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Abstract

An evaluation of a probabilistic measure of the gene structural attributes for computa-
tional prediction of protein coding region in prokaryotic genomic sequence data is pre-
sented in this paper. The measure is known as dicodon usage measure and has been
known as the best measure to discriminate protein coding/non-coding regions but its bi-
ological semantics have been remaining unknown. Besides, there has been no objective
and quantitative investigation carried out. Our preliminary analysis for the dicodon usage
measure using ”dicodon-oriented Hidden Markov Model”, which gives a simple but pow-
erful probabilistic description of gene structure with relatively small size of parameters,
with ”Self-identification learning method”, which offers novel learning scheme that does
not require prepared training data, indicated that the dicodon usage measure is redundant
as a gene finding measure. This result induces a hypothesis; there is another measure that
has smaller size of parameters and performs as good as the dicodon usage measure. Such
measure would make the gene finding more self-identification learning friendly. Hence it
will facilitate complete automation of gene finding that is desperately demanded by next
generation of genome sequencing projects.
In order to evaluate the redundancy and accuracy of dicodon usage measure, we took

”divide and conquer” approach. Based on the compositions of the dicodon usage measure
such as codon usage, diamino-acid, and C+G content, we used six different model to
emulate the dicodon usage measure by the compositions with smaller parameter size than
the dicodon usage measure. We evaluated the six models and the dicodon usage measure
in aspect of sensitivity, specificity, and approximation error. Our evaluation result shows
that the dicodon model outperforms the six emulators in terms of sensitivity as well as
specificity. This result indicates that the dicodon model can not be represented by a com-
bination of the pair amino-acid, the codon usage, and the G+C content. Our hypothesis
is not fully evaluated but this negative result has reasonable impact on ”common sense”
of Bioinformatics.
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Chapter 1

Introduction

1.1 Background

It is well known that every biological life, including tiny viruses, has one or more long chain
of molecule known as Deoxyribose Neucleic Acid(DNA) and the DNA carries massively
rich information that responsible for forming, developing, and reproducing life forms no
matter the life is a noble saint or a tiny bacteria in a mud.
Since the initial break-through of discovering double-helical structure by Watson and

Click in 1953, molecular biology has been revealing complicated mechanisms of biological
life and harvested a hand full of attainments.
Although the molecular biology has been such successful, vague but huge mountains

of biological enigma is lying ahead of researchers in this field. Besides, the enigma is
too hard to solve without computational aids. Today, newly formed inter-disciplinary
research fields has been arisen and valued higher and higher than ever. Bioinformatics is
one of such newcomers. There are several ways to define this new research field.
One of them describes it as:

Bioinformatics is an integration of mathematical, statistical and computer
methods to analyze biological, biochemical and biophysical data. (excerpt
from home page of School of Biology, Georgia Institute of Technology)

Some of the goals of the Bioinformatics include:

(i) clarification of biological functions of genes

(ii) prediction of protein structure (secondary/tertiary)

(iii) detection of regulatory signals (promoters, enhancers, origins of replication, etc.) in
genomic DNA sequences

(iv) inferring evolutionary history from comparison of homologous gene or protein se-
quences (or genomes).
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In this paper we focused on one of the most significant open problem in this field, that
is prediction of precise protein coding region structure in genomic sequences (commonly
known as “gene finding”, “gene prediction”, or “gene identification”) of every species
ranging from prokaryota(mainly bacteria) and eukaryota(such as yeast, plant, worm, and
human). Because, the clarification of biological functions of genes has been one of the
primary goals of the Bioinformatics and desperately demanded especially as the next
generation research topic since on-going global genome projects which will be completed
in a short time. The gene finding is very important for the functional clarification of genes
and complete automation of the gene finding is also demanded because a large quantity
of genomic sequence data is being piled up on a host of databases and waiting to be
analyzed. Such incessant increase of demands makes the gene finding more crucial.
Main stream of the gene finding has been targeting higher eukaryotic (especially hu-

man) genomic sequences which have more complicated genomic structure thus more chal-
lenging to predict than prokaryotic genome. The gene finding with higher eukaryotic
genomic sequences requires precise definition of the sequence dependence of molecular
biological mechanisms such as:

(i) the basic biochemical processes of DNA to RNA transcription

(ii) RNA translation and splicing(i.e. exons and introns)

(iii) knowledge about the sequence properties of known genes

Although the above mechanisms have been under intensive investigation, heaps of
knowledge are still waiting to be discovered. So the gene finding has been a computational
and analytical method to full fill the void of knowledge on these mechanisms. While the
prediction problem is hard and challenging, it increases its importance regarding recent
shift in emphasis of the Human Genome Project from reading every nucleotide of human
genomic sequence to finding functional role of every genes. In order to get clues to find the
functions of genes, we need to find exactly where those genes reside in a lengthy sequence
of nucleotides with aids of computational methods.
This paper emphasizes precision modeling of genomic sequences; especially discrimina-

tion of protein coding/non-coding regions based on the dicodon usage measure which has
been known as one of the most precise among protein coding measures. Although Fickett
and Tung gave an objective and quantitative evidence to the superiority of the dicodon
usage measure [11], there has been no sufficient investigation taken for the dicodon usage
measure to clarify the biological background to explain why the dicodon works such well.
This paper aims to investigate and clarify the biological semantics of the dicodon usage
measure.

1.2 Overview of Gene Finding

Gene Finding(a.k.a. gene prediction or gene identification) is a computational method to
find protein coding regions out of genomic sequences and has been studied extensively for
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nearly a couple of decades. The history of gene finding has been a history of finding the
best model that distinguish coding and non-coding regions in a genomic sequence. The
models are designed to detect molecular biological attributes and signals which discrimi-
nate coding and non-coding regions.
Since initial break-through of de-ciphering genetic code by Nirenberg and Matthaei

in 1961, molecular biology has been clarified a hand full of differences between coding
and non-coding regions to be used for fine description of protein coding regions. Some
of the well known generic attributes are codon usage bias and C+G content. Both of
them are explained as probabilistic differences of nucleotide sequence between coding and
non-coding regions which are consequences of the evolutionary mutational pressure [22].
Naturally, the pressure varies in the coding regions, which are relatively conservative to
the mutation and in the non-coding regions, which are neutral to the mutation. It was
very straight forward to use the attributes for defining probabilistic models to recognize
coding regions from a genomic sequence. Early studies on gene finding by Shepherd [17],
Fickett [10], and Staden & McLachlan [18] showed that statistical measures related to
biases in amino-acid and codon usage could be used to approximately identify protein
coding regions in genomic sequences [6].
Since the early initiation of stochastic and computational approach, a bunch of gene

expression models have been developed and contributed to this research field. Summaries
and comprehensive evaluation for gene finding have been proposed by many researchers.
The recent summary of the gene identification problem was contributed by Fickett [12] and
an evaluation of gene structure prediction programs was offered by Burset and Guigo [7].
Gene Finding approaches are roughly divided into two categories:

• Sequence similarity search
• Stochastic models based on statistical regularities in coding region; coding measures

Sequence similarity search is one of the oldest methods of gene finding, based on
sequence conservation due to functional constraint, and is to search for regions of similarity
between the sequence under study (or its conceptual translation) and the sequences of
known genes (or their protein products). A clear advantage to searching for genes by
similarity is that, if a significant similarity is found, it is likely to yield clues as to the
function, as well as the existence, of the new gene. In addition, if the search is carried out
at the amino-acid, rather than the nucleotide, level, the additional advantage may be had
of lowered sensitivity to the ”noise” of neutral mutations. The obvious disadvantage of
this method is that when no homologue to the new gene are to be found in the databases,
similarity search will yield little or no useful information. More detailed review can be
found in [12].
At the core of most gene recognition algorithms are one or more coding measures.

They are functions which calculate, for any window of sequence, a number or vector
that measures attributes correlated with protein coding function. Aggregate properties of
such function values on coding regions thus from templates for exons in general. Common
examples of coding measures include the codon usage vector, the base composition vector,
and some type of Fourier transform of the sequence.
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1.3 The Dicodon Usage Measure

This paper focuses on the statistical regularities in coding regions, where the dicodon
usage measure should be discussed. Fickett and Tung evaluated every coding measures
known to the public and showed that the dicodon usage measure is one of the best
measures among others [11]. Every protein coding region is translated from nucleotides
to amino-acids, in a triplet basis, under a rule of genetic code. The triplet is called Codon.
Figure 1.1 shows how the translation occur in the molecular world. It is well known that
the occurrence of codon has peculiar bias which means not every codon is used evenly
in a genomic sequence and thus the codon can be used as a measure of coding region.
Such unevenness is called Codon Usage and denoted as a conditional probability p(c|A(c))
where c for a codon and A(c) for an amino-acid corresponds to the codon c. Table 1.1 to
1.2 show differences between coding and non-coding region for E. coli.
Although the codon usage measure offers simple description for coding regions, it just

produces lower scores (specificity and sensitivity) than other measures such as dicodon
usage measure [11] (see also Table 1.3). The measures that perform better than the codon
usage measure belong to hexamer-n measure. The hexamer-n measure (for n = 0, 1, 2)
counts all hexamers (i.e. six nucleotide) offset by n from the starting base. Dicodon
usage measure is identical to hexamer-0 measure. Hexamer-1 and 2 measures perform
slightly worse than dicodon usage measure. Dicodon usage measure can be denoted as a
conditional probability p(ci+1|ci) where ci for a codon and ci+1 for its next codon.
The simple calculation shows that the codon usage measure has 1,220 parameters for 61

codons and 20 amino-acids, and the dicodon usage measure has 3,721 parameters. Notice
that the dicodon usage measure performs slightly better than the codon usage measure
that has only one-third of the parameters. This simple fact implies that the dicodon
usage measure is more redundant than the gene finding actually requires. Besides, our
preliminary examination (explained later) indicated the same conclusion. Fickett stated
that the dicodon usage or hexamer-n measure contains all of other known measures such
as codon usage, diamino-acid, and dinucleotide bias [11](see also Figure 1.2). According
to the redundancy indicated above, it is reasonable that not all of these measures does
not need to be included by the dicodon usage measure. This thesis focuses on this very
point and tries to clarify which measure is the most important and which is the least
important.

1.4 Hidden Markov Model

Wide variety of gene identification algorithms have been and will be developed. All
integrated gene identification programs make use of the high level syntax of genes resulting
from our basic understanding of transcription, splicing, and translation [12]. So it is very
straight forward to assume that a computational linguistic method can be applied to
the gene identification. Actually, some of the algorithms took a computational linguistic
approach to the gene finding. Searls suggested that a linguistic approach to the analysis
of features in DNA sequences could be beneficial [16]. This approach is first applied to the
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Figure 1.1: The elongation phase of protein synthesis on a ribosome. The three-step cycle
shown is repeated over and over during the synthesis of a protein chain. An aminoacyl-
tRNAmolecule binds to the A-site on the ribosome in step 1, a new peptide bond is formed
in step 2, and the ribosome moves a distance of three nucleotides along the mRNA chain
in step 3, ejecting an old tRNA molecule and ”resetting” the ribosome so that the next
aminoacyl-tRNA molecule can bind.
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Table 1.1: Codon Usage differences between coding (CD) and non-coding (NC) region in
E.coli (a). Notice that codon usages in coding regions are heavily biased or apparently
different from the non-coding regions.

Amino Acid CODON USAGE(CD) USAGE(NC)
Ala GCA 0.213 0.288

GCC 0.270 0.241
GCG 0.356 0.258
GCT 0.161 0.213

Arg AGA 0.039 0.177
AGG 0.023 0.176
CGA 0.065 0.132
CGC 0.398 0.190
CGG 0.098 0.168
CGT 0.378 0.157

Asn AAC 0.550 0.397
AAT 0.450 0.603

Asp GAC 0.372 0.358
GAT 0.628 0.642

Cys TGC 0.556 0.505
TGT 0.444 0.495

Gln CAA 0.347 0.518
CAG 0.653 0.482
GAA 0.689 0.622
GAG 0.311 0.378

Gly GGA 0.109 0.252
GGC 0.403 0.284
GGG 0.151 0.222
GGT 0.337 0.243

His CAC 0.429 0.406
CAT 0.571 0.594

Ile ATA 0.073 0.325
ATC 0.420 0.256
ATT 0.507 0.419

Leu CTA 0.037 0.093
CTC 0.104 0.116
CTG 0.496 0.169
CTT 0.104 0.168
TTA 0.131 0.264
TTG 0.128 0.191

Lys AAA 0.765 0.680
AAG 0.235 0.320

Met ATG 1.000 1.000
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Table 1.2: Codon Usage differences between coding and non-coding region in E.coli (b)
(continued).

Amino Acid CODON USAGE(CD) USAGE(NC)
Phe TTC 0.426 0.328

TTT 0.574 0.672
Pro CCA 0.191 0.241

CCC 0.124 0.224
CCG 0.525 0.258
CCT 0.159 0.277

Ser AGC 0.277 0.161
AGT 0.151 0.154
TCA 0.124 0.239
TCC 0.149 0.151
TCG 0.154 0.125
TCT 0.146 0.171

Thr ACA 0.132 0.308
ACC 0.434 0.219
ACG 0.268 0.239
ACT 0.166 0.234

Trp TGG 1.000 1.000
Tyr TAC 0.431 0.372

TAT 0.569 0.628
Val GTA 0.154 0.238

GTC 0.216 0.190
GTG 0.371 0.233
GTT 0.259 0.340

Table 1.3: Percentage accuracy (average of specificity and sensitivity) of the coding mea-
sures in predicting phase-specific coding (excerpt from [11] Table 3).

Measure Human 54 Human 108 Human 162 E.coli 54 Human 54
Penrose Penrose Penrose Penrose Classical

Dicodon Usage (Hexamer-0) 80.7 84.3 85.4 88.7 –
Hexamer-2 79.5 82.8 84.2 87.2 –
Hexamer-1 78.6 82.0 83.3 87.1 –
Codon Usage 78.0 81.0 82.1 86.9 81.7
Diamino-acid Usage 77.2 84.9 87.7 84.2 –
Amino-Acid Usage 75.3 81.1 83.6 83.3 76.2
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Figure 1.2: Derivability of coding measures: Each measure is derivable from any measure
above it and connected to it by a line (excerpt from [12] Figure 1).

identification of protein coding region as GenLang by Dong & Searls [9], where a formal,
definite clause grammar of genes is described.
Hidden Markov Model (HMM) [15] has been widely used for computational natural

language processing. Application of HMM to genomic sequence analysis was first intro-
duced by Churchill [8]. HMM is advanced model of Markov model to deal with problems
that is unable to handle with Markov model. HMM can provide several advantages such
as flexible description of signal patterns, virtually direct translation of genomic attributes
to HMM network, and explicit definition of HMM parameters. The components and the
rules of the DNA language are non-deterministic, it is necessary to combine the statistics
and the linguistics for the parsing of DNA. That is why HMM are becoming widely used
for gene recognition ( [14, 38, 20, 19]). A particular advantage of the HMM approach
of Krogh et al [14] is that it naturally provides a joint probability distribution over se-
quences and parses of those sequences. The HMM thus provides a very natural vehicle
for considering the possibility of introducing a sequence correction to get a more probable
parse [12].
In this paper, we used an HMM with dicodon usage measure to build simple prob-

abilistic description model to recognize protein coding regions for prokaryotic genome.
The HMM provides simple and intuitive modeling that facilitates analysis of gene finding
result thus the HMM is chosen for our preliminary gene finding examination as a suitable
test-bed.
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Generic Learning Scheme Self-Identification Learning

Training Data

Optimal
parameters

Model is trained in advance

Input Output

Data specific attributes
are treated as noise

Output

Model is trained on-line
by its own output

Input

Data specific attributes
are learned by the Model

Iterate until the output
become stable

Parameter update

Figure 1.3: Side-by-side comparison between generic learning scheme and self-
identification learning: Notice that the generic learning scheme needs training data which
is based on previously acquired data although the self-identification learning does not
need such data. Thus the self-identification learning reflects data specific attributes to its
output while such attributes are treated as noise in the generic learning scheme.

1.5 Self-identification Learning Method

Self-identification learning [2, 3] is relatively new approach that does not require training
sequence while most other algorithms require the training sequence. Conventional learning
scheme is trained by training sequence in order to obtain optimum set of parameters.
However, such strategy becomes totally impossible when there is no datum available for
the training and, possibly in many cases, such circumstances can be arisen especially
for practical gene finding where we can not expect to have correct data in advance. For
example, practical gene finding often requires gene prediction against totally new species
—which means there is no previously acquired similar or phylogenicaly related genomic
sequence data— therefore no training data can be effective if not offered. Besides, the self-
identification learning can directly reflect data specific attributes to its output although
the generic learning scheme tends to treat such attributes as noise. This feature of the
self-identification learning is very important especially for gene finding that is applied to
new, thus previously unknown, species. Because such attributes are essential for gene
finding against the new species and the generic learning scheme with training data, which
obviously do not include new data, usually fails identify coding regions in such new species.
The self-identification learning can obtain optimal parameters without training data in
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following way(see also Figure 1.3):

• It simply starts its learning with uniform learning parameters

• The first trial finds several coding regions with uniform initial parameters

• Re-calculate parameters(i.e. dicodon usages) according to the regions found
• Iterate learning with revised parameters until it reaches plateau of learning curve
Efficiency of the self-identification largely depends, by its nature, on the number of

its learning parameters as well as the size of training data. When it employs a large
set of parameters, it requires a large set of training data. The model is not accurate
with insufficient training data. On the other hand, the model is not accurate when the
number of parameters is too large for the amount of training data. This problem can
be generalized as a problem of complexity and accuracy of a model. Hence we have to
consider trade-off between the complexity of the model and the accuracy.
In this paper, we fed short fragments of microbial genomic sequence data to our gene

finding system in order to evaluate the robustness of the self-identification learning against
short training data.
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Chapter 2

Evaluation of Self-identification
Learning

In this paper, two examination/analysis were performed. The first is computational gene
finding using dicodon-oriented HMM with self-identification learning and the second is
evaluation of dicodon usage measure. The former provides reason of the latter evaluation
that is the reason to ask what make dicodon usage measure such redundant. Firstly,
evaluation of self-identification learning is provided in this section.

2.1 Method

We used a dicodon oriented HMM gene finding system with self-identification learning [2]
as a test-bed for the evaluation. Two objectives are set and they are:

• to purely evaluate gene identification accuracy for our system
• to evaluate robustness of self-identification learning against short training data

2.1.1 System Overview

We built a gene finding system that is incorporated with HTK (HMM Tool Kit) [23]
which is a commercial(Entropic Inc.) software toolkit for building continuous density
HMM based speech recognizers. Although the HTK is designed for dealing with contin-
uous density distributions, the differences are minor between the continuous and discrete
probability distributions. Therefore HTK offers seamless platform to the gene finding.
HTK uses Baum-Welch algorithm(a.k.a. Expectation-Maximization algorithm) [4] for
learning its parameters, and uses Viterbi algorithm [13] for coding region recognition.
Figure 2.1 provides at-a-glance overview of our gene finding examination. Actually, by
nature of our evaluation method, we used only H2Vite which is a part of the toolkit and
provides coding region recognition alone with Viterbi algorithm. For the examination,
we used 17 microbial complete genomic sequence data [24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40] available from GenBank [5](see Appendix). We evaluated
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17 Microbial genomic
sequence data (GenBank)

Short fragments

1/1
1/2
1/4
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Evaluation of self-
identification learning

using optimized
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by every short
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Figure 2.1: At-a-glance overview of the gene finding examination to evaluate self-
identification learning.
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the data size dependency of the self-identification learning with short fragments of the
sequence data such as 1/2, 1/4, 1/8, ..., and 1/256 of complete sequence.

2.1.2 Dicodon Oriented HMM

Figure 2.2 shows overview of the dicodon oriented HMM network which uses simple gram-
mar to describe protein coding regions in a microbial genomic sequence because we need
to keep the system as simple as possible in order to facilitate analysis focused on the di-
codon usage measure. In microbial genome, and also in several eukaryotic no-internal-exon
genome such as yeast, every protein coding region can be described, for 5’ to 3’ strand, as
arbitrary iteration of codons that is sandwiched by start(5’) and stop(3’) codons, and for
3’ to 5’ (complementary) strand, as arbitrary iteration of complementary codons that is
sandwiched by complementary start(3’) and stop(5’) codons. Most of coding regions are
connected by a spacer i.e. non-coding region which actually is arbitrary, but definitely
shorter than coding regions, length of nucleotides. However, the genome structure is not
such simple because:

• non-coding regions are occasionally not exist between coding regions
• coding regions are occasionally overlapped each other

Functions to handle these exceptions are not implemented in our system because such
implementation has nothing to do with the evaluation of the dicodon usage measure and
we just wanted to keep our system simple.
In figure 2.2, each rectangle corresponds to a certain structural item that forms a pro-

tein coding region structure. The non-code state corresponds to a non-coding region and
is a single state and emits four output; A, C, G, and T. The start codon state corresponds
to a start codon region and is a small HMM that has 11 single output states and 3 transi-
tion parameters inside when there are three possible start codons are expected1. The stop
codon is conceptually identical to the start codon state. The Dicodon state corresponds
to a coding region sandwiched by start and stop codons and is an HMM that has 185
single output states and 3,782 transition parameters inside. As the total, the HMM has
7,568 transition parameters.

2.1.3 Self-identification Learning

The initial parameters of the dicodon oriented HMM have uniform value. For example,
non-code state has uniform distribution for every output probability i.e. 1/4 for A, C,
G, and T. The self-identification learning begins the gene finding with this pre-learning
condition. H2Vite outputs a file denoting the prediction where in the sequence belong
to a state with likelihood calculated by Viterbi algorithm (see Table 2.1). The output
from H2Vite is parsed by a Perl script and statistical data is accumulated to update
HMM parameters i.e. emission parameters for non-code state and transition parameters

1When there are less than three possible start codons expected, the number of the HMM states are
reduced to less than 11
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Figure 2.2: A network diagram of a dicodon oriented HMM. ”Start Codon” state emits
possible three start codons(ATG, TTG, GTG). ”Stop Codon” state emits possible three
stop codons(TAA, TAG, TGA). ”di-Codon” state emits possible 61 dicodons iteratively.
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Table 2.1: Example output format of H2Vite. The first column and second column show
a position in genomic sequence data. The third column shows a state where the HMM
predicts. The last column shows the log likelihood of corresponding prediction.

Begin End State Log Likelihood
0 655 noncode -1.392755

655 658 start -0.116298
658 844 codon -1.339531
844 847 stop -0.223741
847 977 noncode -1.440781
977 980 start -0.116309
980 1049 codon -1.343838
1049 1052 stop -0.223737
1052 1109 noncode -1.520269
1109 1112 start -0.116287
1112 1184 codon -1.324150
1184 1187 stop -0.223724
1187 3710 noncode -1.385260
3710 3713 start -0.116362
3713 3791 codon -1.359336
3791 3794 stop -0.223705
3794 4289 noncode -1.396874
4289 4292 start -0.116303
4292 4781 codon -1.352109
4781 4784 stop -0.223693
4784 5050 noncode -1.408878
5050 5053 start -0.116273
5053 6808 codon -1.229615

for start/stop codon dicodon state. During the statistical data accumulation, the system
rejects apparently false answer that do not comply coding region grammar implemented
in HMM network. Hence the HMM is trained by correct or possibly correct prediction
results although it is never fed training data in advance. Then H2Vite try recognition
again, but this time, with updated HMM parameters. The above procedures are iterated
until the recognition accuracy become maximum.
In order to evaluate the robustness of the self-identification learning, we used short

fragments of microbial genome sequence data such as 1/2, 1/4, 1/8, and such of whole
genomic sequence data to train the HMM as described above. After the HMM is trained,
the model starts to find protein coding regions from a whole genomic sequence data and
we can see how the HMM can predict coding regions accurately with a short fragment
of training data. Therefore we can evaluate data length dependency of self-identification
learning.
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Figure 2.3: Measures of prediction accuracy at the nucleotide level (excerpt from [7] Figure
1).

2.2 Result and Discussion

The prediction accuracy is evaluated by counting TP(true positive): number of bases pre-
dicted as inside of coding regions correctly, TN(true negative): number of bases predicted
as outside of coding regions correctly, FP(false positive): number of bases predicted as
inside of coding regions incorrectly, and FN(false negative): number of bases predicted as
outside of coding regions incorrectly. There are common measures to evaluate prediction
accuracy at the nucleotide level [7] (see also Figure 2.3):

• Sensitivity: Sn = TP
TP+FN

• Specificity: Sp = TP
TP+FP

• Correlation Coefficient: CC = (T P×TN)−(FN×FP )√
(T P+FN)×(T N+FP )×(T P+FP )×(T N+FN)

Additionally, simple nucleotide level prediction accuracy is given byR = TP+TN
TP+TN+FP+FN

.
Table 2.2 shows the highest nucleotide level prediction accuracy R, sensitivity Sn,

specificity Sp, and correlation coefficient CC for 17 microbial genomic sequence data. As
a comparison for the score we got, the table includes scores obtained by another similar
research by Audic and Claverie [3]. Please note that the objectives of this paper do
not include getting high prediction accuracy and our system is far simple than that of
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the Audic and Claveries’, however our prediction accuracy exceeds their score over most
species.
Figure 2.4 to 2.6 show dependency of R, Sn, Sp, and CC on training data size for each

microbial genomic sequence data. Sn stays constantly high level over all sequence data
because almost all bacteria contains very small number of non-coding regions comparing
to coding regions. Hence FN is much smaller than TP . Sp, R, and CC draw similar
proposition because of the same reason. There are apparent degradation of prediction
accuracy for short training data size. However, the prediction accuracy stays high until
the training data size is lowered to around 1/16 of whole data size.
Figure 2.7 to 2.9 show the number of learned HMM parameters versus training data

size for each microbial genomic sequence data. The results shown in the figure vary
widely for each sequence data because there are many differences caused by evolutionary
diversity. Some of the sequence data require very small amount of HMM parameters,
far below from the parameter size of codon usage measure i.e. 1,220, to identify protein
coding regions. On the other hand, some of the sequence data require more than 1,220 pa-
rameters to be learned to attain good prediction accuracy. Besides the maximum number
of HMM parameters often results in lower prediction accuracy i.e. over fitting. Typical
proportion is shown in Archaeoglobus fulgidus, Borrelia burgdorferi, Chlamydia trachoma-
tis, Escherichia coli, Haemophilus infulenzae, Methanococcus jannaschii, Mycobacterium
tuberculosis, Pyrococcus horikoshii, Rickettsia prowazekii, and Treponema pallidum.
Therefore it is obvious that not all of HMM parameters are needed to identify protein

coding regions with reasonable accuracy. Consequently, this evidence leads to a conclusion
that the dicodon usage measure is redundant for the gene finding.
Figure 2.10 is a snapshot showing details of prediction result in a coding region basis.

The numbers on a solid line represent base position in a genomic sequence data. The
stripes right bellow of the solid line is showing correct coding regions; greens for 5’ to 3’
strand and reds for complementary (3’ to 5’) strands. The blue stripes and orange stripes
are representing prediction result with short fragments of training data (top 1/1, bottom
1/256).
Notice that the predicted coding region is getting shorter, hence yielding more error,

than the real coding region.

2.3 Conclusion for the preliminary examination

Our evaluation shows that the dicodon usage measure is redundant for the gene finding.
The result implies that we can use a measure that has smaller size of parameters for
gene finding in reasonable accuracy. Fickett and Tung indicated that the dicodon usage
measure performs better than codon usage measure [11]. Their evaluation shows that pre-
diction accuracy by the dicodon usage measure exceeds that by the codon usage measure
but merely showing slightly better accuracy 1.3 considering the difference of parameter
size among them. Although we found that the dicodon usage measure is too large in its
parameter size and codon usage measure does not perform as good as the dicodon usage
measure, the intermediate measure, which performs as accurate as the dicodon and has
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Table 2.2: Recognition result for 17 microbial genomic sequence data. CC stands for corre-
lation coefficient. R stands for recognition result. AndR∗ shows another self-identification
gene finding result by Audic and Claverie [3].

Species Sensitivity Specificity CC R R∗

Archaeoglobus fulgidus 0.965 0.967 0.647 0.939 0.92
Aquifex aeolicus 0.979 0.967 0.605 0.950 –
Borrelia burgdorferi 0.978 0.993 0.811 0.973 –
Bacillus subtilis 0.975 0.977 0.820 0.958 0.87
Chlamydia trachomatis 0.981 0.990 0.867 0.974 –
Escherichia coli 0.954 0.990 0.806 0.952 0.91
Haemophilus influenzae 0.982 0.962 0.797 0.951 0.90
Helicobacter pylori 0.980 0.968 0.746 0.953 0.93
Mycoplasma genitalium 0.978 0.924 0.538 0.911 0.96
Methanococcus jannaschii 0.984 0.978 0.851 0.967 0.89
Mycoplasma pneumoniae 0.975 0.947 0.688 0.931 0.92
Methanobacterium thermoautotrophicum 0.970 0.989 0.814 0.963 0.93
Mycobacterium tuberculosis 0.964 0.975 0.723 0.946 –
Pyrococcus horikoshii 0.973 0.939 0.612 0.921 –
Rickettsia prowazekii 0.982 0.982 0.928 0.973 –
Synechocystis PCC6803 0.964 0.985 0.823 0.956 0.91
Treponema pallidum 0.972 0.970 0.653 0.946 –
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Figure 2.4: Results of gene finding (a). Measures: recognition accuracy (R), sensitivity
(Sn), specificity (Sp), and correlation coefficient (CC) for 17 microbial genomic sequence
data are shown. We used 1000,000, 500,000, 300,000, 150,000, 75,000, 32,500, 15,000,
and 7,500 nt of fragments out of complete genomic sequences for training data of the
dicodon-oriented HMM.
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Figure 2.5: Results of gene finding (b) continued

24



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Mycobacterium tuberculosis)

R
Sn
Sp
CC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Pyrococcus horikoshii)

R
Sn
Sp
CC

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Rickettsia prowazekii)

R
Sn
Sp
CC

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Synechocystis PCC6803)

R
Sn
Sp
CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Treponema pallidum)

R
Sn
Sp
CC

Figure 2.6: Results of gene finding (c) continued
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Figure 2.7: Correlation Coefficient and the number of trained HMM parameters for 17
microbial genomic sequence data. (a)
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Figure 2.8: Correlation Coefficient and the number of trained HMM parameters for 17
microbial genomic sequence data. (b) continued
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Figure 2.9: Correlation Coefficient and the number of trained HMM parameters for 17
microbial genomic sequence data. (c) continued
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Figure 2.10: A snapshot of detailed prediction results with short fragment of training data
for E.coli (originally colored bitmap). The numbers over the black solid line represent base
position in a genomic sequence data. The stripes right bellow of the solid line is showing
correct coding regions; greens for 5’ to 3’ strand and reds for complementary (3’ to 5’)
strands. The blue stripes and orange stripes are representing prediction result with short
fragments of training data (top 1/1, bottom 1/256).

29



less parameter size than the dicodon, is not discovered yet. Thus our next investigation
should be to find the most significant element in the dicodon usage measure which make
it better than the codon usage measure so that we can discover the intermediate measure.
The next section deals with the investigation.
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Chapter 3

Evaluation of Dicodon Usage
Measure

According to our preliminary examination described above, the redundancy of the di-
codon usage measure should be investigated. In this section, we prepared several different
probabilistic models to emulate the dicodon model with smaller size of parameters. The
size of parameters ranging from 461 to 1,024, is far bellow from the dicodon model which
has 3,721. However, as our preliminary examination showed, protein coding regions in
some microbial genomic sequence data require very small number of HMM parameters.
Thus the models with small size of parameters should be evaluated objectively and quan-
titatively.

3.1 Models

There are 61 possible codons, possible dicodon counts up to 3,721. Hence the size of
the parametric space of the dicodon model is 3,721. The size matters when we examine
gene finding that uses self-identification learning. The self-identification learning with
too many parameters usually fails to produce good result because it requires too large
training data while they are not sufficiently available. On the other hand, accuracy of a
model hardly gets high enough when the model conveys too few parameters.
Fickett and Tung [11] evaluated many protein coding measures including diamino-

acid, codon usage, and dinucleotide bias. These measures never perform better than
dicodon usage. However, dicodon can be represented by combinations of these well known
biological attributes in certain degree. Figure 3.1 depicts each attributes contained in a
nucleotide hexamer.
We presumed that the product of diamino-acid, codon usage, and G+C content emu-

lates dicodon usage very well. Because, (i) there presumably are structural information
of proteins embedded in coding regions that corresponds to the diamino-acid information.
The diamino-acid information employs fairly larger amount of information (20×20 = 400
parameters) than the information derived by a pair of dinucleotides (16×16 = 256 param-
eters). (ii) codon usage determines third nucleotide which follows a couple of nucleotides
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C+G content

codon codon

amino acid (2.32 N) amino acid (2.32 N)
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Figure 3.1: The hexamer treats six nucleotide as one datum thus is identical to 6 nucleotide
window frame examination. The codon binds three nucleotide as one datum thus the
dicodon stands for a pair of codons. A codon corresponds to an amino-acid but an
amino-acid corresponds to one or more codons and there are only 20 possible amino-
acids while there are 64 possible codons. 8 amino-acids(family box) are determined by
2 nucleotides. 12 amino-acids(2-codon set) are determined by 2.5 nucleotides. 1 amino-
acid(2-codon set+1) is determined by 2.75 nucleotides. Approximately, an amino-acid is
determined by 2.32 nucleotides. C+G content stands for a biased possibility to have a C
or G in the third position of codon. Thus it can not be defined by single nucleotide but
a certain length of window frame should be considered.
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determined by an amino-acid. The amino-acid information is derived from diamino-acid
information. (iii) the third nucleotide might have a modification according to G+C con-
tent.
Based on the idea (i) to (iii), we defined the models B to F. Every model is a prob-

abilistic representation of nucleotide hexamer with emphasis on the codon usage, C+G
content and diamino-acid. The model B is a simple product of diamino-acid and codon
usage and it does not use C+C content in order to evaluate how this model behave worse
than those using C+G content information. The models C and D include correction term.
In the model D, we supposed a certain bias among each nucleotide instead of seeing G-C
and A-T are identical respectively. In this model, the codon usage is modified by a re-
lation between its own third nucleotide and that of preceded codon. The model E uses
two codon usage sets, which are used selectively regarding C+G content of the preceded
codon. The model F uses four codon usage sets, which are used based on nucleotide-wise
rather on C+G content-wise. The model G is more similar to the dicodon model than
the other models. Because this model is a dicodon model without distinction of G-C and
A-T at its third nucleotide position. The model conveys smaller parameter size (1,024)
than that of the dicodon, but it is the largest among the other emulator models.
When these models perform well enough in comparison with dicodon model, that

would help us to clarify which attribute is the most crucial to the dicodon model.

A) the dicodon model:
61× 61 = 3, 721 parameters

pA(cj|ci) ≡ p(cj|ci). (3.1)

B) model of pair amino-acid and codon usage:
20× 20 + 61 = 461 parameters

pB(cj|ci) ≡ p(A(cj)|A(ci))p(cj |A(cj)). (3.2)

C) model of pair amino-acid and codon usage modified by C+G content:
20× 20 + 61 + 2 = 463 parameters

pC(cj |ci) ≡ p(A(cj)|A(ci)){λBp(cj |A(cj)) + (1− λB)p(fgc(cj)|fgc(ci))}. (3.3)

D) model of pair amino-acid and codon usage modified by pair C+G content:
20× 20 + 61 + 4× 4 = 478 parameters

pD(cj|ci) ≡ p(A(cj)|A(ci)){λCp(cj |A(cj)) + (1− λC)p(fatgc(cj)|fatgc(ci))}. (3.4)

E) model of pair amino-acid and codon usage with C+G content dependency:
20× 20 + 2× 61 = 522 parameters

pE(cj|ci) ≡ p(A(cj)|A(ci))p(cj|A(cj), fgc(ci)). (3.5)
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F) model of pair amino-acid and codon usage with pair C+G content dependency:
20× 20 + 4× 61 = 644 parameters

pF (cj|ci) ≡ p(A(cj)|A(ci))p(cj|A(cj), fatgc(ci)). (3.6)

G) model of shrunk dicodon usage:
32× 32 = 1024 parameters

pG(cj|ci) ≡ p(S(cj)|S(ci)). (3.7)

A(c) stands for an amino-acid which corresponds to a codon c.
The function fgc(c) returns ”GC” if the third nucleotide in a codon c is ”G” or ”C”.

Otherwise it returns ”AT”. Henceforth the probability p(GC|AT ) stands for a probability
to have a codon looks like ”XXG” or ”XXC” right after a codon ”XXA” or ”XXT”.
Another function fatgc(c) returns the third nucleotide of a codon c. p(cj |A(cj), fgc(ci))
represents two codon usages. One is a codon usage observed right after a codon which
has ”G” or ”C”. The another is a codon usage observed right after a codon which
has ”A” or ”T”. p(cj |A(cj), fatgc(ci)) represents four codon usages that correspond to
a third nucleotide of a preceded codon ci. λ is a weight coefficient. It is calculated so
that the square error between the dicodon model become minimal. For model G, S(c)
represents shrunk codon. Shrunk codon does not distinguish G-C, and A-T. For instance,
S(XXG) = S(XXC) and S(XXA) = S(XXT ).

3.2 Evaluation of models

In order to evaluate these six models(B to G) against the dicodon model, We used 17
microbial genomic sequences [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40] and C. elegance [41] genome sequences obtained from GenBank and took following
procedure:

(i) So-called Jack knife strategy is applied here.

(ii) Several size of Learning sets and Testing sets are prepared in order to evaluate
performance and robustness of each model.

(iii) When an examined genomic sequence has N genes, we take N/n genes out of the
sequence randomly(n = 1.3, 1.7, 2, 4).

(iv) The extracted genes are used for the Learning sets.

(v) Rest of the genes and the non-coding regions are used as the Testing set.

(vi) Train six models and the dicodon model using the Learning set.

(vii) Accumulate coding potentials codx of every coding region in the Testing set based
on the six models.
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(viii) Train the dicodon model using the Testing set and accumulate a coding potential
codo.

(ix) Obtain profiles of coding potentials for coding regions and non-coding regions.

(x) Evaluate every models in two ways: Approximation error and Learning/Testing
evaluation.

A coding potential, for model x, of a coding region C = (c1, c2, . . . , cn) which consists
of n codons can be computed as follows:

codx(C) =
1

n
log px(c1, c2, . . . , cn) =

1

n
log{px(c2|c1) . . . px(cn|cn−1)} = 1

n

n∑

i=2

log px(ci|ci−1).

(3.8)

3.2.1 Approximation error

The models B to F are approximations of the dicodon model. Therefore, we can evaluate
these models in terms of approximation error of each models against the dicodon model.

• We split a sequence into the learning sequence and the testing sequence.
• AT is the dicodon model that was trained with testing sequence.

• AL is the dicodon model that was trained with learning sequence.

• Other models are all trained with learning sequence.
• Compute coding potentials of coding/non-coding regions in the testing sequence for
every model.

• We calculated square errors between coding potentials codo and coding potentials
of the other model x.

D(x) =
∑

C

(codo(C)− codx(C))
2 (3.9)

where x = AL, B, C, . . . , G.

• This evaluation shows how these models accurately approximate the dicodon model.
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Figure 3.2: Profile of coding potentials for coding(right heap) and non-coding(left heap)
regions. The two heaps have overlapped area [A, B]. We set a threshold coding potential
x within [A, B]. (a) For coding potentials over x are taken to be coding regions. So
cross-hatched area become false negatives. (b) For coding potentials under x are taken
to be non-coding regions. The cross-hatched area become false positives. (c) We take x
so that the sensitivity and specificity become equivalent. According to the definition of
sensitivity and specificity, FP (x) = FN(x) when Sn(x) = Sp(x).
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Figure 3.3: Actual histogram of coding/non-coding potential for E.coli

3.2.2 Evaluation of Learning/Testing

Here we define a measure to evaluate an accuracy to distinguish coding regions and
non-coding regions for each model. Then compute ”distances”, based on the measure,
between profiles of coding/non-coding regions, and evaluate specificity/sensitivity of six
models based on the distance(defined below) of each model.
We obtained profiles of coding/non-coding regions look like Figure 3.3. Two heaps of

coding/non-coding regions are overlapped each other in certain degree. When we have a
coding potential x for a predicted coding region, and the potential goes a midst of two
heap, it has a probability to belong to a coding region and another probability for a non-
coding region simultaneously. When the overlap, based on a model, is wider than that of
other model, we need to do a stochastic decision for every predicted coding region whether
it belongs to coding or non-coding regions more frequently than other model. This means
we have to make one more guess after prediction of coding region. On the other hand,
if a model has narrower overlap, most predicted coding regions are easily distinguished
without guess. This can be a measure for relative accuracy of a model against other
models.
Then, we defined a distance d using the measure described above(see Figure 3.2).

d = Sn(x0) + Sp(x0) , Sn(x0) = Sp(x0) (3.10)

Sn(x) =
TP (x)

TP (x) + FN(x)
, Sp(x) =

TP (x)

TP (x) + FP (x)

TN(x) =
x∑

i=xmin

hnc(i) , FN(x) =
xmax∑

i=x

hnc(i)
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TP (x) =
xmax∑

i=x

hcd(i) , FP (x) =
x∑

i=xmin

hcd(i)

As shown above, we take d of the equilibrium where sensitivity and specificity become
equivalent.

3.3 Result

Table 3.1 shows maximum sensitivity+specificity of every model for 14 microbial genomic
sequence data and 14 eukaryotic genomic sequence data. Mean sensitivity+specificity is
shown in bottom of the table. Although the mean sensitivity+specificity shows that the
dicodon and the model G (shrunk dicodon model) yield equivalent value, the details are
different in each species. The dicodon scores higher than the model G in 15 species while
the model G scores higher in other species.
Figure 3.4 to 3.8 show sensitivity+specificity versus relative training data size of 14

microbial genomic sequence data and 14 eukaryotic genomic sequence data. The sensi-
tivity+specificity scores tend to wobble because of the jack knife strategy. The jack knife
strategy requires approximation in order to get smooth result. However we did just one
time examination.
Figure 3.3 shows comparisons of average square errors for coding region and non-coding

region. The square errors are calculated against coding potential of dicodon model for
each six models(B to G).
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Table 3.1: Maximum sensitivity+specificity of every model for 14 microbial genomic se-
quence data and 14 eukaryotic genomic sequence data. Mean sensitivity+specificity is
shown in bottom of the table.

Species dicodon B C D E F G
Archaeoglobus fulgidus 1.976 1.960 1.962 1.960 1.961 1.965 1.976
Aquifex aeolicus 1.924 1.910 1.908 1.908 1.913 1.918 1.932
Borrelia burgdorferi 1.954 1.887 1.887 1.890 1.882 1.911 1.950
Bacillus subtilis 1.950 1.923 1.923 1.924 1.923 1.932 1.949
Chlamydia trachomatis 1.962 1.887 1.891 1.887 1.898 1.902 1.962
Escherichia coli 1.959 1.940 1.941 1.941 1.941 1.944 1.959
Haemophilus influenzae 1.951 1.926 1.924 1.926 1.920 1.932 1.946
Mycoplasma genitalium 1.881 1.821 1.785 1.813 1.833 1.840 1.873
Methanococcus jannaschii 1.973 1.920 1.921 1.918 1.924 1.940 1.970
Mycoplasma pneumoniae 1.856 1.823 1.833 1.823 1.831 1.835 1.856
Methanobacterium 1.956 1.946 1.946 1.947 1.950 1.950 1.954
Rickettsia prowazekii 1.975 1.920 1.923 1.920 1.931 1.930 1.970
Synechocystis sp. 1.946 1.922 1.922 1.923 1.923 1.932 1.950
Treponeuma pallidum 1.900 1.880 1.877 1.877 1.872 1.899 1.918
C. elegance(Chr I) 1.931 1.758 1.759 1.759 1.799 1.805 1.921
C. elegance(Chr II) 1.927 1.753 1.752 1.760 1.795 1.798 1.923
C. elegance(Chr III) 1.930 1.769 1.774 1.782 1.804 1.816 1.919
C. elegance(Chr IV) 1.946 1.816 1.819 1.822 1.846 1.859 1.938
C. elegance(Chr V) 1.929 1.739 1.743 1.744 1.778 1.798 1.918
Saccharomyces cerevisiae(Chr II) 1.755 1.615 1.644 1.639 1.620 1.681 1.780
Saccharomyces cerevisiae(Chr III) 1.674 1.545 1.523 1.545 1.536 1.549 1.709
Saccharomyces cerevisiae(Chr IV) 1.904 1.828 1.815 1.827 1.834 1.847 1.907
Saccharomyces cerevisiae(Chr VI) 1.724 1.597 1.605 1.580 1.642 1.591 1.742
Saccharomyces cerevisiae(Chr VIII) 1.847 1.672 1.678 1.714 1.700 1.754 1.832
Saccharomyces cerevisiae(Chr X) 1.835 1.727 1.725 1.727 1.748 1.762 1.843
Saccharomyces cerevisiae(Chr XI) 1.861 1.689 1.704 1.717 1.730 1.753 1.849
Saccharomyces cerevisiae(Chr XIII) 1.888 1.781 1.786 1.794 1.801 1.812 1.887
MEAN 1.896 1.808 1.809 1.812 1.822 1.834 1.896
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Figure 3.4: Sensitivity+Specificity versus relative training data size for 14 microbial ge-
nomic sequence data and 14 eukaryotic genomic sequence data (a)
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Figure 3.5: Sensitivity+specificity versus relative training data size (b) continued
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Figure 3.6: Sensitivity+Specificity versus relative training data size (c) continued
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Figure 3.7: Sensitivity+Specificity versus relative training data size (d) continued

43



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr III))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr IV))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr VIII))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr X))

dicodon
B
C
D
E
F
G

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr XI))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr XIII))

dicodon
B
C
D
E
F
G

Figure 3.8: Sensitivity+Specificity versus relative training data size (e) continued
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Figure 3.9: The left figure shows square errors of the coding potentials of testing se-
quences(above: coding regions, bellow:non-coding regions) for each models against the
coding potential of dicodon model that was trained with testing sequences. The square
errors are average values over 13 microbial and 2 eukaryotic genomes.
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3.4 Discussion

Our evaluation shows that the dicodon model outperforms other six models(B to G) in
terms of specificity and sensitivity (Table 3.1 and Figure 3.4 to 3.8). Besides, none of
the emulation models(B to F) get closer than the model G in terms of approximation
error(Figure 3.3).
The models B to F apparently failed emulating the dicodon model. This means that

the information among a pair of codon conveys richer feature of coding regions than a
mere combination of the diamino, codon usage, and C+G content, and the diamino-acid
simply drops some crucial information in the coding region.
Performance of the model B, which is the simplest, is constantly low among the other

models. This corresponds to an evidence of the significance of C+G content.
The model C performs slightly better than the B but it is not so apparent. While the

model C has information of C+G content, linear interpolation of codon usage and C+G
content did not work so much in this case.
The model D performs better than the B and C. Although the differences of its perfor-

mance between this model and the B, C are clearer than that of B and C, its performance
improvement is poor. However, we should notice that nucleotide-wise bias at the third
nucleotide is more significant than C+G content.
The performance of the model E shows clearer improvements. This result indicates

that the second codon usage depends on the C+G content of the first codon.
The result of the model F is the best among the models B to F. With this result, there

apparently is dependency of the second codon usage on the third nucleotide of the first
codon rather on the C+G content. This indicates that a bias at the third nucleotide is not
so uniform among G-C and A-T, and C+G content model is not sufficient for describing
this bias. Therefore we should consider A, T, C, G individually.
The model G scores the nearest performance to the dicodon model. Let us take a

look at this result not from performance improvement but from performance decline.
Only difference between this model and the dicodon model is that this model does not
distinguish G-C and A-T at the third nucleotide. Again, this shows that the peculiar bias
at third nucleotide that is indicated by the result of the model D and F.
Considering the difference between diamino and dicodon, dependency of the third

nucleotide of second codon on the first codon is important for describing superiority of
the dicodon. Although the diamino-acid and codon usage are undoubtedly important
attributes of dicodon, our result shows that C+G content is not enough for describing
peculiar bias which is found at the third nucleotide.
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Chapter 4

Conclusion

Firstly, we proposed that the redundancy of dicodon usage measure for gene finding in
Chapter 2 based on the result obtained from our preliminary gene finding examination
using dicodon oriented HMM with self-identification learning method, which showed that
the HMM could predict protein coding region in microbial genomic sequence data with
far less parameter size than the HMM employed. According to the fact, we performed
the evaluation of the dicodon usage measure using 6 probabilistic models that emulate
the dicodon usage measure with less parameter size than that in order to clarify the
most significant element consists of the dicodon in Chapter 3. However the all emulation
models, except shrunk dicodon model, failed to attain such high accuracy provided by
the dicodon model. Although the shrunk dicodon model produced the result close to
that of the dicodon model, it can not be identical to the dicodon based on the result of
our evaluation. This fact showed that the dicodon usage measure can not be described
by codon usage, pair amino acid, and C+G content. This negative result negates the
widely believed common sense and, more importantly, proposed a new fact that a certain
important element other than codon usage, pair amino-acid, and C+G content is still
missed and the missing element clarified. This paper does not deal with the missing
element but indicated that the C+G content is not sufficient to emulate the dicodon
model.
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Chapter 5

Appendix

Table 5.1: 17 microbial genomic sequence data.

Species Acc. No Length (nt)
Archaeoglobus fulgidus AE000782 2178400
Aquifex aeolicus AE000657 1551335
Borrelia burgdorferi AE000783 910724
Bacillus subtilis AL009126 4214814
Chlamydia trachomatis AE001273 1042519
Escherichia coli U00096 4639221
Haemophilus influenzae L42023 1830138
Helicobacter pylori AE000511 1667867
Mycoplasma genitalium L43967 580074
Methanococcus jannaschii L77117 1664970
Mycoplasma pneumoniae U00089 816394
Methanobacterium thermoautotrophicum AE000666 1751377
Mycobacterium tuberculosis AL123456 4411529
Pyrococcus horikoshii Pyro h 1738505
Rickettsia prowazekii AJ235269 1111523
Synechocystis PCC6803 AB001339 3573470
Treponema pallidum AE000520 1138011
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Species Acc. No Length (nt)
Caenorhabditis elegans chromosome I chr I 16,183,833
Caenorhabditis elegans chromosome II chr II 17,004,925
Caenorhabditis elegans chromosome III chr III 12,114,540
Caenorhabditis elegans chromosome I chr IV 15,887,371
Caenorhabditis elegans chromosome V chr V 21,280,512
Caenorhabditis elegans chromosome X chr X 17,624,844
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