Well-quasi-orders and Regular ω-languages

Mizuhito Ogawa

aJapan Advanced Institute of Science and Technology
1-1 Asahidai Tatsunokuchi Nomi Ishikawa 923-1292 Japan
mizuhito@jaist.ac.jp

Abstract

In "On regularity of context-free languages, Theoretical Computer Science Vol.27, pp.311-332, 1983", Ehrenfeucht et al. showed that a set L of finite words is regular if and only if L is \leq-closed under some monotone well-quasi-order (WQO) \leq over finite words. We extend this result to regular ω-languages. That is,

(1) an ω-language L is regular if and only if L is \preceq-closed under a periodic extension \preceq of some monotone WQO over finite words, and

(2) an ω-language L is regular if and only if L is \preceq-closed under a WQO \preceq over ω-words that is a continuous extension of some monotone WQO over finite words.

Key words: ω-language, well-quasi-order, regularity.

1 Preliminaries

Throughout the paper, we will use A for a finite alphabet, A^* for a set of all (possibly empty) finite words on A, and A^ω for a set of all ω-words on A. A concatenation of two words u, v is denoted by uv, an element-wise concatenation of two sets U, V of words by UV, VV, \ldots, V^i by V^i, and VV, \ldots by V^ω.

The length of a finite word u is denoted by $|u|$. As a convention, we will use ϵ for the empty word, u, v, w, \cdots for finite words, α, β, \cdots for ω-words, a_1, a_2, \cdots for elements in A, i, j, k, l, \cdots for indices, and U, V, \cdots (capital letters) for sets. We sometimes use x, y, \cdots for elements of a set.

A regular ω-language is a set of ω-words that are accepted by a (nondeterministic) $Büchi$ automaton $A = \{Q, q_0, \Delta, F\}$, where Q is a finite set of states,
Lemma 1.2. For a finite congruence that saturates \(L \), \(L \) saturates \(L \).

Lemma 1.4. A congruence \(\sim \) is finite if there are only finitely many \(\sim \)-classes. Details are given elsewhere [3].

Definition 1.1. Let \(L \subseteq A^\omega \) and let \(\sim \) be a congruence over \(A^* \). We say that \(\sim \) saturates \(L \) if for each \(\sim \)-class \(U,V \), \(U.V^\omega \cap L \neq \emptyset \) implies \(U.V^\omega \subseteq L \).

Lemma 1.2. For a \(\text{B"uchi} \) automaton \(A \) and \(u,v \in A^* \), we define \(u \sim_A v \) if
\[
(q \xrightarrow{u} q' \iff q \xrightarrow{v} q') \land (q \xrightarrow{F}_u q' \iff q \xrightarrow{F}_v q')
\]
for each \(q,q' \in Q \). Then \(\sim_A \) is a finite congruence that saturates \(L(A) \).

Theorem 1.3. \(L \subseteq A^\omega \) is regular if and only if some finite congruence saturates \(L \).

Lemma 1.4. Let \(\sim \) be a finite congruence over \(A^* \).

1. Let \(\alpha = u_1 u_2 \cdots \in A^\omega \) and let \(u(i,j) = u_1 u_{i+1} \cdots u_{j-1} \) where \(u_i \in A^* \). There exist a \(\sim \)-class \(V \) and \(i_1 < i_2 < \cdots \) such that \(u(i_j,i_k) \in V \) for each \(j,k \) with \(j < k \).

2. Let \(U,V \) be \(\sim \)-classes. There exist \(\sim \)-classes \(U',V' \) such that \(U.V^\omega \subseteq U'.V'^\omega \), \(U'.V' \subseteq U' \), and \(V'.V' \subseteq V' \).

Proof

1. Since \(\sim \) has only finitely many \(\sim \)-classes, this is a direct consequence of (infinite) Ramsey Theorem.

2. Note that for each \(\sim \)-class \(U_1, \cdots, U_m, W, U_1, \cdots, U_n \cap W \neq \emptyset \) implies \(U_1, \cdots, U_n \subseteq W \). Since \(\sim \) has only finitely many \(\sim \)-classes, from (infinite) Ramsey Theorem there exist a \(\sim \)-class \(V' \) and \(i_1 < i_2 < \cdots \) such that \(V^{i_1}_{i'} \subseteq V' \) for each \(j,k \) with \(j < k \) and \(V'.V' \subseteq V' \). Let \(U' \) be a \(\sim \)-class that includes \(U.V^{i_1} \). Then \(U.V^\omega \subseteq U'.V'^\omega \), \(U'.V' \subseteq U' \), and \(V'.V' \subseteq V' \).

We denote a quasi-order (QO, i.e., reflexive transitive binary relation) over a set \(S \) by \((S, \leq)\). If \(S \) is clear from the context, we simply denote by \(\leq \). As a convention, a QO over finite words is denoted it by \(\leq \), and a QO over \(\omega \)-words is denoted by \(\preceq \).
For each $u, v \in A^*$, $u_i \leq v_i$ for any i implies $u_1u_2u_3 \cdots \leq v_1v_2v_3 \cdots$.

For each $\alpha \in A^\omega$, there exist $u, v \in A^*$ such that $\alpha \leq u.v^\omega$ and $\alpha \geq u.v^\omega$.

For instance, the embedding over ω-words is the periodic extension of the embedding over finite words. Note that a periodic extension of a monotone WQO over A^* is a WQO over A^ω. We will prove Theorem 2.2 below.

Let $L \subseteq A^\omega$. L is regular if and only if L is \leq-closed under a periodic extension (A^ω, \leq) of a monotone WQO (A^*, \leq).

For $u, v \in A^*$, if $uv^\omega \in U.V^\omega$, $U.V \subseteq U$, and $V.V \subseteq V$, there exist $w_1 \in U$ and $w_2 \in V$ such that $w_1w_2^\omega = uv^\omega$.

Proof Let $uv^\omega = u'v_1^i v_2^j \cdots$ satisfying $u' \in U$ and $v_i^j \in V$, and let $w(i, j) = v_i^j \cdots v_{i-1}^j$ for $i < j$. Let $k_j \equiv |w(1, j)| \ (mod \ |v|)$. Then there exist k_{j1} and k_{j2} such that $k_{j1} < k_{j2}$ and $k_{j1} \equiv k_{j2} \ (mod \ |v|)$. Since there are infinitely many such pairs, we can assume that $|u| \leq |u'.w(1, j_1 - 1)|$. Let $w_1 = u'.w(1, j_1 - 1)$ and $w_2 = w(j_1, j_2 - 1)$. Since $U.V \subseteq U$ and $V.V \subseteq V$, $w_1 \in U$, $w_2 \in V$ and $uv^\omega = w_1w_2^\omega$.

Lemma 2.4 For a B"uchi automaton A and $\alpha \in A^\omega$, let $[\alpha] = \{U.V^\omega \mid \alpha \in U.V^\omega \}$ where U, V are \sim_A-classes. We define $\alpha \preceq' \beta$ if $[\alpha] \cap [\beta] \neq \emptyset$. Then,

1. $L(A)$ is \leq'-closed.
2. $u_i \sim_A v_i$ for each i imply $u_1u_2 \cdots \preceq' v_1v_2 \cdots$.

Proof From Lemma 1.2, \sim_A saturates L and $U.V^\omega \subseteq L$ for each $U.V^\omega \in [\alpha]$. Thus L is \leq'-closed.
From Lemma 1.4 (i), there exist a \(\sim_A \)-class \(V \) and \(i_1 < i_2 < \cdots \) such that \(u(i_j, i_k) \in V \) for each \(j < k \). Let \(U \) be a \(\sim_A \)-class such that \(u(1, i_1) \in U \). (We bow the notation from Lemma 1.4 (i).) Since \(\sim_A \) is a congruence, \(v(1, i_j) \in U \) and \(v(i_j, i_k) \in V \) for each \(j < k \). Thus \(u_1 w_2 \cdots \in U.V^\omega \) implies \(v_1 v_2 \cdots \in U.V^\omega \), and \(v \leq U \).

Definition 2.5 [1] For \(u, v \in A^* \), we define \(u \equiv_L v \) if \(w(w_1 u v w_v) \in L \iff w(w_1 v w_2 w_v) \in L \) and \(w_1 u w_2 w_v \in L \iff w_1 v w_2 w_v \in L \) for each \(w, w_1, w_2 \in A^* \).

Proof of Theorem 2.2

Only-if part: Assume \(L \) is regular. Let \(A \) be a Büchi automaton such that \(L = L(A) \). Since \(\sim_A \) is a finite congruence, \((A^* , \sim_A)\) is a monotone WQO. Define \(\preceq \) as the transitive closure of \(\equiv \) (defined in Lemma 2.4), then \((A^*, \preceq)\) is a periodic extension of \((A^*, \sim_A)\) and \(L(A) \) is \(\preceq \)-closed.

If part: Assume that \(L \) is \(\preceq \)-closed where \(\preceq \) is a periodic extension of a monotone WQO \(\preceq \). First, we show that \(\equiv_L \) is a finite congruence. Assume that \(\{ u_i \} \) is an infinite set in \(A^* \) such that \(u_i \not\equiv_L u_j \) for \(i \neq j \). Since \((A^*, \preceq)\) is a WQO, there exists an infinite ascending subsequence \(\{ u_k \} \).

Let \(F(u) = \{ (v, v_1, v_2, w_1, w_2, w) \in A^* \times A^* \times A^* \times A^* \times A^* \mid v(v_1 u v_2) \in L \land w_1 u w_2 w_v \in L \} \). Since \(\preceq \) is a periodic extension of \(\preceq \) and \(L \) is \(\preceq \)-closed, each \(F(u) \) is \(\preceq \)-closed. Since \(u_k \not\equiv_L u_j \) for \(i \neq j \), \(F(u_k) \subsetneq F(u_j) \), thus \(F(u_k) \subsetneq F(u_j) \).

Then there exists an infinite sequence in which each pair of different elements is incomparable. Since \(\preceq \)-closed is a WQO over \(A^* \times A^* \times A^* \times A^* \times A^* \), this is a contradiction.

Second, we show that \(\equiv_L \) saturates \(L \). Assume that some \(\equiv_L \)-classes \(U, V \) satisfy \(U.V^\omega \cap L \neq \phi \) and \(U.V^\omega \not\subseteq L \). From Lemma 1.4 (ii), we can assume that \(U.V \subseteq U \land V.V \subseteq V \).

Let \(\alpha \in U.V^\omega \land L \) and \(\beta \in U.V^\omega \land L \). Since \((A^w, \preceq)\) is a periodic extension, from Lemma 2.3 there exist \(u, u' \in U \) and \(v, v' \in V \) such that \(\alpha = u v^\omega \) and \(\beta = u' v'^\omega \). By definition of \(\equiv_L \), \(u v^\omega \in L \land u' v'^\omega \in L \) are contradictory.

3 Second theorem

Definition 3.1 For a monotone QO \((A^*, \preceq)\), a QO \((A^w, \preceq)\) is a continuous extension if the following conditions are satisfied.

1. For each \(u, v \in A^* \) and \(\alpha, \beta \in A^w \), \(u \leq v \) and \(\alpha \leq \beta \) imply \(u \alpha \leq v \beta \).
(2) Let \(u_j, v_j \in A^* \) for each \(j \) and let \(\alpha_i = v_1 \ldots v_{i-1} u_i \ldots \) for each \(i \) and \(\alpha_\infty = v_1 v_2 \ldots \). For \(\beta \in A^\omega \), if \(u_i \leq v_i \) and \(\alpha_i \leq \beta \) for each \(i \), then \(\alpha_\infty \leq \beta \), and if \(u_i \geq v_i \) and \(\alpha_i \geq \beta \) for each \(i \), then \(\alpha_\infty \geq \beta \).

Theorem 3.2 Let \(L \subseteq A^\omega \). \(L \) is regular if and only if \(L \) is \(\preceq \)-closed under a WQO \((A^\omega, \preceq)\) that is a continuous extension of a monotone WQO \((A^*, \leq)\).

For the embedding \(\leq \) over finite words, let \((A^*, \leq^o)\) be defined as \(u \leq^o v \) if and only if \(u \leq v \) and \(\text{elt}(u) = \text{elt}(v) \), where \(\text{elt}(u) = \{a_i \mid u = a_1 a_2 \ldots a_j\} \). Since the embedding \(\leq \) over finite words is a WQO from Higman’s lemma, \(\leq^o \) is also a WQO. Then the embedding over \(A^\omega \) is a continuous extension of \(\leq^o \). Note that the embedding over \(A^\omega \) is a continuous extension of the embedding \(\leq \) over finite words. Actually, any continuous extension of the embedding \(\leq \) over finite words is a trivial WQO (i.e., \(A^\omega \times A^\omega \)). For instance, given \(\alpha, \beta \in A^\omega \). Let \(\alpha(1, i) \) be the prefix of \(\alpha \) of the length \(i \) and \(\alpha_i = \alpha(1, i) \), \(\beta \) for each \(i \). Since \(\alpha(1, i) \geq \epsilon, \alpha_i \geq \beta \) for each \(i \). Thus, by definition of continuity, \(\alpha_\infty = \alpha \geq \beta \). Hence, for any \(\alpha, \beta \in A^\omega \), we conclude \(\alpha \preceq \beta \).

Definition 3.3 Let \(u, v \in A^* \) and let \(L \subseteq A^\omega \). We write

- \(u \sim_1^L v \) if and only if \(\forall w \in A^*, \forall \alpha \in A^\omega: \text{wu} \alpha \in L \iff \text{w} v \alpha \in L \),
- \(u \sim_2^L v \) if and only if \(\forall w \in A^*: \text{wu} \alpha \in L \iff \text{w} v \alpha \in L \), and
- \(u \sim_L v \) if and only if \(u \sim_1^L v \) and \(u \sim_2^L v \).

Proof of Theorem 3.2

Only-if part: Assume \(L \) is regular. Let \(\mathcal{A} \) be a B"uchi automaton such that \(L = L(\mathcal{A}) \). Since \(\sim_\mathcal{A} \) is a finite congruence, \((A^*, \sim_\mathcal{A})\) is a monotone WQO. Define \(\preceq \) as the transitive closure of \(\preceq' \) (defined in Lemma 2.4), then \(L(\mathcal{A}) \) is \(\preceq \)-closed. Since \(\preceq \) is symmetric, \((A^\omega, \preceq)\) is a continuous extension of \((A^*, \preceq_\mathcal{A})\) from Lemma 2.4 (ii). For the index \(n \) of \(\sim_\mathcal{A} \), the number of \(\preceq \)-classes is bound by \(2n^2 \). Thus \(\preceq \) is a WQO.

If part: First, we show that \(\simeq_\mathcal{A} \) is a finite congruence. Assume that \(\{u_i\} \) is an infinite set in \(A^* \) such that \(u_i \not\simeq_\mathcal{A} u_j \) for \(i \neq j \). Since \((A^*, \preceq)\) is a WQO, there exists an infinite ascending subsequence \(\{u_{k_i}\} \).

Let \(F(u) \subseteq A^* \times A^\omega \times A^* \) be a set such that \((w, \alpha, v) \in F(u) \iff wu \alpha \in L \land wv \alpha \in L \). Then, each \(F(u) \) is \(\leq \times \leq \preceq \)-closed and hence \(F(u_{k_i}) \subseteq F(u_{k_j}) \) for \(i < j \). Since \(u_{k_i} \not\simeq_\mathcal{A} u_{k_j} \) for \(i \neq j \), \(F(u_{k_i}) \neq F(u_{k_j}) \), thus \(F(u_{k_i}) \subseteq F(u_{k_j}) \). Then there exists an infinite sequence in which each pair of different elements is incomparable. Since \(\leq \times \preceq \times \leq \) is a WQO over \(A^* \times A^\omega \times A^* \), this is a contradiction.

Second, we show that \(\simeq_\mathcal{A} \) saturates \(L \). Assume that some \(\simeq_\mathcal{A} \)-classes \(U, V \)
satisfy $U.V^\omega \cap L \neq \emptyset$ and $U.V^\omega \not\subseteq L$. From Lemma 1.4 (2), we can assume that $V.V \subseteq V$.

Let $\alpha = u\nu_1\nu_2 \cdots$ be a minimal element (wrt \preceq) in $U.V^\omega \cap L$, and let $\beta = u'u_1\nu'_2 \cdots \in U.V^\omega \setminus L$ such that $u, u' \in U$ and $\nu_i, \nu'_i \in V$. Let $\{\vec{v}_i\}$ be sets of minimal elements of V wrt \preceq. Since (V, \preceq) is a WQO, $\{\vec{v}_i\}$ are finite.

Let $\alpha'(j, j+k) = v_j \cdots v_{j+k}$. Since \vec{v}_i are finitely many, from (infinite) Ramsey Theorem there exist l and an ascending sequence $0 < j_1 < j_2 < \cdots$ such that $\alpha'(j_m, j_{m+1} - 1) \geq \vec{v}_l$ for any $m > 0$.

Let $\alpha_m = u \alpha'(1, j_1 - 1) \vec{v}_l^{m-1} \alpha'(j_m, j_{m+1} - 1) \cdots$. Obviously, $\alpha_m \preceq \alpha$ and $\alpha_m \in U.V^\omega \cap L$. Since α is minimal in $U.V^\omega \cap L$, $\alpha_m \preceq \alpha$. By definition of the continuous extension, $\alpha_\infty = u \alpha'(1, j_1 - 1) \vec{v}_l^\omega \succeq \alpha$. Thus since L is \preceq-closed, $\alpha_\infty \in U.V^\omega \cap L$.

Let $\beta'(j, j+k) = v'_j \cdots v'_{j+k}$. Since \vec{v}_l are finitely many, from (infinite) Ramsey Theorem there exist ν' and an ascending sequence $0 < j'_1 < j'_2 < \cdots$ such that $\beta'(j'_m, j'_{m+1} - 1) \geq \vec{v}_l$ for any $m > 0$. Let $\beta_\infty = u' \beta'(1, j_1 - 1) \vec{v}_l^\omega$. By definition of the continuous extension, $\beta_\infty \not\preceq \beta$. Since L is \preceq-closed, $\beta \not\in L$ implies $\beta_\infty \not\in L$. Thus $\beta \in U.V^\omega \setminus L$.

Since $u \succeq_L u'$ and $\vec{v}_j \succeq_L \vec{v}_l$ for each j, repeated applications of \succeq_L^1 and an application of \succeq_L^2 imply that $\alpha_\infty \in L \iff \beta_\infty \in L$. This contradicts $\alpha_\infty \in L$ and $\beta_\infty \not\in L$. \hfill \blacksquare

Example 3.4 Either the periodic or continuous assumption cannot be dropped. Let $\beta = abaabaaaabaa \cdots$ and let $L(\beta)$ be the set of ω-words that have a common suffix with β. For $\alpha \in A^\omega$, let $p^\beta_\alpha(\alpha) = 1$ if $\alpha \in L(\beta)$ and let $p^\beta_\alpha(\alpha) = 0$ if $\alpha \not\in L(\beta)$. Define $\alpha \preceq \alpha' \iff p^\beta_\alpha(\alpha) \leq p^\beta_\alpha(\alpha')$. Then \preceq is a WQO over ω-words and $L(\beta)$ is \preceq-closed, but $L(\beta)$ is not regular.

Acknowledgements

The author thanks Jean-Eric PIN for valuable comments at the previous presentation. This work is partially supported by PRESTO, Japan Science and Technology Corporation.

References
