
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Proving Properties of Incremental Merkle Trees

Author(s) Ogawa, Mizuhito; Horita, Eiichi; Ono, Satoshi

Citation
Lecture Notes in Computer Science, 3632/2005:

424-440

Issue Date 2005

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/5035

Rights

This is the author-created version of Springer,

Mizuhito Ogawa, Eiichi Horita, Satoshi Ono,

Lecture Notes in Computer Science, 3632/2005,

2005, 424-440. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/11532231_31

Description

Proving Properties of Incremental Merkle Trees

Mizuhito Ogawa1, Eiichi Horita2, and Satoshi Ono3

1 Japan Advanced Institute of Science and Technology, Ishikawa, 923-1292 Japan
mizuhito@jaist.ac.jp

2 NTT Information Sharing Platform Laboratories, Tokyo, 180-8585, Japan
horita.eiichi@lab.ntt.co.jp

3 Kogakuin University, Tokyo, 163-8677 Japan
ono@cpd.kogakuin.ac.jp

Abstract. This paper proves two basic properties of the model of a
single attack point-free event ordering system, developed by NTT. This
model is based on an incremental construction of Merkle trees, and we
show the correctness of (1) completion and (2) an incremental sanity
check. These are mainly proved using the theorem prover MONA; espe-
cially, this paper gives the first proof of the correctness of the incremental
sanity check.

Keywords: Merkle tree, theorem prover, temporal authentication.

1 Introduction

With the growth of the Internet, resilient temporal authentication for system
failure and/or malicious attacks becomes important. The standard method is to
use a timestamp based on a public-key cryptosystem. However, it has relatively
short time span (most public keys are renewed each 5 years), and once the
cryptography is compromised, all certificates become invalid.

With the aim for long-term validity (say, 20-30 years), NTT developed the
event ordering system [5] based on a Merkle tree [8], which is a labeled binary
tree such that a label of a node is recursively computed from labels of its child
nodes using a hash function. Although an event ordering has relatively rough
precision on a time scale, it relies only on the collision-resistance (and one-
wayness) of a hash function, which is believed to be much harder than public
key cryptosystems. Thus, this system is complementary to a timestamp system
based on a public key cryptosystem; with its supplementary use, we can obtain
both precision and long-term validity.

The event ordering system receives a hash value of a timestamp, and con-
structs a Merkle tree in an incremental manner. It issues a certificate immediately
after a hash value is registered to a leaf label of a partially constructed Merkle
tree. A newly registered hash value is recursively propagated in this bottom-up
way, and a certificate is the known part of minimum information to compute
the hash value at the root of a Merkle tree. When a whole Merkle tree has been
constructed, the hash value at its root is released as a public witness.

Such an incremental construction has been proposed in literature [3, 2, 12, 9,
7], and these studies support

– for long-term validity, the systems relay on only collision-resistance (and
one-wayness) of a hash function, and

– each transaction message is kept in O(log n) wrt the number of events; thus,
they are scalable.

Our system further enhances these systems:

– single attack point free.
– even if the system halts, an intermediate snapshop supports relative correct-

ness of temporal authentication.

This paper proves two basic properties of the incremental construction of a
Merkle tree: (1) correctness of completion and (2) correctness of an incremental
sanity check. They are mainly proved using theorem prover MONA [1]; especially,
this paper first prove (2) correctness of incremental sanity check.

Sections 2 and 3 explain what Merkle trees and MONA are, respectively.
Section 4 briefly introduces the event ordering system; terminology for an incre-
mental Merkle forest and our protocol design are explained. Section 6 gives the
proof of correctness of completion of an incremental Merkle forest. The proof is
performed both by manual induction and by MONA for comparison. Section 7
gives the proof of correctness of the incremental sanity check proposed in [5].
This property has been checked by experiments with large-scale data, but with-
out the proof. Although the proof is not fully formal, the main lemmata are
verified by MONA.

2 Merkle tree

T = (V (T), E(T)) is a directed graph if E(T) ⊆ V (T) × V (T). We call an
element in V (T) a node, and an element in E(T) an edge. A path is a sequence
(t0, · · · , tn) of nodes such that for each 1 ≤ i ≤ n, (ti−1, ti) ∈ E(T). A directed
graph T is acyclic if there are no paths that visit the same node twice.

We say that an acyclic directed graph T = (V (T), E(T)) is a binary tree
with the (unique) root denoted by root(T) if

– root(T) ∈ V (T),
– for each node t ∈ V (T), there exists the unique path (t0, · · · , tn) such that

t0 = root(T) and tn = t, and
– for each node t ∈ V (T), if ({t} × V (T)) ∩ E(T) �= φ, there are exactly two

edges (t, t′) and (t, t′′) in E(T) (we call t′ and t′′ the child nodes of t).

To distinguish the child nodes of t, we will give the explicit ordering denoted
by t.0 (left-child) and t.1 (right-child). s ≤ s′ is equivalent to v̄ ∈ {0, 1}∗ being
a prefix of w̄ ∈ {0, 1}∗ where s = t.v̄ and s′ = t.w̄. We also say that t.0 is the
brother of t.1, and vice versa. Note that the brother relation is symmetric, but

not reflexive, i.e., t.0 and t.1 are not brothers of themselves, respectively. We
say that a node t is a leaf if t has no child nodes, and the set of leaves in T is
denoted by leaves(T).

The position of t ∈ V (T) is the sequence of 0’s and 1’s such that the cor-
responding the sequence of choice of left- and right-child from the root root(T)
results the path to t.

In the following, T = (V (T), E(T)) is always a binary tree with a root.
T ′ = (V (T ′), E(T ′)) is a subtree of T = (V (T), E(T)), if V (T ′) ⊆ V (T)
and there exists t′ ∈ V (T ′) such that T ′ is a binary tree with the root t′ (i.e.,
root(T ′) = t′).

As convention, we will denote binary trees by T, T1, T2, ..., nodes by s, t, u, v, ...
and t0, t1, ..., sets of nodes by X, Y, Z, ..., the set of labels by L, and descriptions
in MONA by type writer fonts.

Definition 1. Let g : L × L → L be a binary function where L is the set
of labels. Let T = (V (T), E(T)) be a binary tree with the root root(T), where
V (T) and E(T) are the sets of nodes and edges, respectively. A Merkle tree
MT = (V (T), E(T), α) is a L-labeled binary tree with a labeling function α :
leaves(T) → L. The label for non-leaf nodes is recursively defined by α(t) =
α(g(t.0, t.1)).

We will often overload a tree T and a Merkle tree MT when it is clear from
the context.

Remark 1. Originally, a Merkle tree was defined such that each path to a leaf
from root(T) has the same length [8]. We generalize a Merkle tree, such that
paths to leaves may have different lengths. This generalization makes proof of
the target properties easier and expressible in WS2S.

In our design of the event-ordering system, we assume that g is a collision-
resistant one-way hash function. Although theoretically it may be difficult to
guarantee a collision-resistant and one-way function, in practice we can set an
appropriate function.

An event sequence corresponds to the set of leaves of a Merkle tree (in which
each path to a leaf has the same length); as default, we consider that time
proceeds in a left-to-right manner. Thus, if the level (the length from the root to
a leaf) of a Merkle tree T is n, the start leaf is root(T). 0 · · · 0︸ ︷︷ ︸

n

and the end leaf is

root(T). 1 · · · 1︸ ︷︷ ︸
n

. At each time unit, the referred leaf shifts to the next (i.e., right

neighborhood) leaf. When an event occurs, it put a label (e.g., the hash value of
the transaction to be certificated) at the currently referred leaf. The label of each
node is computed recursively when the labels of its both children are computed.
Thus, if a referred leaf reaches to the end leaf, the label of root(T) is computed.

If g is a collision-resistant one-way hash function, bottom-up computation of
hash values (i.e., hash values of both child nodes are concatenated by suitable
injective binary operation, and a hash function computes the hash value of their

parent node) is easy; but topdown computation (i.e., from the label of a parent,
guess labels of its child nodes) is infeasible. In other words, to interpolate the
labels of children is expected to be practically impossible.

In the following definition, the authentication path at a node t is the mini-
mum information to compute the label at root(T) from the label of t, the left
authentication path at a node t is the set of labels that were computed before
t, and the right authentication path at a node t is the set of labels that will
be computed after t. Note that our definition of an authentication path is not
restricted to a leaf, but is also for a node.

Definition 2. Let t ∈ V (T) and let (root(T), t1, · · · , tn−1, t) be a path from
root(t) to t.

– The authentication path of t, denoted by CAT (t), is the set of brothers of
t1, · · · , tn−1, t.

– The left authentication path of t, denoted by LAT (t), is the intersection of
CAT (t) and {root(T).0, t1.0, · · · , tn−1.0} (i.e., left brothers).

– The right authentication path of t, denoted by RAT (t), is the intersection
of CAT (t) and {root(T).1, t1.1, · · · , tn−1.1} (i.e., right brothers).

– The root path of t, denoted by pathT (t), is {root(T), t1, · · · , tn−1, t}.
– The path closure of t, denoted by pCls(t), is pathT (t) ∪ CAT (t).

We often omit T in CAT (t), LAT (t), RAT (t), pathT (t), and pClsT (t) as
CA(t), LA(t), RA(t), path(t), and pCls(t), if T is clear from the context.

Remark 2. A left (resp. right) authentication path is called a freshness (resp. an
existential) token.

3 Monadic Second Order Logic

3.1 (W)S2S

Monadic second order logic SnS is a logic on n-ary (possibly infinite) trees. We
focus on S2S, a logic on binary trees, consisting of

– First order variable, s, t, u, · · ·
– Second order variable, X, Y, Z, · · ·
– Quantifiers, ∀, ∃
– Logical connectives, ∧, ∨, ¬, ⇒
– Set operations, ∈, ⊆, ∪, ∩, \
– Function symbols, root, s0, s1

– Position relation, <, ≤
These are interpreted as logical operations on nodes of a binary tree. root is

the unique constant that represents the root of a binary tree. The order s < t
on nodes means that s is placed between root and t, i.e., s is nearer to the root
than t. Note that the satisfiability of an S2S-formula is decidable; that is, the

satisfiability of an S2S-formula is equivalent to the emptiness problem of a Büchi
tree automata [11].

WS2S (weak S2S) is the restricted logic of S2S such that the range of set
variables (second-order variables) runs on sets of finite trees. The satisfiability
of a WS2S-formula corresponds to the emptiness problem of a tree automata.

3.2 MONA

s is properly lefter than t

pred lefter(var1 s,t) = ex1 u: (u.0 <= s & u.1 <= t);

u = glb(s,t)

pred glb(var1 s,t,u) =

u <= s & u <= t & all1 v: ((v <= s & v <= t) => v <= u);

s.1...1 = t

pred rightmost(var1 s,t) = s < t & all1 u: ((s <= u & u < t) => u.1 <= t);

Each pair of nodes in A is incomparable

pred incomparable(var2 A) =

all1 s,t : ((s in A & t in A) => (s = t | (~(s < t) & ~(t < s))));

t is the last node in A

pred last(var1 t, var2 A) =

t in A & all1 s: ((s in A & s ~= t) => lefter(s,t));

t is the next node of s in A

pred next(var1 s,t, var2 A) =

s in A & t in A & lefter(s,t) &

all1 u : ((u in A & lefter(u,t)) => (u = s | lefter(u,s)));

Y is the lower bound node set of X

pred lower_bound(var2 X,Y) =

incomparable(Y) & all1 s: (s in X => ex1 t: (t in Y & t <= s));

X is a (sub)bintree rooted at node s

pred bintree_at(var1 s, var2 X) =

s in X & all1 t: ((s <= t => ((t notin X => (t.0 notin X & t.1 notin X)) &

(t in X => (t.0 in X <=> t.1 in X)))) &

(~(s <= t) => t notin X));

Y is the subtree of X below s

pred below(var1 s, var2 X,Y) = all1 t: ((s <= t & t in X) <=> t in Y);

Fig. 1. Library for proofs by MONA

MONA is a batch-style satisfiability checker for WS2S [1]. Although com-
plexity of the satisfiability is non-elementary, MONA is efficiently implemented
and practically quite usable. MONA’s syntax for WS2S formulae consists of

– First order variable, s, t, u, · · ·
– Second order variable, X, Y, Z, · · ·
– Variable declaration, var1, var2

– Quantifiers, all1, ex1, all2, ex2
– Logical connectives, &, |, ∼, =>
– Set operations, in, notin, sub, union, inter, \
– Function symbols, root, t.0, t.1, t^
– Position relation, <, <=

The difference with WS2S is:

– Quantifiers are explicitly classified for first- or second-order variables.
– Free variables used in a formula need the variable declarations var1, var2

depending on whether they are first- or second-order free variables.
– Since negation (complement of tree automata) is an exponentially heavy

operation, notin is prepared.
– t^ is prepared for the ancestor node of t.

Note that <= is a prefix relation between positions and => is a logical impli-
cation. The library used in the paper is shown in Fig. 1.

Example 1. The example below shows predicate definitions and a WS2S-formula
that means the closure operation is idempotent.

ws2s;
var2 X,Y,Z;
pred closed(var2 Y) = all1 t: ((t.0 in Y & t.1 in Y) => t in Y);
pred closure(var2 X,Y) =
closed(Y) & X sub Y & all2 Z : ((closed(Z) & X sub Z) => Y sub Z);

(closure(X,Y) & closure(Y,Z)) => closure(X,Z);

The predicate closed(Y) means that for each node t, if both children t.0 (left
child) and t.1 (right child) are in Y, then t is in Y. The predicate closure(X,Y)
means that Y is the minimum set such that Y is closed and includes X. The last
line describes the formula to be checked. When these lines are saved as, say,
example.mona, type “mona example.mona”; then it is computed to be VALID.

4 Scalable event-ordering system

4.1 Incremental Merkle forest

Definition 3. Let T be a Merkle tree and let t ∈ V (T). The incremental Merkle
forest IMFT (t) is the union of binary sub-trees T ′ of T satisfying either

– s = root(T ′) where s is the minimum node such that s.1 · · · 1 = t, or
– s.0 = root(T ′) where s.1 ≤ t and s. 1 · · · 1︸ ︷︷ ︸

m

�= t for ∀m.

We will often omit T in IMFT (t) as IMF (t) when T is clear from the
context. Note that IMF (t) is the set of subtrees in which the label (hash value)
of each node is defined. In MONA, “Z is the set of roots of subtrees in IMF (t)”
is described as IMFroot(t,Z) below.

pred defined(var1 s,t) = lefter(s,t) | rightmost(s,t) | s = t;
pred preIMF(var1 t, var2 Z) = all1 s: (s in Z => defined(s,t));
pred IMFroot(var1 t, var2 Z) =
preIMF(t,Z) & all2 Y: (preIMF(t,Y) => lower_bound(Y,Z));

Remark 3. It is tempting to directly define IMF (t, Z) as

pred IMF(var1 t, var2 Z) = all1 s: (s in Z <=> defined(s,t));

but, this makes Z in IMF(t,Z) run on infinite sets, i.e., beyond the scope of
WS2S. For instance, WS2S assumes that Z in preIMF(t,Z) runs on finite sets.

Note that the restriction to nodes in an incremental Merkle forest does not
affect a left authentication path; however, it does affect a right authentication
path. We say that for s, t ∈ V (T), s is lefter than t (in T) if there exists u ∈ V (T)
such that u.0 ≤ s and u.1 ≤ t (which corresponds to lefter(s,t in Fig. 1).

Definition 4. Let s, t ∈ V (T) and let s be lefter than t. A The relative right
authentication path RAT,t(s) of s wrt t is RAT (t) ∩ IMFT (t).

We often omit T in RAT,t(s), if T is clear from the context. In MONA,
CA(t), LA(t), RAt(s), and pClsT (t) are described as

Authentication path
pred preCA(var1 t, var2 Y) = (all1 s : s.0 <= t => s.1 in Y) &

(all1 s : s.1 <= t => s.0 in Y);
pred CA(var1 t, var2 Y) =
preCA(t,Y) & all2 Z : (preCA(t,Z) => Y sub Z);

Left authentication path
pred preLA(var1 t, var2 Y) = all1 s : (s.1 <= t => s.0 in Y);
pred LA(var1 t, var2 Y) =
preLA(t,Y) & all2 Z : (preLA(t,Z) => Y sub Z);

Right authentication path
pred preRA(var1 s,t, var2 Y) =
ex2 Z: (IMFroot(t,Z) &

all1 u: ((u.0 <= s & ex1 v: (v in Z & v <= u.1))
=> u.1 in Y));

pred RA(var1 s,t, var2 Y) =
preRA(s,t,Y) & (all2 Z : preRA(s,t,Z) => Y sub Z);

Path closure
pred pCls(var1 t, var2 X) =
all1 s: (s in X <=> (s <= t | (ex2 Y: (CA(t,Y) & s in Y))));

Note that PCls(t) = Cls(CA(t) ∪ {t}) where Cls(X) is a closure operator
is defined below.

Definition 5. Let T be a Merkle tree. For X ⊆ V (T), the closure Cls(X) is
the minimum set satisfying

– X ⊆ Cls(X), and
– if both child nodes of t is in Cls(X), then t is in Cls(X).

In MONA, “Y = Cls(X)” is described as closure(X,Y) (see Example 1).
For notational convenience, we define LS(t) = LA(t) ∪ {t} and LSRt(s) =

LS(s) ∪ RAt(s), where s, t ∈ V (T) such that s is lefter than t. In MONA, they
are described as

pred LS(var1 t, var2 X) = all2 Y: (LA(t,Y) => X = Y union {t});
pred LSR(var1 s,t, var2 Z) =
ex2 X,Y: (LS(s,X) & RA(s,t,Y) & Z = X union Y);

4.2 Incremental scheme for optimal slice replication

Let A = {t1, · · · , tk} be a set of leaf nodes of T where one user requests to
register events. An incremental Merkle forest IMF (tk) is also called a temporal
slice at tk. A spatial slice of A is the union of path closures of nodes in A (i.e.,
∪ti∈A pCls(ti)), and an optimal slice of A is the intersection of the temporal
slice at tk and the spatial slice of A (i.e., (∪ti∈A pCls(ti)) ∩ IMF (tk)).

A path slice of ti at tj (for i < j) is the intersection of the root path of ti and
the temporal slice at tj , i.e., the fragment of the root path of ti in which each
hash value is known at tj .

Fig. 2 shows the spatial/temporal/optimal slices of of A = {t1, t2, t3, t4, t5}.
The area surrounded by the dotted line is the spatial slice of A, the area sur-
rounded by the thin line is the temporal slice at t5, and their intersection is
the optimal slice of A. The set of circled nodes is the left authentication path
LA(t4) at t4, the set of two boxed node is the right authentication path RA(t4),
and RAt5(t4) consists of the node boxed with the line. The thick line that stems
from t4 shows the path slice of t4 at t5.

The protocol of our event-ordering system proceeds with the following trans-
action at each request from a user. The detailed algorithm is described in [5].

– For the request at t1, return a pair (φ,LS(t1)).
– For a request at ti with 1 < i ≤ k, return a pair (RAti(ti−1), LS(ti)).

Theorem 1 guarantees that one can recover the optimal slice of A only from
LSRti+1(ti)’s (for 1 ≤ i < k) and LS(tk), which are obtained by transactions
of the protocol. This is called completion. Each message at a transaction is
logarithmically small, and this gives an efficient optimal slice replication.

The event ordering system is designed to use this protocol between an au-
ditor and a server, as well as an user and a server. One auditor is assumed to
periodically register events a1, a2, · · ·. If these are sufficiently frequent, there will
be an auditor’s request aj between one user’s requests ti and ti+1. In such situa-
tion, the left authentication path LS(aj) has an overlap with the path slice of ti
at ti+1. Then, the auditor can confirm that ti occurs before aj by comparing a
hash value of an overlapping node at the user side and that at the auditor side.

t1 t2 t3 t4 t5

Spatial slice of {t1, t2, t3, t4, t5}

Temporal slice at t5

Fig. 2. Incremental Merkle forest

The systems studied in [3, 2, 12, 9, 7] could have this ability, assuming that
information on right authentication paths is obtained from a server. Note that
our system design can perform the same thing without information from a server,
because each participant keeps its own optimal slice replication. Thus, our system
is safe from a server clash.

The optimal slice replication also enables participants to check each other
without making inquiries to a server. We also assume that there are multiple
auditors; this enables them to detect a malicious auditor even if a server halts.
This setting guarantees single attack point free.

Theorem 2 guarantees the correctness of an efficient incremental sanity check,
i.e., consistency among labels of nodes in {LSRti+1(ti) | 1 ≤ i < k} ∪ {LS(tk)}
can be incrementally verified by weak consistency between each pair of neighbors
{LSRti+1(ti), LS(ti+1)} for 1 ≤ i < k.

During an incremental optimal slice replication, hash values may be com-
puted at different moments even for the same node. The consistency among
multiple definitions enables us (including a server itself) early detection of server
errors and/or malicious attacks.

The proof of Theorem 1 (in Section 6) is fully performed by MONA, because
it can be described in terms of nodes in a binary tree T . However, the proof
of Theorem 2 (in Section 7) is only partially performed by MONA; the use
of MONA is restricted to proofs of the main lemmata, which are essential for
inductive steps in the full proof. MONA is fully automatic, thus its scope and
ability are restricted. The main limitations here are:

– MONA lacks induction, and
– MONA lacks a description for equality between labels.

pivot

root(T)

tk

binary
trees

Fig. 3. IMF (tk) as a pivoted forest

5 Characterization as a pivoted forest

Although the characterization given in this section is more than that needed in
later sections (what we need in the proof of Lemma 8 is the fact that the union
and the intersection of a forest of binary trees are again a forest of binary trees),
this will clarify the perspective.

Definition 6. Let T be a Merkle tree. A node t ∈ V (T) is a pivot if either

– t = root(T), or
– t is the left child of a node.

A forest X ⊆ V (T) of binary trees is a pivoted forest (wrt a pivot t) if X =
∪s∈LS(t)Xs where Xs is a binary tree with root(Xs) = s.

In MONA, “X is a pivoted forest wrt t” is given as pivoted forest(t, X).

pred pivoted_forest(var1 t, var2 X) =
all2 Y: (LS(t,Y) =>

(lower_bound(X,Y) & Y sub X &
all1 s: (s in Y =>

(all2 Z: (below(s,X,Z) => bintree_at(s,Z))))));

Let A = {t1, · · · , tk} be a set of leaf nodes of T such that ti is lefter than ti+1.
We first show that an incremental Merkle forest IMF (tk) is a pivoted forest, as
described in Fig. 3.

Lemma 1. An incremental Merkle forest IMF (t) is a pivoted tree where its
pivot is the root of the rightmost component of IMF (t).

In MONA, Lemma 1 is described below and verified as VALID.

(IMFroot(t,X) & last(s,X)) => pivoted_forest(s,X);

Second, ClsT (LSRti+1(ti)) for 1 ≤ i < k, ClsT (LS(tk)), and their union are
also pivoted forests.

Lemma 2. 1. ClsT (LS(s)) is a pivoted forest wrt u where u is the minimum
node with s = u.1 · · · 1.

2. Let s, t ∈ V (T) such that s is lefter than t and let v = glb(s, t). Then,
ClsT (LSR(s, t)) is a pivoted forest wrt u where u is
– the minimum node with t = u.1 · · · 1 if t = v.1 · · · 1, and
– v.0 otherwise.

To describe Lemma 2, we prepare predicates that describe

– “X = ClsT (LS(s))” as LSclosure(s,X),
– “X = ClsT (LSRt(s))” as LSRclosure(s,t,X),
– “u is a pivot of ClsT (LS(s))” as LSpivot(s,u), and
– “u is a pivot of ClsT (LSRt(s, u))” as LSRpivot(s,t,u).

pred LSclosure(var1 t, var2 X) = ex2 Y: (LS(t,Y) & closure(Y,X));
pred LSRclosure(var1 s,t, var2 X) =

ex2 Y: (LSR(s,t,Y) & closure(Y,X));
pred LSpivot(var1 s,t) =

(t = s | rightmost(t,s)) &
(all1 u: ((u = s | rightmost(u,s)) => t <= u));

pred LSRpivot(var1 s,t,u) =
all1 v: (((glb(s,t,v) & rightmost(v,t)) => LSpivot(t,u)) &

((glb(s,t,v) & ~rightmost(v,t)) => u = v.0));

In MONA, the statement of Lemma 2 is described as

(LS(s,X) & closure(X,Y) & LSpivot(s,t)) => pivoted_forest(t,Y);
(lefter(s,t) & LSR(s,t,X) & LSRpivot(s,t,u) & closure(X,Y))

=> pivoted_forest(u,Y);

and is verified as VALID.

Lemma 3. Let X, Y be pivoted forests wrt to pivots s, t, respectively. If s ∈ Y ,
then X ∪ Y (resp. X ∩ Y) is a pivoted forest wrt t (resp. s).

In MONA, this statement is described as

(pivoted_forest(s,X) & pivoted_forest(t,Y) & s in Y) =>
((pivoted_forest(t, X union Y) & pivoted_forest(s, X inter Y)));

and is verified as VALID.

Lemma 4. If s is lefter than t, the pivot of Cls(LSRt(s)) is in Cls(LS(t)).

This is described as

(lefter(s,t) & LSRpivot(s,t,u) & LSclosure(t,X)) => t in X;

is verified as VALID by MONA. Thus, next Corollary is immediate.

Corollary 1. (∪1≤i<k ClsT (LSRti+1(ti))) ∪ ClsT (LS(tk)) is a pivoted forest
wrt u where u is the minimum node satisfying u.1 · · · 1 = tk.

6 Completion

6.1 Completion in incremental Merkle forest

Intuitively, completion is a process to collect all nodes in an incremental Merkle
forest such that their hash values can be computed only from issued certificates.
Its correctness is, whether an optimal slice at the moment can be computed
(Theorem 1) at a user side well a a server side.

Theorem 1. (Theorem 1 in [5]) Let A = {t1, t2, · · · , tk} be leaves in a Merkle
tree T such that ti is lefter than ti+1 for 1 ≤ i < k. Then,

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) = Cls(∪1≤i<k LSRti+1(ti) ∪ LS(tk)).

In the system, completion can be done efficiently by a right-to-left incre-
mental closure operations. For notational convenience, we define a path closure
slice pClsSlct(s) = pCls(s) ∩ IMF (t) where s is lefter than t. In MONA,
pClsSlct(s) is described as pClsSlc(s,t,X).

pred pClsSlc(var1 s,t, var2 X) =
ex2 Y,Z: (pCls(s,Y) & IMFroot(t,Z) &

all1 u: (u in X <=> (u in Y & ex1 v: (v in Z & v <= u))));

By the distributive law

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) = ∪1≤i≤k (pCls(ti) ∩ IMF (tk)),

the completion is enough to compute pClsSlctk
(ti) for 1 ≤ i ≤ k. Then, the

completion algorithm (guaranteed by Lemma 5) is:

1. Compute pClsSlctk
(tk), which is Cls(LS(tk)).

2. When pClsSlctk
(ti+1) (for 1 ≤ i < k) is computed, compute pClsSlctk

(ti),
which is contained in Cls(pClsSlctk

(ti+1) ∪ LSRti+1(ti)).

Note that during computation, each step requires only logarithmic time.

Lemma 5. Let A = {t1, t2, · · · , tk} be leaves in a Merkle tree T such that ti is
lefter than ti+1 for 1 ≤ i < k. Then,

– pClsSlctk
(tk) = Cls(LS(tk)).

– pClsSlctk
(ti) ⊆ Cls(pClsSlctk

(ti+1) ∪ LSRti+1(ti)).

Section 6.2 will show a manual proof of Theorem 1, and Section 6.3 will show
a formal proof by MONA for comparison of proofs by human and machine.

6.2 Proving Theorem 1 by induction

Let A = {t1, t2, · · · , tk} such that for ti is lefter than ti+1 for 1 ≤ i < k.

Proof of Theorem 1 by induction on k. By induction on k. If k = 1,
obvious. For k > 1, by induction hypothesis,

(∪2≤i≤k pCls(ti)) ∩ IMF (tk) = Cls(∪2≤i<k LSRti+1(ti) ∪ LS(tk)).

Let u = glb(t1, t2). We denote the left child node of u by u.0 and the right
child node by u.1, respectively. Since t1 is lefter than t2, u.0 ≤ t1 and u.1 ≤ t2.
Since u.0 ∈ LS(t2), u.0 ∈ IMF (tk). Thus, u.0 ∈ pClsSlctk

(t1).
Let X1 = {t ∈ pClsSlctk

(t1) | u.0 ≤ t} and X2 = pClsSlctk
(t1) \ X1. Then,

X1 ⊆ Cls(LSRt2(t1)) and X2 ⊆ pClsSlctk
(u.0) ⊆ pClsSlctk

(t2). Therefore

(∪1≤i≤k pCls(ti)) ∩ IMF (tk) ⊆ Cls(∪1≤i<k LSRti+1(ti) ∪ LS(tk)).

The opposite direction is obvious.
The proof of Lemma 5 can be performed similarly to that of Theorem 1.

6.3 Proving Theorem 1 by MONA

Let A = {t1, t2, · · · , tk} such that ti is lefter than ti+1 for 1 ≤ i < k. Define:

– “X = ∪1≤i<k LSRti+1(ti) ∪ LS(tk)” is denoted by LSRunion(A,X).
– “X = ∪1≤j≤k pCls(tj)” is denoted by spatial slice(A,X).
– “X = (∪1≤j≤k pCls(tj)) ∩ IMF (tk)” is denoted by opt slice(A,X).

pred LSRunion(var2 A,X) =
all1 s: (s in X <=>

ex1 t: ((ex1 u: ex2 Y: (next(t,u,A) & LSR(t,u,Y) & s in Y)) |
(ex2 Z: (last(t,A) & LS(t,Z) & s in Z))));

pred spatial_slice(var2 A,X) =
all1 s: (s in X <=>

ex1 t: ex2 Y: (t in A & pCls(t,Y) & s in Y));
pred opt_slice(var2 A,X) =
ex1 t: ex2 Y,Z: (last(t,A) & IMFroot(t,Y) & spatial_slice(A,Z) &

all1 u: (u in X <=>
(u in Z & ex1 s: (s in Y & s <= u))));

The statement of Theorem 1 is described as

(incomparable(A) & opt_slice(A,X) & LSRunion(A,Y) & closure(Y,Z))
=> X = Z;

and is verified as VALID by MONA. The statement of Lemma 5 is described as

(LS(t,X) & pClsSlc(t,t,Y) & closure(X,Z)) => Y = Z;
(lefter(s,t) & (lefter(t,u) | t = u) & LSR(s,t,X) &
pClsSlc(s,u,Y) & pClsSlc(t,u,Z) & closure(X union Z,C)) => Y sub C;

and also verified as VALID.

7 Incremental sanity check

7.1 Consistency

Let A = {t1, t2, · · · , tk} such that for each pair (ti, ti+1) with 1 ≤ i < k, ti is
lefter than ti+1. Upon completion, there may be nodes in a Merkle tree such
that their labels are computed from different LSRti+1(ti)’s. If multiple compu-
tations of the label of a node coincide, this will be an indication of no system
failures and/or no malicious attacks. This check of a server can be also performed
by users and auditors, as well as self check by a server itself. This is called a
sanity check; however, the naive way will be too expensive. We will show that
an incremental sanity check that verifies weak consistency between each pair of
neighbors (LSRti+1(ti), LS(ti+1)) is enough.

To formalize the sanity check, we need to distinguish generated labels at each
transaction; we associate a labeling (partial) function αi : leaves(T) → L to each
pair (LSRti+1(ti), LS(ti)). Note that during the sanity check, g : L × L → L is
fixed.

Definition 7. Let Ui ⊆ V (T) be a set of incomparable nodes in a Merkle tree
T and let αi : Ui → L be a labeling (partial) function such that αi is extended
by αi(t) = αi(g(t.0, t.1)) for t ∈ cCLST (Ui).

– {(Ui, αi)} is weakly consistent if t ∈ cCLST (Ui) ∩ cCLST (Uj) implies
αi(t) = αj(t).

– {(Ui, αi)} is consistent if for each t ∈ ClsT (∪ Ui), α(t) is well-defined where

α(t) =
{

αi(t) when t ∈ leaves(Ui)
α(g(t.0, t.1)) when t �∈ leaves(∪ Ui)

Note that α(t) may have multiple definitions, i.e., t may be a leaf node of
some Ui and simultaneously t may be a non-leaf node of some Uj .

Theorem 2. If (LSRti+1(ti), αi) and (LS(ti+1), αi+1) are weakly consistent for
1 ≤ i < k, {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is consistent.

Note that weak consistency between (LSRti+1(ti), αi) and (LS(ti+1), αi+1)
can be checked quite efficiently. That is, by Lemma 2, 3, and 4, the set of min-
imum nodes in ClsT (LSRti+1(ti)) ∩ ClsT (LS(ti+1)) is LS(u) where u is the
pivot of ClsT (LS(ti+1)). In practice, we assume a collision-resistant one-way
hash function g; thus, it is enough to check whether each hash value by αi at a
node in LS(u) coincides with that by αi+1.

7.2 Proving weak consistency

For the former half of the proof of Theorem 2, we will prove that if (LSRti+1(ti), αi)
and (LS(ti+1), αi+1) are weakly consistent for each i with 1 ≤ i < k, then
{(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LSRtk

(tk), αk)} is weakly consistent.

Lemma 6. Let s, t, u, v, w ∈ V (T) such that s is lefter than t, t is lefter than
or equal to u, u is lefter than or equal to v, and v is lefter than w. Then,

1. LSRt(s) ∩ LSRw(v) ⊆ LS(u), and
2. ClsT (LSRt(s)) ∩ ClsT (LSRw(v)) ⊆ ClsT (LS(u)).

In MONA, the statement of Lemma 6 is described as

(lefter(s,t) & (t = u | lefter(t,u)) & (u = v | lefter(u,v)) &
lefter(v,w) & LSR(s,t,X) & LS(u,Y) & LSR(v,w,Z))

=> X inter Z sub Y;
(lefter(s,t) & (t = u | lefter(t,u)) & (u = v | lefter(u,v)) &
lefter(v,w) & LSRclosure(s,t,X) & LSclosure(u,Y)

& LSRclosure(v,w,Z)) => X inter Z sub Y;

and is verified as VALID.

Lemma 7. If (LSRti+1(ti), αi) and (LS(ti+1), αi+1) are weakly consistent for
each i with 1 ≤ i < k, then {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is
weakly consistent.

Proof. By induction on k. If k = 1, obvious. Assume k > 1 and the statement
holds for k − 1. Let X = (∪1≤i<k−1 ClsT (LSRti+1(ti)) ∪ ClsT (LS(tk−1)).

It is enough to consider the intersection X1 = X ∩ ClsT (LSRtk
(tk−1)) and

X2 = X ∩ ClsT (LS(tk)).
From Lemma 6, X1, X2 ⊆ ClsT (LS(tk−1)). Since (LSRtk

(tk−1), αk−1) and
(LS(tk), αk) are weakly consistent, Lemma is proved.

Note that MONA cannot verify Lemma 7, because it cannot describe the
equality between labels.

7.3 Proving consistency

For the latter half of the proof of Theorem 2, we will prove that if

{(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)}

is weakly consistent, they are consistent. This complete the proof of Theorem 2.

Lemma 8. If {(LSRti+1(ti), αi) | 1 ≤ i < k} ∪ {(LS(tk), αk)} is weakly con-
sistent, they are consistent.

For notational convenience, we define

LSRA(ti) =
{

LSRti+1(ti) for 1 ≤ i < k
LS(tk) for i = k

for A = {t1, · · · , tk}.

Proof. Let X = (∪1≤i<k ClsT (LSRti+1(ti)) ∪ ClsT (LS(tk)). From Corollary 1,
X is a pivoted forest; thus, for each t ∈ X , t.0 ∈ X if and only if t.1 ∈ X .

For each t ∈ X , we will prove that the labeling function α : V (X) → L is
well-defined by induction on the size of X ∩ Tt where Tt = {s ∈ V (T) | t ≤ s}.
If |X ∩ Tt| = 1, this means t ∈ LSRA(ti) or t �∈ ClsT (LSRA(ti)) for each i.
Since LSRA(ti)’s are weakly consistent, α(t) is well-defined.

Assume |X ∩ Tt| > 1. Since X ∩ Tt is a forest of binary trees, t.0, t.1 ∈ X ∩ Tt.
If t ∈ ClsT (LSRA(ti)), either t.0, t.1 ∈ ClsT (LSRA(ti)) or t ∈ LSRA(ti).

Since |X ∩ Tt.0|, |X ∩ Tt.1| < |X ∩ Tt|, induction hypothesis implies that
α(t.0) and α(t.1) are well-defined. Let I0 = {i | t.0, t.1 ∈ ClsT (LSRA(ti))} and
I1 = {i | t ∈ LSRA(ti)}. Since |X ∩ Tt| > 1, I0 �= φ.

Let j ∈ I0; then αj(t) = α(g(t.0, t.1)). Weakly consistency of LSRA(ti)’s
implies that αj(t) = αi(t) for each i ∈ I1. Thus, α(t) = αj(t) is well-defined.

Theorem 2 is immediate from Lemma 7 and 8. Note that MONA cannot
verify Lemma 8, because it cannot describe the equality between labels.

8 Conclusion

This paper proved two basic properties

1. correctness of completion
2. correctness of incremental sanity check

of an incremental Merkle forest, which is used in the event ordering system [5]
developed by NTT. Especially, this paper is the first to prove (2) the correctness
of an incremental sanity check.

During the proofs, we mainly used the automata-based theorem prover MONA [1].
Although MONA can treat only decidable properties, this does not mean that its
use is easy. We need to find suitable formalization and key lemmata, which are
essential in the whole proof and still provable by MONA. For instance, during
the use of MONA, we have also simplified the manual proof of Theorem 1 (the
original proof, by induction on the homogeneous depth of a Merkle tree, takes
more than 1 page in two-column style).

Another notable example of WSnS is an optimal reduction strategy of a
strongly sequential term rewriting system [6]. This is known to be intricate;
however it was clearly re-described in terms of WSnS [4].

A drawback is that an automata-based prover does not give a deductive proof.
Thus, incomplete descriptions may be easily neglected; instead, we often found
them by test data. On the other hand, it is extremely powerful for detecting
oversights and gaps in a proof draft, which are often found in tentative proof
goals. At the moment, support for theorem prover is not enough; but, we feel it
is possible for theorem provers to be an assistance even for constructing a new
proof.

For future work, we are planning:

– full formal proof of Theorem 2 by combining MONA and an induction-based
prover Isabelle/HOL [10].

– proofs for more detailed properties of the event ordering system.

Acknowledgments

This research is partially supported by Special Coordination Funds for Promot-
ing Science and Technology and Scientific Research on Priority Area (No.16016241)
by Ministry of Education, Culture, Sports, Science and Technology, PRESTO
by Japan Science and Technology Agency, and Kayamori Foundation of Infor-
mational Science Advancement.

References

1. MONA project. http://www.brics.dk/mona/.
2. C. Adams and et al. RFC3161, internet X.509 public key infrastructure time-stamp

protocol (TSP). Technical report, IETF, 2001.
3. A. Buldas, H. Lipmaa, and B. Schoenmakers. Optimally efficient accountable time-

stamping. In Proc. 3rd International Workshop on Practice and Theory in Public
Key Cryptography (PKC 2000), pages 293–305. Springer-Verlag, 2000. Lecture
Notes in Computer Science, Vol.1751.

4. H. Comon. Sequentiality, monadic second-order logic and tree automata. Infor-
mation and Computation, 157(1 & 2):25–51, 2000. Previously presented in Proc.
10th IEEE Symposium on Logic in Computer Science, pages 508–517, 1995.

5. E. Horita, S. Ono, and H. Ishimoto. Implementation mechanisms of scalable event-
ordering system without single point of attack. Technical report, IEICE SIG-ISEC,
11 2004. in Japanese.

6. G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems I,II. In
Computational Logic: Essays in Honor of Alan Robinson, pages 395–443. MIT
Press, 1991. Previous version: Report 359, INRIA, 1979.

7. M. Jakobsson, F.T. Leighton, S. Micali, and M. Szydlo. Fractal Merkle tree repre-
sentation and traversal. In Proc. Topics in Cryptology - CT-RSA 2003, The Cryp-
tographers’ Track at the RSA Conference 2003, pages 314–326. Springer-Verlag,
2003. Lecture Notes in Computer Science, Vol.2612.

8. R.C. Merkle. Secrecy, Authentication, and Public Key Systems. UMI Research
Press, 1982. also appears as Ph.D thesis at Stanford University, 1979.

9. S. Michael. Merkle tree traversal in log space and time. In Proc. International
Conference on the Theory and Applications of Cryptographic Techniques, Advances
in Cryptology - EUROCRYPT 2004, pages 541–554. Springer-Verlag, 2004. Lecture
Notes in Computer Science, Vol.3027.

10. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL, A proof assistant for
higher-order logic. Springer-Verlag, 2002. Lecture Notes in Computer Science,
Vol.2283.

11. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 4, pages 133–192. Elsevier, 1990.

12. J. Villemson. Size-efficient interval time stamps. PhD thesis, University of Tartu,
Estonia, 2002.

