as y3_; except for the context
(¢ = 1,2). In case (b)-(1), preservation is obvious since By || Bs. In case (b)-
(2), preservation is obvious since the descendant of 41 simply disappears from
Al(al, o). In case (b)-(3), o} 1y o), in A’ since By 1L} By in A’. O

Claim 6.22 Preservation of 14 holds in cases (b)-(1) to (3) when P is
applied.

Proof. Without loss of generality, we can assume that ay,ay € visible(A)
and oy J_LIIVI s by Lemma 5.10.

Suppose 7, nests v;. Then By is empty and B, is 3 with v, prefixed to the
kth subproof for some k. Let AS; be the th subproof of ~, for e = 1,...,n.
Then, the kth subproof of By is v1/p; ASy for a position p. The descendant ~;
of ~1 is a subtop reduction step in A" and pos(v1) = pos(7}).

The case ag = 741 from Lemma 3.11 and Lemma 6.8 is sufficient for case (b)-
(1). Then, oy 1M ay implies of 1M o, since B || bg,(a}) for any reduction
step 8 in an AS;-segment in B} (1 = 1,...,k — 1).

In case (b)-(2), if o} is in AS;-segment such that ¢ # k, then the preservation
is obvious since 4] || o). If o} is in the ASi-segment, the preservation follows

from pos(y1) = pos(+1).
Let us consider (b)-(3). We borrow notations from Definition 6.2, so 72 =

Co[is0] Yoo, Colfab]. T ag = 7o, then ay ALy as. Suppose ag € AS;. If j # k,
then of 14 o) in A’ If j = k, then

M .
oy 17 az in A,

& op U] ay in A (by definition),
= o J-LIT Qg in 7?7 CZHCZZ [[ASD tet ASTLI]]]]?

& op L] ay in 48 /p; AS,, (since AL is structural),
& of WMol in vy /p; ASy,

= o) 1y o in A (by definition).

In the step from the third line to the fourth line, we used the fact that
1/p ASy = 1 G CL[AS, .. AS, D1/ p.

Next suppose that +; nests v,. The case g = 77 from Lemma 6.8 is sufficient
for cases (b)-(1) and (2), so preservation is obvious. In case (b)-(3), the result
is proved in the same way as when ~3 nests ~,. 0O
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Claim 6.23 Preservation of 1Ly holds in cases (b)-(1) to (3) when Py is ap-
plied.

Proof. When PF; is applied, B; consists of multiple copies of subproofs of ;
(t = 1,2). We borrow notations in (Fy) of Definition 6.2, so By = C[C}, [AS1j, -
and By = C[C,[ASy;,, - - -, ASs;, []. Without loss of generality, we can assume
that ay, ay € visible(A), and oy J_LIIVI g by Lemma 5.10.

The case of ag = 41 from Lemma 3.11 and Lemma 6.8 is sufficient for cases (b)-
(1) and (2). Thus, preservation follows since Py works monotonically down-
wards according to Lemma 6.5.

In case (b)-(3), suppose that of is in an ASy;, -segment and ¢, is in an AS;;, -
segment. If n # m, then o] 1y of. Otherwise,

M .
oy 1Ly ag in A,

& op AT ayin A (by definition),
& ap UL ay in C[C; [AS1,. .., AS1, [T CIC, [ASa, -, ASa, 1],
& ooy J_LlT ay in ASyj, 3 ASy;, (since J_LlT is structural),
& of 1T o)) in By By (since 1L] is structural),
& of AL ol in A,

We used the fact that ASy;, ; ASy;, is a restriction of C[[Cil [ASi1, ... AS1a, [
ClCL[AS2, -« -, AS2p,]] in the step from the third line to the fourth line, and
the fact that it is also a restriction of By; By in the step from the fourth line
to the fifth line. O

Proof of Theorem 6.14 By Lemma 6.15, Lemma 6.17, Lemma 6.18, and
Lemma 6.19. O

Theorem 6.24 A non-overlapping LRCTRS is CR.

Proof. By Lemma 4.6, Theorem 4.17, and Theorem 6.14. O

7 The Church-Rosser property of compatible LRCTRS

We now extend the results in the previous section to compatible LRCTRSs
by supplementing the argument of the overlapping case. As a consequence, we
derive CR of a compatible LRCTRS, and hence UN of a compatible TRS. In
this section, R denotes a compatible LRCTRS.
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u <4= g(t,a,a) =4 g(s1,a, a)ég q(s1, 52, a)é9 g(s1, 52,52)
Fig. 9. Rule Py

7.1 Peak elimination of compatible LRCTRS

Definition 7.1 The definition of a PES Py of a compatible LRCTRS R is
obtained by replacing the description of P; in Definition 6.2 with the following.

(Py) [critical] Suppose redexes of v, and ~, are overlapping. This kind of peak
is called critical. Since R is compatible, C[] = C'[]. Let ASy; : y1,;0 X)R xq,0
be the jth subproof of v1 (j = 1,...,n1), and let ASy; : x9;/0 X)R Y210
be the j'th subproof of 72 (/' = 1,...,n2). Let (rq,73) be the standard
pair of compatibility of (Si,5;). Let /y = Cj [21,, ..., 21;,] and let 75 =
C, [:I;Qj{, . 751;2]';/]' Note that 70 = 7,0 as a result of compatibility. Then

A" = ClC[AS,, - ., AS1 I CLCH[ASy1 - ASy 1
For the reduction step a € A’ if a = redys,, (o), then J(a) = red4(ijo).

Observe that the P; is root-erasing. Lemma 6.5 also holds for a compatible
case.

Lemma 7.2 The PES Py of a compatible LRCTRS R defined above works

monotonically downwards wrt the position.

Example 7.3 Let R be the following compatible LRCTRS:

P St fler,a) — = X1 = Y1,
Syt [y, a,a),2h) — gy, v, ¥5) <= &) = Y1, ¢ = ¥j
The stan(iard pair of Comgatibﬂity of <b;1,52> is (xq, g(a], 2%, 25)). Suppose
that « X)R g(t,a,a), a XU% 82, and 1 XU% s1. Then, there is a critical peak
u Xél flg(t,a,a),a) ng g(s1, 82, 82). Using Py, the peak is replaced with
v * v * v * v .
U <R g(t7a7a) TR 9(817a7a) TR 9(817327a) TR 9(81782732) as ShOWH m

Fig. 9.
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Unfortunately, the independence 1l; defined in the previous sections does

not work for compatible systems. In the above example, let us consider the
reduction steps a; in u X% g(t,a,a) corresponding to x; = y;, and ay in
a X% s9 corresponding to z, = y5. Then ay 1Ly ay in the peak. However,
if a1 touches the head position (i.e., pos(aq) = €), then of A4 o) for any
descendants o! of a; (1 = 1,2).

In the next section, we introduce a modified version of an independence 1L,.
Before introducing 1l ., we will explain its key idea in Example 7.12 by using
Example 7.3 again.

Definition 7.4 A term ¢ is a head normal form of R if s is not a redex of R

for all s such that ¢ lg 5.5

Lemma 7.5 Let [ be the left-hand side of any rule in a compatible LRCTRS
R. For any non-variable proper subterm t of | and any substitution 8, 10 is

head normal form of R.

Proof. This is obtamed by a stralghtforward induction on the length of the

reduction sequence 16 —>R s since I is an overlay. O
In fact, such a property holds for any overlay semi-equational CTRS.

Definition 7.6 For unifiable terms t; and {,, the set of minimal variable posi-
tions MV;, 4, is the set of all minimal elements wrt <in {p|t;/p € V or t3/p €
V1.

Note that MV, ,, = MV, 4.

Lemma 7.7 Let Sl — 7 <= Q; be the rewrite rules in a compatible LRC-
TRS R for i =1,2. Suppose I, and Iy are unifiable and (71, 72) is the standard
pair of compatzbzhty 0f<51, SQ>. Assume that ¢ € MV;, 5 and 7 /¢ = ll/p eV.
Let 8 be any unifier of I, and l,.

(i) Suppose thatry/qq=x € V. Ifr € V(ig/[?), then l}/[?;g = x. Otherwise,
28 is a ground normal form of R. )
(ii) Suppose that ro/q;q € V. Then (72/§;q)0 is a head normal form of R.
Proof. Let p be the most general unifier of I} and [, constructed as
{z := l}/p |p € MV, and x = Zl/p}
U {z:= il/p |p € M‘/il,ig7x = l}/p, and Zl/p gV,

® The notion of a head normal form is the same as that of a root-stable form of a

TRS in [21].
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0 = p" for some substitution #’. Then (r2/¢)p = (71/q)p from the compati-
bility of RA and (Zl/p),u = 12/p from ll/p € V. Since ll/p =r1/q, (F2/Qp =
(h/p)p = b/ p.

(i) Suppose that ry/¢;g = € V and = € V(Zg/[?) Since 21/[? eV,ap =z
from the construction of y. Thus lg/p, q = z follow from (rg/q),u = lz/p
Next assume that = ¢ V(Iy/p). Since (72/q)p = by/p. v & V(lo/p)
implies that x := lz/p, qisin pu. From « € V(ry/q), 2 is a proper subterm
of il according to the definition of p. Since il and 22 share no variables
and zp = l}/[?;g, xp cannot contain variables. Therefore, 6 = xp and
20 is a ground normal form of R by Lemma 7.5.
(ii) Suppose that 7o/¢; ¢ & V. Since 21/[? €V, p # e from the definition of an
LRCTRS. Thus (/¢ q)p = l}/ﬁ; q is a proper non-variable subterm of
l,. Therefore, (ro/q; )0 is a head normal form of R by Lemma 7.5. O

Definition 7.8 We borrow notations from Definition 7.1 and Lemma 7.7. Let
q € MV;, 7,. Suppose that 7 /¢ = 21/}5 e V. If ay, € V(ry/g) N V(ZQ/[?), then
the AS,,,-segment in A’ is called a preserved segment. If x,,, € V(fz/é)\‘/(ig/[?)
then the AS,,,-segment in A’ is called a skewed segment. When r4/§ = 22/[7 =
V', preserved segments and skewed segments are defined symmetrically.

Y

Note 7.9 It is easy to see that any segment in a replacement sequence is a
preserved segment with a non-overlapping LRCTRS. The proof of UN of a
weakly compatible TRS in [22] is insufficient since the methodology neglects
skewed segments.

The following example explains the key idea of the modified independence
AL,=14 U 14, where 1L, is a new relation defined in the next section.

Example 7.10 Let us consider Example 7.3 again. Suppose that the reduc-
. . v v*

tion steps ay, ag, and ag are in subproofs u <y ¢(t,a,a), a <p sy, and
t X)R s1 of the peak, respectively. Let of, o}, and af be descendants (by Py)

of aq, ay, and as, respectively. The intuition behind the modified independence
is as follows.

— The reduction steps af and o} are in preserved segments. Since relative
positions of preserved segments are preserved by using (i) of Lemma 7.7,
we can prove preservation of the independence of oy and s by using an
argument similar to that of the non-overlapping case. This case is handled
with 1.

— The reduction step af is in a skewed segment in the replacement sequence.
Then the position of aj may overlap with the position of o). However, the
intermediate term ¢(%,a,a) plays the role of barrier between o} and o} so
that they do not interfere with each other. Note that ¢(¢,a,a) is a head
normal form and « is a ground normal form by (ii) of Lemma 7.7. This case
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barrier ¢

pos(f3

* head normal forms

Fig. 10. Relation 1L} when o > p’ and A(a,t) £ p’ hold
will be handled with 1l.

In the following sections, we will formally discuss the above idea.
7.2 Independence 1L, of compatible LRCTRS

In this section we introduce a binary relation 1L, which is the union of 11 and
A 5. Then 1L, is proved to be an independence for a PES Pp of a compatible
LRCTRS £. Intuitively, a 1l 5 # means that « and [ are separated by a special
term called a barrier.

Definition 7.11 For any proof A in i and a, 8 € top(A), a /3 B in Aif a
term ¢t € A(a, ) and a position p € Pos(t) exist such that

(i) p<anp,
(i) A(e,3) £ p, and
(iii) there exists p’ > p satisfying a > p’ and A(e,t) £ p’ such that t/q¢ is a
head normal form for each ¢ € Pos(t/p) with ¢ |J p'.

Then ¢ is called a barrier between o and 3. We also say t/p is the body and
t/p’ is the rock of the barrier ¢ in order to make the positions p and p’ explicit.
Fig. 10 illustrates o #3 3. We write o 1Ly f3 if either o #] B or B 47 a.

Example 7.12 Let R be the same as the one in Example 7.3. Consider the
following proof in R:

& 9(fla,a),a,a)
2 g(a,a,a)
25 gla, [(a,a),a)
<5 gla, f(a,a), f(a,a)),




where the underlined parts are the contracted redexes. Then, as #1 oy and
ay /3 oy with a barrier ¢(f(a,a),a, a) or g(a,a,a). Note that g(f(a,a),a,a) =

g(z,0,0) e = fla,a)} and gla, a,a) = gle,a,a){x = a}, 50 g(f(a,a),a,0)
and g¢(a,a,a) are head normal forms and « is a ground normal form of R. We
also have ay J_LlT s, Qg J_LlT oy, and ag J_LlT ay, but ay AZT ay for e =1,2.

o T
A similar property to Lemma 6.8 holds for 1L, .

Lemma 7.13 Let o, (3,7 € top(A). Suppose that € Ala,v) and B <
Ale, B]. Then a 1L] ~ with a barrier t € A(B,7) iff B L] ~.

Proof. If-part follows from 8 < Ala, 3]. Let us consider the only-if-part.
Suppose that ¢ is a barrier between « and ~. Let ¢/p be the body and let ¢/p’
be the rock. If a #1 ~, then a > p’ and A(a,t) £ p'. Since 3 < Ala, 8] and
B € Ala,t), B <p' and tis a barrier for 3 £} ~. If v /T «, then a > p. Since
B < Ala, 3] and 3 € A(a,t), 3> pand t is a barrier for v #1 3. O

We extend J_Lg to visible reduction steps in a similar way to Definition 6.9.

Definition 7.14 For «, 3 € wvisible(A), o U B if o 15 8 in A® with a
barrier b4 () for some t € A. We also call ¢ a barrier between « and /3.

Lemma 7.15 1 and 13" are structural.

Definition 7.16 Let 1.Y'=11" U 11} We define 1L, and 1L, as the subproof
closure of J_LIQVI and 1M, respectively.

Note 7.17 By definition, it is easy to see that J_LIQVI and LM satisfy the as-
sumptions (i), (ii), and (iit) in Lemma 5.10. In the sequel, we will apply
Lemma 5.10 without mentioning these assumptions. Note also that 1 ,=11,
U d,.

Theorem 7.18 The relation 1L, is an independence for the PES Py of a
compatible LRCTRS R.

In order to prove the above theorem, we show in the following that L, satisfies
the four properties in Definition 5.1. The hardest part is the (iv) preservation,
which will be proved in Section 7.3.

Lemma 7.19 1L, satisfies dominance.

Proof. If 3 € sub(a), there is no term ¢ € A such that bs(t) € A%(B,a).
Thus, a A3 38, and the result follows from Lemma 5.3 and Lemma 6.15. O

Lemma 7.20 1, s local.

Proof. By Lemma 5.6, Lemma 6.16, and Lemma 7.15. O
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Lemma 7.21 1L, satisfies adherence.
Proof. Obvious since 1L, satisfies (adhere) of the subproof closure. O
Lemma 7.22 1L, satisfies non-incest.

Proof. From the same argument in Lemma 6.18, aq Il; ay for any two dis-
tinct descendants aq, ay of any reduction step « in a critical peak. Therefore,
the result follows. O

7.8 Preservation of independence 11,

The first lemma is used to push barriers out of the eliminated peaks.

Lemma 7.23 (Push-out Lemma) Let A : t, Z)R X)R t, be a proof in fm’,
and let o, € wvisible(A). Suppose « J_LIQVI B and t; is a barrier between «
and 3. Suppose also that the ith reduction step of A is right-oriented (i.e.,
ti —p tipr) and that b4(tiy1) € Ab(oz,ﬂ). Then t;y1 is also a barrier between
a and 3. Such a property also holds for left-oriented reduction steps.

Proof. Let v =, —4 t;11, and let ¢;/p be the body of the barrier ¢;. Then,
v &£ p. Therefore, ¢;11/q is a head normal form for any ¢ such that p < ¢ <
a A 3, and the result follows. O

Lemma 7.24 1L, satisfies preservation.

Proof. Let oy and ay be reduction steps in a proof A : 4, X)R t,. Suppose
that A — A’ and that o/ in A" is a descendant of «; (¢ = 1,2).

Let A = Ay;791;7v2; Ao, where ~1; 7, 1s the eliminated peak with the reduction
steps 1 1 tr_q X}% tp and vy @t lf% tpr1. Let By; By be the replacement
sequence. We perform the same case analysis as Lemma 6.19 (see Fig. 8).
Claim 7.25, Claim 7.26, Claim 7.27, and Claim 7.28 establish the preserva-

tion. O

Claim 7.25 Preservation of 1L, holds in cases (a)-(1) to (3).

Proof. In case (a)-(1), preservation follows since L, is local by Lemma 7.20.
In case (a)-(2), we can assume ay, az € visible(A) and aq J_LIQVI oy because of
Lemma 5.10. Thus, if #; is a barrier between «; and «y, then ¢,_; is also a
barrier by the Push-out Lemma. Thus, preservation follows since P works
monotonically downwards according to Lemma 7.2. In case (a)-(3), if oy and
ay are in the same subproof and o} and «f are in the same copy of that
subproof, preservation follows since 1L, is local by Lemma 7.20. Otherwise,
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o) and o} are in different segments of embedding, so o} 14 o). O

Claim 7.26 Preservation of AL, holds in cases (b)-(1) to (3) when P is ap-
plied.

Proof. Due to Claim 6.21 and Lemma 5.10, we can prove o) I, «} under
the assumptions ay, ay € visible(A) and oy J_LIQVI ay. In case (b)-(1), o} J_LIQVI o

is obvious since By || Bs. In case (b)-(2), if # is a barrier between oy and as,

then #;_y is also a barrier according to the Push-out Lemma, so o/ 13" o

holds. In case (b)-(3), o 1LY o, in A, so o 1L, o, follows. O

Claim 7.27 Preservation of 1., holds in cases (b)-(1) to (3) when P is
applied.

Proof. Suppose 73 nests ;. Then, By is empty, and By is v with 4y pre-
fixed to the kth subproof for some k. Let AS; be the th subproof of ~; for
i = 1,...,n. Then, the kth subproof of B; is v1/p; ASk for some position p.
Without loss of generality, we can assume oy, oy € visible(A) and «y J_LIQVI Qy
by using Claim 6.22 and Lemma 5.10.

The case ay = 41 from Lemma 3.11 and Lemma 7.13 is sufficient for case
(b)-(1). Then o} 15" @ since any reduction step 3 in an AS;-segment in B}
(t=1,...,k —1) satisfies 3| .

In case (b)-(2), we can assume that a barrier between oy and «y is in Ay by
using the Push-out Lemma. Thus, o 1) o,

Let us consider (b)-(3). We borrow notations in Definition 6.2, 50 v, = 02[22(9] X@Z
Cs[r20]. If ag = 72, then a; fL. as. Suppose that ay € AS;. If j # k, then
oy 1y oy in AL If j = k, ty is the barrier between «q and ay. Then,

oy J_LIQVI ag in A with ?; as the barrier,
& oy J_Lg az in A with ba(fx) as the barrier (by definition),
& ooy J_Lg ay in A% CQ[[CZZ [ASy, ..., AS,, ] with ba(tz) as the barrier,
& ay Uy ay in 48 /p; ASy with ¢ /p as the barrier (since AL] is structural),
e o U ol in 4y /p; AS), with 1 /p as the barrier,
= of 1, o) in A (by definition).

In the step from the third line to the fourth line, we used the fact that
71/p; ASy = 71; Co[ G TAS,, ..., AS, 11/ p.

Next suppose v nests 42. In cases (b)-(1) and (2), we can assume that a
barrier between oy and «j is in A; by using Lemma 3.11 and the Push-out
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Lemma. Thus, it is enough to consider the case oy = 7y from Lemma 7.13,
and then of 1Y of. In case (b)-(3), the result is proved in the same way as
in the case when v, nests v;. O

Claim 7.28 Preservation of 1L, holds in cases (b)-(1) to (3) when Py is ap-
plied.

Proof. We borrow notations in Definition 7.1 and Lemma 7.7, so B, =
ClCH[ASyy, .-, ASy, ]l and By = C[C;,[ASy0, .. -, AS?i;,H]]' Without loss

of generality, we can assume that oy, ay € subtop(A) and oy UM o, by using
Lemma 5.10.

The case of ay = 4, from Lemma 3.11, Lemma 6.8, and Lemma 7.13 is suf-
ficient for cases (b)-(1) and (2). By the Push-out Lemma, we can assume a
barrier is in A;. Since Pp works monotonically downwards by Lemma 7.2,
of UM o

Let us consider (b)-(3). Let py = pos(v1)(= pos(2)). Let (1, 72) be the stan-
dard pair of compatibility of (S, S2). Every variable in #; occurs below some
position in MV, 5, (1 = 1,2). Since subproofs of the peak are embedded in
subproof parts, there is a unique ¢; € MV;, 5, such that o > pg; ¢ for e =1,2.
If ¢1 # ¢o, then o] 1Ly o). Otherwise, let ¢ = g; = ¢ and let us consider a
restriction By; By /po; q.

From the definition of MV}, ,, either 71/ € V or r3/¢§ € V. Suppose that
71/ = x1;. The other case is treated symmetrically.

Let 72/G = Chy/q(Tamy s - - - Tam, ). Then
By; By [pos G = AS1j5 Ciy il AS2my s - - s ASam, |-
Let p be the position such that [;/p = x1;. Recall that
B' = C[C; [ASu, ..., AS1 ]I CIC; [ASa, . . ., ASap,]]
is a subsequence of the flattening of the peak, hence
B'[po;p = ASyj; Cpy 5[ ASat s ASai, ]
for some Iy, ...,1;,. Then ay 1L ay in BY/py; p.
Suppose that o is in the AS,,, segment, hence r3/q; ¢ = o, .

Suppose that x,,,, € V(Z}/ﬁ) With (i) of Lemma 7.7, l}/[?;g = Ty, that is,
the position of ASy,,, in B!/po: p is preserved in By; By/po; ¢. Thus ey AT
in B'/po; p iff o ul aly in By; By/po; g. Therefore, preservation holds since
11T is structural by Lemma 6.10 and Lemma 7.15.

*
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Fig. 11. Skewed segment in By; By /po; G

Suppose that x,,,, & V(Z}/ﬁ) Then, the ASj, -segment is a skewed seg-
ment. By Lemma 6.1, the term between ASy; and Cp,/q[AS2m,, ... AS2m,]
is C[r20]/po; ¢ = 720/ q. For each ¢’ < ¢, 720/¢; ¢’ is a head normal form by (ii)
of Lemma 7.7. Moreover, 756/ ¢; ¢ is a ground normal form by (i) of Lemma 7.7.
We also have of, > ¢, o] > €, By/po; ¢ £ q, and By /po; ¢ £ € in By; By/po; §.
Thus, 7,0/ is a barrier for o}, /3 o/ in By; By/po; ¢ as shown in Fig. 11. There-
fore, preservation holds since J_LQT is structural as a result of Lemma 7.15. O

Proof of Theorem 7.18. By Lemma 7.19, Lemma 7.21, Lemma 7.22, and
Lemma 7.24. O

Theorem 7.29 A compatible LRCTRS is CR.
Proof. By Lemma 4.6, Theorem 4.17, and Theorem 7.18. O

Proof of Main Theorem. By Theorem 3.5 and Theorem 7.29. O

8 Related work
8.1 A-calculus with nonlinear rules

Many of UN results are derived from studies on extensions of the untyped
A-calculus. Klop proved in his pioneering work [15] (see also [3,7]) that CR
fails for the extension of Ag with any of the following rules:
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Dy i {Dpzz — =},
Ds: {D,zz — E},

Dy : {Dyzz — Bz},

PC: {CTwy — x, CFay — vy, Crzax — ),

SP : {Do(Dxy) — x, Di(Day) — y, D(Dox)(Dyz) — ).

He also proved that UN holds for A3z + Dy, Ag + Ds, and Az + Dy. Later, de
Vrijer and Klop proved that UN holds for Ag 4+ SP [17,35]. Although UN of
Ag + PC has not been explicitly referred to previously, it is proved by an easy
reformulation of the argument in Section 4 of [37].

The general statement that a strongly non-overlapping higher-order rewriting

system is UN [18] derives UN of Ag + Dy, As + Ds, and Az + Dy.

8.2  Non-w-overlapping TRS

Two terms are infinitely unifiable if they are unifiable with an infinite uni-
fier, and it is decidable using the unification algorithm without the occur
check [6,19]. For instance, d(x, ) and d(y, f(y)) are infinitely unifiable with
an infinite unifier {z := f(f(f(---))),y = f(f(f(--+)))}, whereas d(x, ) and
d(g(y), f(y)) are not because of the clash between ¢g(y) and f(y). A TRS R is
non-w-overlapping when [, and ly/p are not infinitely unifiable for any rules
Sy ly — r, Sy 0 Iy = ry € R and any non-variable subterm [y/p of Iy, un-
less 57 and Sy are identical and p = e. For instance, R, in Introduction is
non-w-overlapping. One of the authors posed the problem in [23] of whether
a non-w-overlapping TRS is UN, which is Problem 79 in [8]. In [20] a partial
answer is obtained: a non-w-overlapping and depth-preserving TRS is UN.©

Verma stated in [34] that every non-overlapping uniquely consistent non-
duplicating TRS in which every non-overlap is an I-non-overlap is UN, and this
implies another partial answer, i.e., UN of a non-w-overlapping non-duplicating
TRS. However, the proof of the key observation, Theorem 6, in [34] is incon-
clusive. In [33], there is a similar statement, Claim 8, but its proof is omitted.

6They also show CR of a non-w-overlapping TRS with a stronger restric-
tion [11,12].
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8.3 The Church-Rosser property of right-linear TRS

Instead of the left-linearity, the right-linearity is also expected to recover CR.
Toyama, Oyamaguchi, and Ohta have shown a partial answer [32,24].

Theorem 8.1 A simple-right-linear and strongly non-overlapping TRS is CR.

Here, a TRS is called simple-right-linear if each rule is right-linear and the
non-linear variables in the left-hand side do not appear in the right-hand side.
The full statement that a right-linear and strongly-nonoverlapping TRS ts CR
is still open. Note that there is a counter example when the right-linearity is
relaxed to the the non-duplicating condition.

9 Conclusion

We have presented a new proof of Chew’s theorem, which we believe is the
first complete proof of the theorem.

Our next step will be UN of a weakly compatible TRS. However, this will
require a further extension of the current framework of independence, since
weak compatibility lacks the head normal constraints on barriers, so that it
becomes difficult to show dominance.
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[Appendix]| Scenario of Chew’s original proof and the gap

Here we present an outline of Chew’s original proof [5], and show a “gap” in
it pointed out by van Qostrom [26]. In this Appendix, we follow the original
notation in [5].

Let G be a TRS and let G’ be the set of all linearizations of all rules in
G. For example, if g(h(x,2)) — h(x,2) € G, then g(h(x1,22)) — h(x1,21),
g(h(wy,23)) = hlwy, 22), g(A(21, 22)) = h(wa, 1), and g(h(w1, 72)) = h(T2, 22)
are in GG'. To avoid difficulties caused by non-left-linearity, Chew introduced
closure and marker.

The closure — g of —¢ with respect to G’ is defined as the following conditional

TRS obtained from G”:

g(h(x1,22)) — h(21, 21)
h(x1, h(wy,
g(h(er, 2)) = hlar, ) if there is a redex M of G s.t. M =% g(h(2q,22)).
g(h(xlva)) - h(l’z,l’l)
g(h(x1,22)) — h(22,22)

where M ﬂ% g(h(xy,22))0 is a reduction sequence from M to g(h(xy,x,))0

such that no reduction step occurs at the head position e.”

Two fresh symbols o and 3 of the variable arity called markers (correspond-
ing to the right direction and the left direction, respectively, as will become
clear) are introduced to represent “all the possible choices of variables in the

7 Strictly speaking, (G should be defined by an inductive generation since the rule
defining — 5 contains — 5 itself.
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linearization” in one rewrite rule. For example, g(h(x,z)) — h(x, x) is trans-
formed into the following rule using «a:

g(h(xy, 23)) = alh(xy, @), by, 29), h(ag, 1), h(xg, 22)).

The reduction system obtained by such a transformation from G is denoted
by aG'. The system G is defined similarly using the symbol 3 instead of «.
The following additional reduction rules are also introduced to simulate —¢:
copying reduction rules — 4, — g4, selecting reduction rules —,_, —4_, and
distributing reduction rules —,4, —g4. For instance,

h(tlth) —a+t a(h(tlth)vh(tlth))v
Oé(h(tl,tQ),h(t3,t4)) —a— h(tl,tQ) or h(t37t4),

glah(ty, ts), h(ts,14))) —aa g(h(a(ty, t3), a(tz, ).

A reduction relation — e (—pgae, respectively) is the closure of G with respect
to a¢ (BG, respectively) using ﬂg in the condition part, where —p = —_ ¢
U —gge U —=op U =gy U =, U —p_ U —, U —pg,. Let —¢ = — e
U—=aiU—=ppU—p,and =7 = —p6e U =g U =50 U =4

An outline of Chew’s original proof is as follows. At first, similar to what de
Vrijer observed, UN of —¢ 1s reduced to CR of —5. Then —g¢ and — 7 are
] ’ G
shown to be commutative. Finally, CR of — 4 is proved by the following steps:
given a proof ¢ <% 1/,
(i) transform ¢ <% ¢ into ¢ <3 1 (since -5 and —¢ are the same in
convertibility),
i1) replace each —¢ with —,qc - +—,4 (€—g - «7) and replace each «
p + p
with =g - pge (E—s - 1),
i) t —% - <5t through commutativity of —g and —7
T s g y )
iv) t —% - «% ' by “stripping” «’s and §’s.
(iv) G G y pping

The key Lemma 6.1 in [5] is necessary in the final step, that is, (iii) to (iv).
This lemma states that if A is a redex of —,ge (by definition, this means that
a redex B of (¢ exists such that B ﬂg A), then any —,_ U —3_-normal form
A of Ais a redex of — . Chew proves the lemma by induction on the length

nr*

of B =5 A. However, there is a gap that seems difficult to remedy.

The induction does not work for —,4 [26]. Let us consider the following ex-
ample:

B =35 gla(h(ty,ty), h(ts,14))) —aa g(h(alty, t3), alty, t))),
(= H) (= A)
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where ¢; is an arbitrary term containing neither o nor g for: = 1,...,4. By re-
moving the markers by —,_ and —4_, weobtain Cgr = {g(h(t1,12)), g(h(ts,t4))}
from B’, and C4 = {g(h(t1,12)),9(h(t1,t4)),g9(h(t3,12)),g(h(ts,14))} from A.
In the induction step, it must be shown that sp € (g exists such that
spr —§ 54 for each s4 € (4. However, this is impossible due to a “cross
product”, that is, s4 = g(h(t1,14)) or g(h(ts,t3)).

Chew’s thesis [4] also contains a similar gap. In the proof of Lemma 4.28 in the
thesis, the property corresponding to Lemma 6.1 in [5] is implicitly assumed.
The definition of the closure is different from that of [5], that is, the condition
part of the definition of the closure accepts not only M —7% g(h(x1,23)) but
also M % g(h(x1,22)). However, induction also fails at the step of —,4 with
forward reduction, and —,_ with backward reduction if we try to prove the
corresponding property.
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