
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
トレランス・ラフ集合モデルに基く階層型文書クラス

タリングアルゴリズムの提案

Author(s) 河崎, さおり

Citation

Issue Date 2000-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/701

Rights

Description Supervisor:Ho Tu Bao, 知識科学研究科, 修士

C û ° ¥

A New Hierarchical Clustering Algorithm for

Documents based on Tolerance Rough Set Model

0É�m Ho Tu Bao �|

|½55|GÛ�"G®"G

n�|G�å|n�*,9Sn�G¾y

������ !R ÐÅ�

­O�¬æ Ho Tu Bao �| Ô%OÕ

yR ÷q %�|

�ê õÎ �|

����� �¬

&RS\ULJKW p ���� E\ 6DRUL .DZDVDNL

A New Hierarchical Clustering Algorithm for
documents based on Tolerance Rough Set Model

By Saori Kawasaki

A thesis submitted to

School of Knowledge Science,

Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of

Master of Knowledge Science

Graduate Program in Knowledge Science

Written under the direction of

Professor Tu Bao Ho

August 15, 2000

&RS\ULJKW p ���� E\ 6DRUL .DZDVDNL

L

Contents

Chapter 1
 Introduction -- 1

1.1 Document Clustering -- 1

1.2 Tolerance Rough Set Model and Clustering ----------------------------------- 2

1.3 Organization of the Thesis -- 4

Chapter 2
 Rough Sets and Tolerance Rough Set Model (TRSM) -------- 5

2.1 Basic Notions of Rough Sets --- 5

2.1.1 Approximation by Equivalence Spaces --------------------------- 5

2.1.2 Applications of Rough Sets to Text Processing -------------------- 7

2.2 Generalized Tolerance Spaces -- 8

2.2.1 Tolerance Relations and Tolerance Spaces ---------------------- 8

2.2.2 Example of Tolerance Space --- 10

2.3 A Tolerance Rough Set Model for Documents -------------------------- 11

2.3.1 Determination of a Tolerance Rough Set Model ----------------- 11

2.3.2 Illustration of Tolerance Rough Set Model ------------------------- 13

Chapter 3
 The TRSM-based Hierarchical Clustering Algorithm ------- 15

3.1 Representing Documents by TRSM -- 15

3.1.1 TRSM weighted representation of documents ------------------ 15

3.1.2 Illustration of Document Representation ------------------------ 17

3.2 A TRSM-based Hierarchical Agglomerative

 Clustering Method (HACM) -------------------------- 19

LL

3.2.1 The TRSM-based HACM Algorithm ----------------------------- 19

3.2.2 Representatives of Clusters -- 21

3.2.3 Distances between Documents ------------------------------------ 22

3.2.4 Distances between Clusters -- 23

3.3 Illustration of Hierarchical Clustering Results -------------------------- 24

Chapter 4
 Implementation --- 28

4.1 Determination of the Rough Tolerance Space ----------------------------- 28

4.2 Clustering --- 30

4.3 Document Retrieval --- 33

Chapter 5
 Evaluation and Validation -- 34

5.1 Test Collections -- 34

5.2 Evaluation --- 36

5.2.1 Evaluation of Cluster-based Retrieval Effectiveness -------------- 36

5.2.2 Evaluation of TRSM Hierarchical Clustering Efficiency --------- 40

5.2.3 Text Categorization --- 42

5.3 Validation -- 44

5.3.1 Clustering Tendency -- 44

5.3.2 Clustering Stability -- 46

Chapter 6
 Conclusion -- 48

Acknowledgements --- 50

Bibliography -- 51

Contribution -- 55

Appendix -- 56

LLL

List of Figures

 2-1: Overlapping classes of words --- 8

 3-1: The general TRSM-based hierarchical agglomerative clustering algorithm -- 20

 3-2: Illustration of Group-average link -- 24

 3-3: Cluster representatives with parameter ð= 6 ---------------------------------- 26

 3-4: Cluster representatives with parameter ð= 15 --------------------------------- 27

 4-1: I-O flow of the preparation phase --- 29

 4-2: Data structure for documents, cluster and query -------------------------------- 31

 4-3: Procedure outline of TRSM-based hierarchical agglomerative clustering --- 32

 5-1: Class matrix of documents --37

 5-2: Precision and recall of TRSM (ð=15) and VSM -------------------------------- 38

 5-3: Documents distribution of categorized clusters ----------------------------------- 43

 5-4: Number of documents included in categorized clusters ------------------------- 44

 5-5: Clustering tendency -- 46

 5-6: Synthesized results about the stability-- 47

LY

List of Tables

 2-1: Examples of healthy and cancerous cells -- 6

 2-2: Approximations of first 10 documents concerning “machine learning” ----------------- 13

 3-1: The first two documents in MED --- 17

 3-2: Tolerance classes of first 10 terms in MED with highest frequencies (θ = 10) --------- 18

 3-3: First 4 documents in MED represented by 15 pairs of term-weight

 (in order of terms) and 15 pairs of term#frequency

 (in order of decreasing frequency) --- 18

 3-4: Upper (first half) and lower (second half) approximations of

 the first 4 documents in MED with θ = 10. --9

 5-1: Test collections -- 35

 5-2: Precision and recall of full retrieval based on TRSM and VSM ------------------------ 38

 5-3: Precision and recall of the TRSM cluster-based and full search ----------------------- 40

 5-4: Precision and recall of the TRSM and VSM cluster-based retrieval ------------------- 40

 5-5: Performance Measurements of the TRSM Cluster-based Retrieval -------------------- 41

 5-6: The homogeneity of generated clusters -- 42

 5-7: Results of clustering tendency --- 46

 5-8: Synthesized results about the stability -- 47

�

Chapter 1

Introduction

1.1 Document Clustering
Text clustering, the grouping of texts into several clusters, has been used as a means of

improving both the efficiency and the effectiveness of information retrieval and text

processing [Lebart 98], [Larsen 99], [Baeza-Yates 99], [Manning 99]. About efficiency, it

is clear that it helps to reduce the number of comparisons for searching similar documents

in appropriate clusters when the clusters are evaluated closed enough to the requests.

About effectiveness, it is also assumed that clustering can improve the accuracy of retrieval,

but this assumption has not been verified yet [Iwayama 95].

There are two main types of clustering methods. One is non-hierarchical clustering, which

often divides a data set of M items into K disjoint clusters and the other is hierarchical

clustering, which produces a nested data set in which pairs of items or clusters are

successively linked until every item in the data set is connected [Fakes 92], [Manning 99].

Hierarchical clustering methods do not require a priori knowledge of the number of

clusters or the starting partition that are required in case of non-hierarchical clustering

methods. Clusters in a hierarchy can be somehow more flexible to determine the target

spaces than clusters divided in a non-hierarchical spaces, while non-hierarchical clustering

requires much smaller computational costs than the hierarchical clustering [Sharma 96].

Because of the usefulness, hierarchical clustering has become more dominant in document

�

clustering. However, document clustering is a difficult clustering problem by a number of

reasons [Fakes 92], [Lebart 98], [Willet 88], and some problems occur additionally when

doing clustering on large textual databases. Particularly, when documents in a large textual

database are represented by only a few keywords or they have few index terms in common,

current available similarity measures in textual clustering [Boyce 94], [Fakes 92] often

yield zero-values that decreases considerably the clustering quality.

1.2 Tolerance Rough Set Model and Clustering

In contrast to the exact match techniques for information retrieval, there have been many

works on inexact match (partial) techniques that employ semantic calculations in order to

improve the effectiveness of information retrieval. Fuzzy clustering [Miyamoto 90], latent

semantic indexing [Manning 99] are among inexact techniques for information retrieval.

Many inexact match methods employ expressions by co-occurrence of terms, categories

dictionary and phrase pattern matching because of their significances >y� ��@� >ÊÇ¹

��@� >PW ��@� >Pn ��@�

Rough set theory, a mathematical tool to deal with vagueness and uncertainty introduced

by Pawlak in early 1980s [Pawlak 91], has been successful in many applications [Lin 97],

[Polkowski 98]. In this theory each set in a universe is described by a pair of ordinary sets

called lower and upper approximations, determined by an equivalence relation in the

universe. The use of the original rough set model in information retrieval, called

equivalence rough set model (ERSM), has been investigated by several researchers

[Raghavan 86], [Srinivasan 91]. A significant contribution of ERSM to information

retrieval is that it suggested a new way to calculate the semantic relationship of words

based on an organization of the vocabulary into equivalence classes.

However, as analyzed in [Ho 98], ERSM is not suitable for information retrieval and text

�

processing due to the fact that the requirement of the transitive property in equivalence

relations is too strict to the meaning of words, and there is no way to calculate

automatically equivalence classes of terms. Inspired by some works that employs different

relations to generalize new models of rough set theory, e.g., [Skowron 94], a tolerance

rough set model (TRSM) for text processing that adopts tolerance classes instead of

equivalence classes has been developed [Ho 98].

This model makes tolerance spaces of terms and documents according to term co-

occurrences in each document and in the whole database. The most important contribution

of TRSM is that it can calculate the semantic relations between documents using upper

approximations even if documents do not share common terms. However, the original

work on TRSM do not address the problem of term weighting that has an important role in

enriching the document representation in text processing [Fakes 92], [Baeza-Yates 99]. An

extension of TRSM with term weighting techniques [Salton 88], [®° 99] could improve

considerably the applicability of this model in text processing.

This research concerns with the question of whether TRSM can be applied to text

clustering in order to achieve a better effectiveness and efficiency in information retrieval,

and possibly to other tasks of text processing. Based on the general hierarchical

agglomerative clustering scheme, a TRSM-based algorithm is developed. During the

process of constructing a hierarchy, representatives with weighted terms are used to

improve the computing cost of similarity between clusters instead of calculation of all

document pairs.

The algorithm has been implemented, evaluated and validated on a number of common test

collections. Experimental results show that the TRSM-based algorithm can be a promising

alternative to do the task of hierarchical clustering for documents.

�

1.3 Organization of the Thesis

This paper reports the work on the TRSM-based hierarchical clustering algorithm for

documents. Chapter 2 gives a brief recall of the basic notions of document clustering and

the tolerance rough set model for documents. Chapter 3 describes details of the algorithm

consisting of two phases of pre-processing for documents and hierarchical clustering.

Chapter 4 is concerning with the implementation of the algorithm. Chapter 5 reports the

evaluation and validation of the algorithm on a number of common test collections.

Chapter 6 gives a conclusion of the research and future work. The appendix provides

source code of the programs.

�

Chapter 2

Rough Sets and

Tolerance Rough Set Model�(TRSM)

This chapter recalls basic notions of rough sets and tolerance rough set model (TRSM).

2.1 Basic Notions of Rough Sets

The rough set theory was introduced by Pawlak in early 1980s as a mathematical tool to

deal with vagueness and uncertainty [Pawlak 91]. It has been applied in many fields such

as machine learning, knowledge acquisition, decision analysis, information retrieval,

pattern recognition, and recently knowledge discovery and data mining [�Û 96], [Lin

97], [Polkowski 98].

2.1.1 Approximation by Equivalence Spaces

The starting point of theory of rough sets is that each set X in a universe U of objects can

be “viewed” approximately by its upper and lower approximations in an equivalence space

R = (U, R) where R ⊆ U × U is an equivalence relation. Two objects x, y ∈ U are said to be

indiscernible regarding R if xRy. The lower and upper approximations in R of any subset X

of U, denoted respectively by L(R, X) and U(R, X), are defined by

�

L(R, X) = {x ∈ U: [x]R ⊆ X}

U(R, X) = {x ∈ U: [x]R ≠ ∅ }

where [x]R denotes the equivalence class of objects indiscernible with x regarding the

equivalence relation R. This original model of rough sets is called the equivalence rough

set model (ERSM) as it employs equivalent relations as its basics.

The following example illustrates the basic notions of rough sets. Table 2.1 shows a small

universe of eight cells,

U = {C1, C2, C3, C4, C5, C6, C7, C8}

each of them belongs to one of two classes “healthy” and “cancerous”. The cells are

described by three attributes: attribute “color” with two possible values “dark” and “light”;

attribute “number of nuclei” with two values “1” and “2”; and attribute “number of tails”

also with two values “1” and “2”.

Table 2-1: Examples of healthy and cancerous cells

color
number
of nuclei

number
of tails Class

C1 light 1 1 healthy
C2 dark 1 1 healthy
C3 light 1 2 healthy
C4 light 2 1 healthy
C5 dark 1 2 cancerous
C6 dark 2 1 cancerous
C7 light 2 2 cancerous
C8 dark 2 2 cancerous

Consider an equivalence relation R determined by two attributes “color” and “number of

nuclei”. The approximation space regarding this equivalence relation R consists of four

equivalence classes,

�

R = (U, R) = {{C1, C3}, {C2, C5}, {C4, C7}, {C6, C8}}.

Here, for example, C2 and C3 are indiscernible regarding the relation R (in terms of two

attributes “color” and “number of nuclei”), and if consider the set X = {C1, C2, C3}, we

have its approximations

 L(R, X) = {C1, C3}

 U(R, X) = {C1, C2, C3, C5}

2.1.2 Applications of Rough Sets to Text Processing

The traditional rough set theory with equivalence relations concerns disjoint classes of

objects because the equivalence relations require three properties that are reflexive,

symmetric and transitive. A relation R ⊆ U × U is equivalent if it satisfies the following

properties for all x, y, z ∈ U

(i) Reflexive: xRx

(ii) Symmetric: xRy È yRx

(iii) Transitive: xRy H yRz È xRz

Rough sets have been applied to information retrieval and text processing since its early

days. All early work on information retrieval using rough sets was based on ERSM with a

basic assumption that the set T of index terms can be divided into equivalence classes

determined by equivalence relations [Raghavan 86], [Srinivasan 89], [Srinivasan 91].

These properties are often hold in many application fields but all the properties do not

always hold in certain application domains. Especially in the fields of linguistic or

information retrieval, the transitive property is too strict and rough sets using the

equivalence relation cannot be well applied. This remark can be illustrated by considering

�

words from Roget’s thesaurus where each word is associated with a class of other words

that have similar meanings. Figure 2-1 shows part of associated classes of three words root,

cause and basis. It is clear that these classes are not disjoint (equivalence classes) but

overlapping as the meaning of the words is not transitive.

ROOT

BASISCAUSE

bottom
 deviation

motive center
 root

 basis
 cause

 antecedent

account

 agency

 backbone

backing

Figure 2-1: Overlapping classes of words

Intelligent information retrieval methods rely mainly on the conceptual analysis and they

require considering semantics relationships between terms. Sometimes each term can be

replaced by another term with similar concept, but cannot be always replaced by the same

term because there is no such thing as a true synonym that have exactly the same meaning.

Only case that the term can be always replaced by another term that is indiscernible to the

original term is the synonyms such as a relation between “artificial intelligence” and “AI”.

2.2 Generalized Tolerance Spaces

2.2.1 Tolerance Relations and Tolerance Spaces

Overlapping classes can be generated by tolerance relations that require only reflexive and

symmetric properties. A general approximation model using tolerance relations was

�

introduced in [Skowron 94] in which generalized spaces are called tolerance spaces that

contain overlapping classes of objects in the universe called tolerance classes. A tolerance

space is generally defined as a quadruple R = (U, I, ν, P), where U is a universe of objects,

I: U È 2U is an uncertainty function, ν: 2U × 2U → [0,1] is a vague inclusion, and P: I(U)

È{0,1} is a structurality function.

Assume that an object x is perceived by information Inf(x) about it. The certainty function

I: U È 2U determines I(x) as a tolerance class of all objects which are considered to have

similar information with x. This uncertainty function can be any function satisfying the

condition x ∈ I(x) and y ∈ I(x) if and only if x ∈ I(y) for any elements x, y ∈ U. Such a

function corresponds to a relation I ⊆ U × U understood as xIy if and only if y ∈ I(x). I is a

tolerance relation because it satisfies the properties of reflexivity and symmetry.

The vague inclusion ν: 2U × 2U → [0,1] measures the degree of inclusion of sets, in

particular it relates to the question of whether the tolerance class I(x) of an object x ∈ U is

included in a set X. There is only one requirement of monotonicity with respect to the

second argument of ν, i.e., ν (X, Y) ≤ ν (X, Z) for any X, Y, Z ⊆ U and Y ⊆ Z.

Finally, the structurality function is introduced by analogy with mathematical morphology

[Skowron 94]. In the construction of the lower and upper approximations, only tolerance

sets being structural elements are considered. We define that P: I(U) È {0,1} classifies

I(x) for each x ∈ U into two classes  structural subsets (P(I(x)) = 1) and non-structural

subsets (P(I(x)) = 0). The lower approximation L(R, X) and the upper approximation U(R,

X) in R of any X ⊆ U are defined as

L(R, X) = {x ∈ U: P(I(x)) = 1 & ν (I(x), X) = 1}

U(R, X) = {x ∈ U: P(I(x)) = 1 & ν (I(x), X) > 0}

��

2.2.2 Example of Tolerance Space

Consider the examples of eight healthy and cancerous cells shown in Table 2-1. A

tolerance space R = (U, I, ν, P) can be given as follows.

� U = {C1, C2, C3, C4, C5, C6, C7, C8}

� The uncertainty function I: U È 2U is defined as

I(C1) = {C1, C2}

I(C2) = {C2, C1}

I(C3) = {C3, C4, C5}

I(C4) = {C4, C3, C7}

I(C5) = {C5, C3, C8}

I(C6) = {C6, C8}

I(C7) = {C7, C4}

I(C8) = {C8, C5, C6}

� The vague inclusion ν: 2U × 2U → [0,1] is defined as

||
||

),(
X

YX
YX

∩=ν

� Define P(I(Ck)) = 1 for all Ck ∈ U.

It is easy to verify that the functions I, ν, and P satisfy all required properties, and they

form a tolerance space R with the following tolerance classes

R = {{C1, C2}, {C3, C4, C5}, {C4, C3, C7}, {C5, C3, C8}, {C6, C8}, {C7, C4}, {C8, C5, C6}}

It is easy to verify that these classes satisfy two properties of symmetric and reflexive. In

this tolerance space, if the set X = {C1, C2, C3}, we have

��

 L(R, X) = {C1, C2}

 U(R, X) = {C1, C2, C3, C4, C5, C7, C8}

The essential problem of using tolerance spaces in any application is how to determine

suitably I, ν and P in a computational manner.

2.3 A Tolerance Rough Set Model for Documents

2.3.1 Determination of a Tolerance Rough Set Model

In [Ho 98], the authors proposed a tolerance rough set model (TRSM) for documents.

Essentially, they showed how to determine suitably I, ν and P for universes of documents

in problems such as information retrieval, text data mining, etc.

Consider a set of documents D = {d1, d2, …, dM} where each document dj is represented by

a set of index term ti (e.g., keywords) each is associated with a weight wij ∈ [0, 1] that

reflects the importance of ti in dj, i.e., dj = (t1, w1j; t2, w2j; …; tr, wrj). The set of all index

terms from D is denoted by T = {t1, t2, …, tN}. In case of information retrieval, the query is

often given in the form Q = (q1, w1q; q2, w2q; …; qs, wsq) where qi ∈ T and wiq ∈ [0, 1], and

the information retrieval task can be viewed as to find ordered documents dj ∈ D that are

relevant to the query Q.

First of all, to define a tolerance space R , the universe U is chosen as the set T of all index

terms

U ^ W�� W�� «� W1 ` T

The most crucial issue in formulating a TRSM for documents is identification of tolerance

��

classes of index terms. There are several ways to identify conceptually similar index terms,

e.g., human experts, thesaurus, term co-occurrence, etc. The co-occurrence of index terms

in all documents from D to determine a tolerance relation and tolerance classes is

employed. The co-occurrence of index terms is chosen for the following reasons (see also

[Van Rijsbergen 77]):

(i) It gives a meaningful interpretation in the context of information retrieval about the

dependency and the semantic relation of index terms;

(ii) It is relatively simple and computationally efficient. Note that the co-occurrence of

index terms is not transitive and cannot be used automatically to identify

equivalence classes. Denote by fD(WL, WM) the number of documents in D in which two

index terms WL and WM co-occur.

The uncertainty function I depending on a threshold θ is defined as

}{}),(|{)(ijiji tttfttI ∪≥= θθ D

It is clear that the function Iθ defined above satisfies the condition WL ∈ Iθ(WL) and WM ∈ Iθ(WL) if

and only if WL ∈ Iθ(WM) for any WL, WM ∈ T, and so Iθ is both reflexive and symmetric. This

function corresponds to a tolerance relation , ⊆ T × T that WL, WM if and only if WM ∈ Iθ(WL) and

Iθ(WL) is the tolerance class of index term WL.

The vague inclusion function ν is defined as

||

||
),(

X

YX
YX

∩=ν

This function is clearly monotonous with respect to the second argument. Based on this

function ν, the membership function µ for WL ∈ T, X ⊆ T can be defined as

��

|)(|
|)(|

)),((),(
i

i
ii tI

XtI
XtIXt

θ

θ
θνµ ∩==

Suppose that the universe T is closed during the retrieval process, i.e., the query Q consists

of only terms from T. Under this assumption we can consider all tolerance classes of index

terms as structural subsets, i.e., P(Iθ(WL)) = 1for any WL ∈ T. With these definitions we

obtained the tolerance space R = (T, I, ν, P) in which the lower approximation L(R, X) and

the upper approximation U(R, X) in R of any subset X ⊆ T can be defined as

}1)),((|{), =∈= XtItX ii θνTRL(

}0)),((|{),(>∈= XtItX ii θνTRU

2.3.2 Illustration of Tolerance Rough Set Model

We illustrate the notions of TRSM by using the JSAI database of articles and papers of the

Journal of the Japanese Society for Artificial Intelligence (JSAI) after its first ten years of

publication (1986-1995).

Table 2-2: Approximations of first 10 documents concerning “machine learning”

Index terms L(R, X) U(R, X)
d1 t1, t2, t3, t4, t5 t3, t4, t5 t1, t2, t3, t4, t5, t16, t26

d2 t6, t7, t8, t9 t6, t7, t8, t9 t6, t7, t8, t9

d3 t5, t1, t10, t11, t2 t5, t10, t11 t1, t2, t4, t5, t10, t11, t16, t26

d4 t6, t7, t12, t13, t14 t6, t7, t12, t13, t14 t6, t7, t12, t13, t14

d5 t2, t4, t15 t4, t15 t1, t2, t4, 5, t15, t26

d6 t1, t16, t17, t18, t19, t20 t16, t17, t18, t19, t20 t1, t2, t5, t16, t17, t18, t19, t20

d7 t21, t22, t23, t24, t25 t21, t22, t23, t24, t25 t21, t22, t23, t24, t25

d8 t2, t12, t26, t27 t12, t26, t27 t1, t2, t4, t5, t12, t26, t27

d9 t26, t2, t28 t26, t28 t1, t2, t4, t5, t26, t28

d10 t1, t16, t21, t26, t29, t30, t31 t16, t21, t26, t29, t30, t31 t1, t2, t5, t16, t21, t26, t29, t30, t31

��

The JSAI database consists of 802 documents. In total, there are 1823 keywords in the

database, and each document has in average 5 keywords. To illustrate the introduced

notions, let us consider a part of this database that consists of first 10 documents

concerning “machine learning” (two first columns of Table 2-2)

The keywords in this small universe are indexed by their order of appearance, i.e.,

t1 = “machine learning”,

t2 = “knowledge acquisition”

…

t30 = “neural networks”

t31 = “logic programming”

With θ = 2 by definition of tolerance class we have tolerance classes of index terms

I2(t1) = {t1, t2, t5, t16}

I2(t2) = {t1, t2, t4, t5, t26}

I2(t4) = {t2, t4}

I2(t5) = {t1, t2, t5}

I2(t6) = {t6, t7}

I2(t7) = {t6, t7}

I2(t16) = {t1, t16}

I2(t26) = {t1, t26}

and each of other index terms has the corresponding tolerance class consisting of only

itself, e.g., I2(t3) = {t3}. Table 2-2 shows these 10 documents, their lower and upper

approximations with θ = 2.

��

Chapter 3

The TRSM-based Hierarchical Clustering

Algorithm

Given a set D of M full text documents. The TRSM-based hierarchical clustering algorithm

for generating a hierarchical structure of D consists of two phases. The first phase

represents full documents by its surrogates in terms of TRSM (extracts and maps each

document into a set of terms, then enriches documents with their approximations by the

proposed tolerance rough set model). The second phase clusters documents by an

agglomerative clustering method using the document approximations.

3.1 Representing Documents by TRSM

3.1.1 TRSM weighted representation of documents

The tolerance rough set model aims to enrich the document representation in terms of

semantics relatedness by creating tolerance classes of terms in T and approximations of

documents or subsets of documents. In the first phase each document dj is mapped into a

list of terms ti each is assigned a weight that reflects its importance in the document.

Several techniques have been used to filter irrelevant terms (such as particles “an”, “the”,

etc.) and to identify terms that have the same stem (such as “driving” and “drive”). A

document is a sequence of words, and there are several ways to represent it in the smaller

��

size than the original like text summarization or the indexing by key terms. The vector

space model (VSM) that represents a document by a vector of terms with their weights

determined according to their importance in the document is commonly used [Manning 99].

The following notations are used: fdj(ti) denotes the number of occurrences of term ti in dj

(term frequency), fD(ti) denotes the number of documents in D that term ti occurs in

(document frequency). The weights wij of terms ti in document dj are first calculated by













∉

∈×+

=
),(0

)(

log)))(log(1(

ji

ji
i

id

ij

dtif

dtif
tf

M
tf

w

j

RU

D

as adopted from [Salton 88], [Baeza-Yates 99], [Manning 99]. The formula log M/fD(ti))

ORJ0 − ORJ fD(ti) gives full weight to words that occur in 1 document (ORJ0 − ORJ fD(ti) =

ORJ0 − ORJ 1 = log M). A word that occur in all documents would get zero weight (ORJ0

− ORJ fD(ti) = ORJ0 − ORJ0 ��� These weights are then normalized by vector length as

∑ ∈

←
jh dt hj

ij
ij

w

w
w

2)(

In fact, each document dj is represented by its r highest-weighted terms. A usual way is to

fix a default value r commonly for all documents (r = 15 in our experiments).

The term-weighting method is extended in the context of TRSM in order to define weights

for terms in the upper approximation U(R, dj) of dj. It ensures that each term in the upper

approximation of dj but not in dj has a weight smaller than the weight of any term in dj.

��
















∉

∈
+

×

∈×+

=
∈

), 0

\),
))(/log(1

))(/log(
min

)(

log)))(log(1(

ji

jji
i

i
hj

dt

ji
i

id

ij

dtif

ddtif
tfM

tfM
w

dtif
tf

M
tf

w
jh

j

U(R

U(R
D

D

D

The vector length normalization is then applied to the upper approximation U(R, dj) of dj.

Note that the normalization is done when considering a given set of index terms.

3.1.2 Illustration of Document Representation

The representation of documents is illustrated here by using the well-known test collection

MED in the field of medicine [Fox 90]. The collection consists of 1033 documents where

first two documents are shown in Table 3-1.

Table 3-1: The first two documents in MED

I 1
correlation between maternal and fetal plasma levels of glucose and free fatty acids .
correlation coefficients have been determined between the levels of glucose and ffa in
maternal and fetal plasma collected at delivery . significant correlations were obtained
between the maternal and fetal glucose levels and the maternal and fetal ffa levels . from
the size of the correlation coefficients and the slopes of regression lines it appears that
the fetal plasma glucose level at delivery is very strongly dependent upon the maternal
level whereas the fetal ffa level at delivery is only slightly dependent upon the maternal
level .
I 3
surfactant in fetal lamb tracheal fluid . lambs delivered by cesarean section with intact
fetal circulation have a fluid filling the trachea . analysis revealed that this fluid contained
material high in surface activity in lambs delivered near term, but less surface activity in
premature lambs . administration of 10 per cent oxygen to the ewe for 1 hour prior to
delivery did not alter the surfactant properties of the fetal tracheal fluid . two analyses of
the fetal tracheal fluid revealed it to contain 146 and 198 mg. of lipid per 100 ml., 30 to 40
per cent of which was phospholipid, part of the active component of surfactant . the
investigations reported here offer a model for further research into possible intrauterine
factors in the pathogenesis of hyaline membrane disease .

��

Table 3-2: Tolerance classes of first 10 terms in MED with highest frequencies (θ = 10)

1: 1,2,3,5,6,8,11,12,25,27,28,34,35,38,49,52,75,88,104,112,
2: 1,2,4,8,13,16,21,49,
3: 1,3,8,10,11,25,64,
4: 2,4,6,14,20,30,32,51,61,144,
5: 1,5,
6: 1,4,6,
7: 7,22,37,
8: 1,2,3,8,13,23,24,91,
9: 9,
10: 3,10,59,

Table 3-3: First 4 documents in MED represented by 15 pairs of term-weight (in order of

terms) and 15 pairs of term#frequency (in order of decreasing frequency)

MED_1 : 21-0.178679, 44-0.094230, 48-0.228942, 57-0.235588, 110-0.257558, 198-0.328567,
299-0.126899, 403-0.371317, 437-0.136658, 683-0.306114, 692-0.306114, 694-
0.306114, 1840-0.289422, 2546-0.189904, 4546-0.321535,

MED_2 : 37-0.132605, 54-0.174948, 58-0.200884, 125-0.195653, 130-0.198301, 131-
0.225484, 179-0.275673, 249-0.176005, 253-0.353217, 313-0.264077, 1660-
0.246788, 1776-0.347819, 1992-0.274171, 3005-0.274171, 3069-0.386412,

MED_3 : 96-0.195176, 159-0.124811, 170-0.214596, 234-0.133426, 251-0.348168,
307-0.235155, 343-0.142042, 403-0.347371, 457-0.149568, 736-0.349057, 841-
0.349057, 1054-0.174943, 1674-0.187086, 2229-0.436183, 2230-0.207844,

MED_4 : 9-0.158404, 46-0.139281, 200-0.170859, 695-0.298450, 725-0.220623, 791-
0.220623, 1068-0.232051, 1100-0.287621, 1301-0.307585, 1401-0.248158, 1823-
0.248158, 2461-0.341713, 3250-0.275692, 3675-0.341713, 4385-0.275692,

MED_1: 198#6,403#6,57#4,48#4,110#4,21#3,683#3,692#3,694#3,1840#2,4546#2,
2546#1,437#1,299#1,44#1,

MED_2: 253#11,179#6,131#4,313#4,3069#4,1776#4,58#4,130#3,54#3,125#3,1992#2,
37#2,1660#2,3005#2,249#2,

MED_3: 251#5,403#4,2229#3,736#3,841#3,170#2,307#2,96#2,159#1,1674#1,343#1,
457#1,234#1,1054#1,2230#1,

MED_4: 2461#3,3675#3,1301#3,1100#3,695#4,9#4,791#2,1401#2,1068#2,46#2,3250#2,
725#2,200#2,4385#2,1823#2,

��

Table 3-4: Upper (first half) and lower (second half) approximations of the first 4

documents in MED with θ = 10.

MED_1: 4546,2546,1840,694,692,683,437,403,299,222,198,110,81,57,48,44,24,21,9,2,
MED_2: 3069,3005,1992,1776,1660,418,313,294,253,249,179,131,130,129,125,100,58,

54,37,22,19,17,14,
MED_3: 2230,2229,1674,1054,841,736,457,403,343,307,251,234,170,159,96,
MED_4: 4385,3675,3250,2461,1823,1401,1301,1100,1068,791,725,695,200,182, 134, 86,

82,73,61,51,46,41,21,18,9,4,

MED_1: 198,403,48,683,692,694,1840,4546,2546,437,299,
MED_2: 253,179,313,3069,1776,130,54,125,1992,1660,3005,
MED_3: 251,403,2229,736,841,170,307,159,1674,343,457,234,1054,2230,
0('B�� 2461,3675,1301,1100,695,791,1401,1068,3250,725,200,4385,1823�

Table 3-2 shows the tolerance classes with θ = 10 for first 10 terms. It is easy to verify

partially the reflexive and symmetric of the tolerance classes for these first 10 terms by

their elements belonging to first 10 terms. Table 3-3 illustrates first 4 documents

represented by 15 pairs of term-weight and 15 pairs of term#frequency, and Table 3-4

illustrates the lower and upper approximations of first 4 documents with θ = 10.

3.2 A TRSM-based Hierarchical Agglomerative

Clustering Method (HACM)

3.2.1 The TRSM-based HACM Algorithm

There are two approaches for creating a hierarchy: agglomerative (bottom-up) or divisive

(top-down). The former begins from an un-clustered data set with N-1 pair-wise joins. The

��

latter begins with all objects in a single cluster and progresses through N-1 divisions of

some cluster into a smaller cluster. The divisive methods are less commonly used and few

algorithms are available, particularly in document clustering because it is difficult to

decide how to divide the nodes that are close to the root. Therefore, the agglomerative

method is employed for the TRSM approach for documents.

Figure 3-1 describes the general TRSM-based hierarchical clustering algorithm that is an

extension of the hierarchical agglomerative clustering algorithm. The main point here is at

each merging step where upper approximations of documents are used in finding two

closest clusters to merge by group-average link, which allows to use cluster representatives

to calculate the similarity between clusters instead of averaging similarities of all document

pairs included in clusters with average complexity O(N2). In such a case, the complexity of

computing average similarity would be O(N2).

3. and 2 steps return to remains,cluster one than more If 4.

}{}),{\(let and cluster new a Form 3.

)),(),,((maxarg),(C means that tives,representa

 their of ionsapproximatupper of in terms clusterssimilar most woIdentify t 2.

. },..., ,{ and

}{member oneth cluster wi a asin document each consider Initially, 1.

of subsets of structure alHierarchic :Output

22: measure similarity a

},...,{ documents of collection a :Input

2121

),(
2n1

21

21

knnnnk

vu
CC

n

M

jjj

k

M

CCCCCC

RRC

CCC

dCd

C

d,ddM

vu

∪=∪=

=

=

=

ℜ→×

=

×∈

HH

RURUS

 H

 D

D H

S

D

HH

DD

Figure 3-1: The general TRSM-based hierarchical agglomerative clustering algorithm

Two other issues, which have an important influence on the clustering quality, are to be

considered:

��

(i) How to define the representatives of clusters; and

(ii) How to determine the similarity between documents and the similarity between

clusters.

3.2.2 Representatives of Clusters

The representative of each cluster is a set of terms that characterizes documents of this

cluster. Representatives of clusters play an important role in improving the usage of

clustering results. They allow us to distinguish quickly clusters as well to calculate the

distance between them. As the representatives of clusters are themselves sets of terms, they

can be represented as documents that means by terms and their weights.

The TRSM hierarchical clustering algorithm constructs a polythetic representative Rk for

each cluster Ck, k = 1, …, K. In fact, Rk is a set of index terms such that:

(i) Each document dj ∈ Ck has some or many terms in common with Rk

(ii) Terms in Rk are possessed by a large number of dj ∈ Ck

(iii) No term in Rk must be possessed by every document in Ck.

It is known that the Bayesian decision rule with minimum error rate will assign a document

dj in the cluster Ck if

khCPCdPCPCdP hhjkkj ≠∀>),()|()()|(

With the assumption that terms occur independently in documents, we have

)|()...|()|()|(21 kjpkjkjkj CtPCtPCtPCdP =

Denote by fCk(ti) the number of documents in Ck that contain ti, we have the probability

P(ti|Ck) = fCk(ti)/| Ck |. The last equation and heuristics of the polythetic properties of the

cluster representatives lead us to adopt rules to form the cluster representatives:

��

(i) Initially, Rk = ∅ ,

(ii) For all dj ∈ Ck and for all ti ∈ dj, if fCk (ti) /|Ck| > σ then Rk = RkKti ,

(iii) If dj ∈ Rk and dj ∩ Rk = ∅ then Rk = Rk ∪ argmax dj∈ Ck wij

In case of group-average clustering, σ could be 0 to ensure the use of cluster

representatives when calculating the cluster similarity. The weights of terms ti in Rk is first

averaged by of weights of these terms in all documents belonging to Ck, that means

|}:{|/)(jij
Cd

ijik dtdww
kj

∈= ∑
∈

These weights are then normalized by length of the representative Rk.

3.2.3 Distances between Documents

The distance is one of most important issues in clustering. In case items have numeric

values, it is easy to calculate the distance between two items. But text cannot be calculated

like numeric items. Several coefficients are used as substitutions. Famous and common

coefficients are Dice, Jaccard and Cosine [Fakes, 92], [Boyce 94]. All of them employ the

number of terms commonly appear in both documents. Following are definitions of those

coefficients between a pair of documents dj1 and dj2.

Dice coefficient:

∑ ∑
∑
= =

=

+

××
=

N

k

N

k kjkj

N

k kjkj
jjD

ww

ww
ddS

1 1

2
2

2
1

1 21
21

)(2
),(

Jaccard coefficient:

∑ ∑ ∑
∑

= = =

=

×−+

×
=

N

k

N

k

N

k kjkjkjkj

N

k kjkj

jjJ
wwww

ww
ddS

1 1 1 21
2

2
2

1

1 21
21

)(

)(
),(

��

Cosine coefficient:

∑ ∑
∑

= =

=

×

×
=

N

k k kjkj

N

k kjkj

jjC

ww

ww
ddS

1

2

1

2
2

2
1

1 21

21

)(
),(

The Dice coefficient normalizes for length by dividing by the total number of non-zero

entries and multiplying by 2 can give a measure ranges from 0.0 to 1.0 with 1.0 indicating

identical vectors. The Jaccard coefficient penalizes a small number of shared entries (as a

proportion of all non-zero entries) more than the Dice coefficient does. The efficient

becomes lower in low-overlap cases. The cosine coefficient is identical to the Dice

coefficient for vectors with the same number of non-zero entries, but it penalizes less in

cases where the number of non-zero entries is very different. Those coefficient values

show how much two documents are similar and it is clear that zero similarity occurs when

there is no common word in both documents even if they have terms of similar meaning. In

this algorithm, approximations, especially upper approximations, of are used for the

distance calculation for avoiding zero similarity documents instead of original terms

included in documents. Further, the weights are employed for describing those coefficients

in order to reflect the importance of terms more precisely.

We adopt the similarity S(dj1, dj2) between two documents dj1 and dj2 that is defined by

cosine coefficient, and the distance D(dj1, dj2) is defined as :

D(dj1, dj2) = 1 ÙS(dj1, dj2)

3.2.4 Distances between Clusters

There are several ways to measure the distance between clusters. The most commonly used

measures are single-link, complete-link, group-average-link and Ward’s method [Fakes 92],

[Manning 99].

��

Single-link is the simplest way with the smallest computational complexity among all, but

the calculated value may not reflect the substantial relation between two clusters because it

employ the smallest distance of the closest documents among two clusters. In case of the

complete-link, the largest distance pair is used and computational complexity is largest

among all. The rest two methods employ average distance of paired documents included in

two clusters. Commonly used ways are the group-average link or Wards’ method.

Concerning with computational complexity, single-link is most easy.

da1

da2

dan

db1

dbm

 Cluster a Cluster b
mn

ddS

CCS

n

i

m

j
bjaiD

baC ×
=

∑∑
= =1 1

),(

),(

Figure 3-2: Illustration of Group-average link

3.3 Illustration of Hierarchical Clustering Results

The TRSM-based hierarchical clustering algorithm yields a list of generated clusters each

of them consists of information about its father and sons, documents covered by the cluster,

its dispersion (average of distances between all pairs of documents within the cluster), its

representative. Below are some cluster representatives produced by the TRSM hierarchical

clustering algorithm in form of a set of term-weight pairs.

��

Figure 3-3 shows an example cluster with parameters: θ = 6, distance calculation with

upper approximations, and γ = 0.10. Here a cluster [CLS1035] consists of a cluster

[CLS1033] and a cluster [MED_738] whose representatives are described by a set of

hyphenated pairs of a term code and its weight. Figure 3-4 is the case of θ = 15. The cluster

[CLS1035] consists of a cluster [MED_436] and a cluster [MED_424] with distance

[0.44212]. These examples show that the difference of parameterðmakes the difference

of not only cluster representatives but also the distance between clusters.

��

[0.64286] CLS1035=CLS1033+MED_738 kws:25+15-> 0;35;48 lvl 2

CLS1035: average distance = 0.187997 (3 docs)

------- clusters to be merged ---

MED_738 : 9-0.121288, 126-0.241415, 244-0.294350, 260-0.300098, 458-0.214096, 607-0.322072, 629-

0.228520, 909-0.335554, 1111-0.250418, 1112-0.147901, 1697-0.267799, 1922-0.267799, 3369-0.175716,

3613-0.297513, 4440-0.297513,

CLS1033: 109-0.124013, 123-0.125626, 240-0.140074, 244-0.237165, 250-0.237165, 291-0.145806, 303-

0.145806, 402-0.152821, 431-0.157019, 458-0.157019, 547-0.161866, 607-0.283768, 629-0.283768, 785-

0.174614, 909-0.295647, 957-0.183658, 1020-0.183658, 1185-0.183658, 1374-0.196406, 1945-0.196406,

2691-0.218198, 3615-0.218198, 3794-0.218198, 3875-0.218198, 4306-0.218198,

------- representatives of the new cluster ---

REP CLS 1035: 9-0.071658, 109-0.099901, 123-0.101201, 126-0.101201, 240-0.112839, 244-0.236805, 250-

0.191053, 260-0.115043, 291-0.117457, 303-0.117457, 402-0.123108, 431-0.126490, 458-0.214166, 547-

0.130394, 607-0.283338, 629-0.283338, 785-0.140663, 909-0.295198, 957-0.147950, 1020-0.147950,

1111-0.147950, 1112-0.147950, 1185-0.147950, 1374-0.158219, 1697-0.158219, 1922-0.158219, 1945-

0.158219, 2691-0.175774, 3369-0.175774, 3613-0.175774, 3615-0.175774, 3794-0.175774, 3875-

0.175774, 4306-0.175774, 4440-0.175774,

------- upper approximation of the new cluster ---

UPPER REP CLS 1035: 1-0.014457, 4-0.026338, 9-0.067372, 18-0.055419, 21-0.056598, 32-0.066503, 41-

0.076003, 51-0.085810, 61-0.095004, 73-0.102312, 82-0.110838, 86-0.110838, 109-0.093926, 123-

0.095148, 126-0.095148, 134-0.140006, 182-0.166257, 240-0.106090, 244-0.222642, 250-0.179626, 260-

0.108162, 291-0.110431, 303-0.110431, 402-0.115745, 431-0.118924, 458-0.201357, 547-0.122595, 607-

0.266391, 629-0.266391, 785-0.132250, 909-0.277542, 957-0.139100, 1020-0.139100, 1111-0.139100,

1112-0.139100, 1185-0.139100, 1374-0.148755, 1697-0.148755, 1922-0.148755, 1945-0.148755, 2691-

0.165260, 3369-0.165260, 3613-0.165260, 3615-0.165260, 3794-0.165260, 3875-0.165260, 4306-

0.165260, 4440-0.165260,

Figure 3-3: Cluster representatives with parameter ð= 6

��

[0.44212] CLS1035=MED_436+MED_424 kws:15+15-> 0;22;23 lvl 1

CLS1035: average distance = 0.123319 (2 docs)

-------- clusters to be merged ---

MED_436: 4-0.211185, 9-0.167962, 21-0.088018, 29-0.091972, 51-0.210091, 61-0.269007,

182-0.312394, 395-0.383863, 537-0.448479, 640-0.255316, 752-0.157106, 1170-0.279782, 1297-

0.176713, 2947-0.332400, 3719-0.196321,

MED_424: 4-0.192811, 9-0.151590, 51-0.189612, 61-0.195257, 126-0.214084,

182-0.281050, 240-0.238705, 257-0.301647, 266-0.243367, 310-0.254118, 395-0.260429, 537-

0.341899, 1170-0.312979, 3074-0.219615, 4021-0.371840,

------- representatives of the new cluster ---

REP CLS 1035: 4-0.138383, 9-0.167676, 21-0.108911, 29-0.113803, 51-0.209734, 61-0.215978, 126-0.139860,

182-0.250812, 240-0.155944, 257-0.158990, 266-0.158990, 310-0.166014, 395-0.288066, 537-

0.305115, 640-0.186587, 752-0.194398, 1170-0.346193, 1297-0.218659, 2947-0.242921, 3074-

0.242921, 3719-0.242921, 4021-0.242921,

------- upper approximation of the new cluster ---

UPPER REP CLS 1035: 4-0.138093, 9-0.167325, 20-0.064689, 21-0.108683, 29-0.113565,

 51-0.209295, 61-0.215526, 126-0.139567, 182-0.250287, 240-0.155618, 257-0.158657, 266-

0.158657, 310-0.165666, 395-0.287462, 537-0.304476, 640-0.186196, 752-0.193990,1170-

0.345468, 1297-0.218201, 2947-0.242412, 3074-0.242412, 3719-0.242412, 4021-0.242412,

Figure 3-4: Cluster representatives with parameter ð= 15

��

Chapter 4

Implementation

The algorithm described in chapter 3 is implemented and tested with six databases (see

Section 5.1). The implementation of this clustering algorithm consists of two phases: one is

the input preparation phase for the clustering with extracting the key terms of documents,

generating tolerance classes of terms and approximations of documents, and the other is

the clustering phase with preprocessed documents and related information.

4.1 Determination of the Rough Tolerance Space

As defined in Chapter 2, rough tolerance classes of terms are generated from the set of

terms T using the term co-occurrence threshold θ. If the collection is made of the

documents with full test, If the collection D consists of documents in their full text form,

the process of keyword extraction is necessary before generating tolerance classes of terms

and approximations of documents. Then, if the number of terms included in a document is

somehow large, reducing them, as in most other methods, is significant for making rough

tolerance spaces.

Thus preparation phase of generating rough tolerance spaces consists of two steps. The

first step extracts keywords from the original text and calculates the importance of each

term in a document. The second step provides inputs for the clustering procedure by

��

generating tolerance classes of terms and approximations of documents.

Figure 4-1 outlines the process flow of the preparation phase. It consists of the tasks:

I-O direction

GRFXPHQW
GDWDEDVH
�IXOO WH[W� .H\ZRUG H[WUDFWLRQ DQG

IUHTXHQF\ FRXQWLQJ

'RFXPHQW
GDWDEDVH
� WXQHG
NH\ZRUGV�

.H\ZRUGV PRGLILFDWLRQ
� UHGXFH VL]H RI NH\ZRUGV�

7ROHUDQFH FODVV *HQHUDWLRQ
7ROHUDQFH
&ODVVHV
RI WHUPV

$SSUR[LPDWLRQV

*HQHUDWLRQ

8SSHU
$SSUR[LP�
DWLRQV
RI

GRFXPHQWV

/RZHU
$SSUR[LP�
DWLRQV
RI

GRFXPHQWV

GRFXPHQW
GDWDEDVH
�IXOO WH[W�

'RFXPHQW
GDWDEDVH
� DOO
NH\ZRUGV�

+LHUDUFKLFDO DJJORPHUDWLYH FOXVWHULQJ

3UHSDUDWLRQ RI ,QSXWV IRU
FOXHWULQJ

.H\ZRUG
IUHTXHQF\

TXHULHV

Figure 4-1: I-O flow of the preparation phase

��

1. Keyword extraction and frequency counting: inputs all documents of the specified

database, counts frequencies of appeared terms and makes a new database of

documents with sets of keywords and their frequencies.

2. Keywords modification: makes a database of documents with the specified number of

keywords and their frequencies according to their fD(ti), fdj(ti) values.

3. Tolerance class generation: generates a database of tolerance classes for terms

according to the specified threshold of co-occurrence.

4. Approximations generation: generates an upper approximation database and a lower

approximation database of documents according to the specified threshold of co-

occurrence.

Since most of the processes concern with characters or strings, the programs are coded in

Perl.

4.2 Clustering

Inputs for the clustering phase are a document database with cut-up keywords and their

frequencies, a database of tolerance classes of terms, a database of keyword frequency and

approximations of documents. According to the HACM algorithm described in Chapter 3

each document is regarded as a cluster on a leaf node, then distances between each paired

in all combination of active clusters (an active cluster means the cluster which has not been

merged into the more higher level cluster) are calculated using their keywords or

approximations to find the most similar pair to merge next. There are three choices to

calculate the distance between clusters: to compare document/cluster representatives, lower

approximations and upper approximations of clusters. The program provides those three.

In case of using original sets of keywords of documents, it is not different from the

clustering by the basic vector space model.

��

After finding the most similar pair of clusters, they are merged into a new level of cluster.

When creating a new node of the cluster, its representatives are calculated from

representatives of merged clusters. The term weights of the new representatives are re-

normalized. And weights of upper approximation are calculated as described chapter 3.

Then distances between the new cluster and others are calculated. The cycle of this

distance calculation, cluster merge and representatives calculation is repeated until all

clusters are merged into one cluster. This part is implemented in language C. Data structure

for the algorithm is shown in Figure 4-2. The fields for keywords and upper/lower

approximations are allocated for pointers kw, up, low dynamically when the program runs

because their occurrences depend on calculations. It is same as fields for term frequencies

(frq) and term weightings of keywords and upper approximation (weight, weight_up). Each

cluster points the addresses of its children nodes with pointers named left and right. The

search actions for queries pass along with those pointers from the root node to the target

nodes.

typedef struct db_list { /* Database */
 char name[12]; /* Name of documents like <a10_10_10> */

/* List of Keywords */
 int *kw; /*[NORMAL_CLASS_SIZE];*/
 int size_kw; /* size of keywords */

/* list of lower approximation */
 int *low; /*[NORMAL_CLASS_SIZE];*/
 int size_low; /* size of lower approximation */

/* list of upper approximation */
 int *up; /*[NORMAL_CLASS_SIZE];*/
 int size_up; /* size of upper approximation */
 short *frq; /* Frequency of terms in the doc */
 float *weight; /* weight of terms in the doc */
 float *weight_up; /* weight of upper-terms in the doc */
 int level;
 double dis; /* averaged distance representatives & documents*/
 struct db_list *next;
 struct db_list *left, *right;
} DB_LIST;

Figure 4-2: Data structure for documents, cluster and query

Figure 4-3 illustrates the outline of procedures for constructing the hierarchy of documents

and a series of procedures for having precision and recall for queries.

��

Read
keyword frequency file

Read
 tolerance classes of terms

Read document database
(keywords & frequencies)

While:
 number of cluster > 1

Calculate distances
between the new cluster
and other active clusters

Calculate distances between
all paired documents

Modify each query into
representative form

Generate approximations of the
new cluster’s representative

Calculate and normalize
keyword weights
of the new cluster

While:
 Queries exist

Merge two clusters of minimum
distance into a new cluster

Merge representative
 of two merged clusters

 into new representatives

Generate approximations of the
query

Find cluster for search
(distance >ë)

Retrieve documents from
obtained clusters

Calculate precision and recall

read query and relevant
documents representative form

Calculate and normalize
 term weights of

upper approximation

VWDUW

HQG

Figure 4-3: Procedure outline of TRSM-based hierarchical agglomerative clustering

��

4.3 Document Retrieval

In order to evaluate effectiveness of this algorithm, the queries processing for documents

retrieval and calculation of precision and recall are also implemented in the clustering

program. In this part, each given query with a set of keywords is transformed into the form

of weighted terms as in representation of documents. After deciding the appropriate

clusters using the distance between the query and cluster representatives, documents are

retrieved and compared with relevant documents predefined for the query. The retrieving

strategy through the hierarchy consists of the following steps.

1. From the root nodes of the hierarchy, the distances between the query and cluster

representatives are calculated by top-down direction to find the appropriate clusters as

target clusters to search. The condition of an appropriate cluster is that the distance

between the query and representatives of the clusters is less than the threshold ë.

Once to have a cluster, lower levels of it are not necessary to be checked any more.

2. After having the target clusters, all documents included in the clusters are checked their

distances from the query and similar documents are retrieved.

3. Compare the retrieved documents and relevant documents, then we have the values of

precision and recall.

The evaluation result will be discussed in next chapter.

��

Chapter 5

Evaluation and Validation

Evaluation and validation are important issues in clustering [Gordon 96]. A clustering

method is often evaluated in terms of its performance in doing specified tasks. Cluster

validation procedures aim to verify whether the data structure produced by the clustering

method can be used to provide statistical evidence of the phenomenon under study [Willet

88], [Fakes 92], [Baeza-Yates 99].

In this chapter, the test collections used in experiments are presented first, then the results

of typical kinds of evaluation and validation of the method follows. The evaluation focuses

on the efficiency and effectiveness in information retrieval with and without TRSM-based

clustering. The validation focuses on the tendency and stability of the TRSM-based

clustering results.

5.1 Test Collections

The TRSM-based hierarchical clustering method and its implemented programs have been

tested with 6 document collections, including JSAI [Ho 98], CACM, CISI, MED, CRAN

[Fox 90], and Reuters [Yang 99]. All of collections used here are English. Table 5.1 shows

information of these test collections.

The JSAI collection contains papers and articles of the Journal of Japanese Society for

Artificial Intelligence during 1986-1995. Each document in this collection consists of not

��

only author name, paper title, published year, volume, number and pages, but also a set of

keywords provided by the author. No need of pre-processing (first phase) for JSAI, but also

there are no weights for keywords. It is a special kind of text databases in information

retrieval.

Table 5-1: Test collections (“*” stands for the number of categories)

Name of
collection

Subject of the
collection

Number of
documents

Number
of terms

Number
of queries

Number of
relevant doc.

JSAI Artificial Intelligence 802 1813 20 32
CACM Computer Science 3200 6520 64 15
CISI Library 1460 4414 76 40
MED Medicine 1033 4841 30 23
CRAN Aeronautics 1398 3182 225 8
Reuters v3 Newswire stories 9610 15550 93 (*)
Reuters v4 Newswire stories 7789 24933 93 (*)

The CACM, CISI, MED and CRAN are well-known test collections in the field of

information retrieval. Each of them is associated with a set of queries and for each query a

set of relevant documents from the collection [Fox 90].

The Reuters is a well-known test collection used in text categorization. It consists of

training and testing documents that are labeled documents (supervised data). There are

different versions of the Reuters corpus. It is employed here the Reuters version 3

(provided by the research group at Carnegie Melon University) and version 4 (provided by

the research group at Xerox PARC) [Yang 99]. However, as clustering techniques aim to

find “natural” clusters from unsupervised data, we will mainly focus on test collection for

information retrieval.

All of these test collections require the preprocessing. As mentioned previously, in each

collection and each document, there are many terms that have same meaning, or the same

stem. They are modified to merge together as the same terms during the preprocessing

phase.

��

The clustering quality for each test collection depends on parameter θ in TRSM and on σ

in the clustering algorithm. It is important to note that the higher value of θ the large upper

approximation and the smaller lower approximation of a set X. Our experiments suggested

that when the average number of terms in documents is high and/or the size of the

document collection is large, high values of θ are often appropriate and vice-versa. In

Table 5-3 of section 5-2 we can see how retrieval effectiveness relates to different values of

θ. To avoid biased experiments when comparing algorithms, we take the common default

values θ = 15 and σ = 0.1 for all test collections.

5.2 Evaluation

5.2.1 Evaluation of Cluster-based Retrieval Effectiveness

In case of information retrieval and in text processing in general, the performance of a

system is often evaluated in terms of efficiency and effectiveness, the two measures how

well the system satisfies its user.

Efficiency indicates time or cost until having results for the request. Effectiveness is an

indication of preciseness and completeness of the answer for the user. The preciseness and

completeness are evaluated by using measures of recall and precision.

Recall is the fraction of the relevant documents that has been retrieved. Precision is the

fraction of the retrieved documents that is relevant. Recall and precision are the most basic

measures for evaluation in information retrieval and text processing [Baeza-Yates, 99].

Assume that a set of queries got documents from a collection. The set of documents

retrieved for the queries contains both of relevant to the queries and non-relevant to the

queries. Also the rest set of documents not retrieved contains both. Thus the whole set of

documents in a collection can be divided into four classes with each numbers as w, x, y and

z in Figure 5-1.

��

Number of retrieved Number of not-retrieved
Number of relevant w x
Number of non-relevant y z

Figure 5-1: Class matrix of documents

According to this notion in [ü×, 99], precision and recall can be expressed as follows:

yw

w
P

xw

w
R

+
=

+
=

 ecision Pr

 Recall

Both precision and recall have the value range of [0,1]. It is a usual trend that when

precision is high, recall may be low and vice-versa. For example, if all documents in a set

are retrieved, because it means all documents relevant to the query are included, the recall

becomes maximum value 1.

When using a clustered database, the efficiency should be better than when using the

whole database because the target space for a certain aim is able to be small, while the

preparation for clustered database requires time. It is also predicted that even if efficiency

is well, effectiveness is not so bad or increase when the clustering is well done [Iwayama

95]. Because, by nature, clustering is the kind of method which groups objects with similar

characteristics and in case of finding appropriate clusters for the query.

Table 5-2 shows a comparison on precision and recall of the TRSM-based full retrieval and

the VSM-based full retrieval (Vector Space Model) where the TRSM-based retrieval is

done with values 30, 25, 20, 15, 10, 8, 6, 4, and 2 of θ. After ranking all documents

according to the query, precision and recall are evaluated on the set of retrieved documents

determined by the default cutoff value as the average number of relevant documents for

queries in each test collection.

��

Table 5-2: Precision and recall of full retrieval based on TRSM and VSM

JSAI CACM CISI CRAN MED
ð P R P R P R R R P R
30 0.934 0.560 0.146 0.231 0.147 0.192 0.265 0.306 0.416 0.426

25 0.934 0.560 0.158 0.242 0.151 0.194 0.266 0.310 0.416 0.426

20 0.934 0.560 0.159 0.243 0.150 0.194 0.268 0.311 0.416 0.426

15 0.934 0.560 0.160 0.241 0.155 0.204 0.257 0.301 0.415 0.421
10 0.934 0.560 0.141 0.221 0.142 0.178 0.255 0.302 0.414 0.387

8 0.934 0.560 0.151 0.254 0.138 0.172 0.242 0.291 0.393 0.386

6 0.945 0.550 .0141 0.223 0.146 0.178 0.233 0.271 0.376 0.365

4 0.904 0.509 0.137 0.182 0.152 0.145 0.223 0.241 0.356 0.383

2 0.803 0.522 0.111 0.097 0.125 0.057 0.247 0.210 0.360 0.193

VSM 0.934 0.560 0.147 0.232 0.139 0.184 0.258 0.295 0.429 0.444

Figure 5-2: Precision and recall of TRSM (ð=15) and VSM

From Table 5-2 we see that precision and recall for JSAI are high, and they are higher and

almost stable for the other collections with θ ≥ 15. With these values of θ the TRSM-based

§É¼ºÀÊÀÆÅ ¸Å» ©¼º Ã̧Ã Æ½ «©ª¤ �T���� ¸Å» ­ª¤

�

���

���

���

���

�

¡ª� ���¤ � ª �©�¥ ¤��

Ë¼ÊË ºÆÃÃ¼ºËÀÆÅÊ

§
É¼
º
ÀÊ
ÀÆ
Å
�
©
¼
º
¸
ÃÃ

§É¼ºÀÊÀÆÅT���

§É¼ºÀÊÀÆÅ ­ª¤

É¼º̧ ÃÃT���

É¼º̧ ÃÃ ­ª¤

��

retrieval effectiveness is comparable or somehow higher than that of original VSM. Figure

5-2 gives a graphical view between these two methods with θ = 15 for TRSM-based

method.

It was carried out retrieval experiments on all queries of test collections. Each query in the

test collection is matched against the hierarchy from the root in the top-down direction in

order to determine a subset D’ ⊆ D. The subset D’ is the union of all clusters each has the

similarity between the query and its representative greater than a threshold γ. The cluster-

based retrieval is carried out in D’.

Table 5-3 reports the average of precision and recall for all queries in test collections using

the TRSM cluster-based retrieval with various proportion (%) of D’ to D, and full retrieval

in the whole D (accordingly, values of γ. The results show that in several cases (JSAI, CISI,

and MED) just searching a small part of D, says 1.2% or 1.8%, TRSM cluster-based search

reaches precision higher than that of full search.

Also, the TRSM cluster-based search achieved recall higher than that of full retrieval on

most collections when |D’| is about 17% of |D|. More importantly, the TRSM cluster-based

search offers precision higher than that of full retrieval in many collections. Also, the

TRSM cluster-based retrieval achieved recall and precision nearly as that of full search just

after searching a small portion of D.

Table 5-4 reports the effectiveness of TRSM cluster-based retrieval (TRSM) versus VSM

cluster-based retrieval (VSM) when |D’| is 2.9%, 8.0%, and 16.9% of |D|. It shows that

TRSM cluster-based retrieval often achieves precision higher than that of VSM cluster-

based retrieval thought its recall is somehow lower.

These results suggest that TRSM can be used to improve precision of information retrieval,

and so in a certain tasks of text mining.

��

Table 5-3: Precision and recall of the TRSM cluster-based and full search

1.2% (0.18) 1.8% (0.16) 2.9% (0.14) 8.0% (0.11) 16.9% (0.09) Full searchCollec
tion P R P R P R P R P R P R
JSAI 0.950 0.472 0.948 0.485 0.949 0.502 0.939 0.541 0.938 0.559 0.934 0.560

CACM 0.048 0.037 0.096 0.068 0.100 0.084 0.116 0.194 0.105 0.262 0.160 0.241

CISI 0.181 0.043 0.180 0.061 0.180 0.089 0.130 0.183 0.112 0.261 0.155 0.204

CRAN 0.121 0.127 0.140 0.149 0.139 0.173 0.139 0.214 0.112 0.245 0.257 0.301

MED 0.477 0.288 0.530 0.324 0.565 0.375 0.518 0.460 0.422 0.531 0.415 0.421

Table 5-4: Precision and recall of the TRSM and VSM cluster-based retrieval

2.9% of D (ë= 0.14) 8.0% of D (ë= 0.11) 16.9% of D (ë= 0.09)
TRSM VSM TRSM VSM TRSM VSM

P R P R P R P R P R P R

JSAI 0.949 0.502 0.947 0.501 0.939 0.541 0.947 0.518 0.938 0.559 0.939 0.549

CACM 0.100 0.084 0.075 0.479 0.116 0.1994 0.075 0.479 0.105 0.262 0.075 0.479

CISI 0.180 0.089 0.099 0.366 0.130 0.183 0.099 0.366 0.112 0.261 0.099 0.366

CRAN 0.139 0.173 0.066 0.519 0.139 0.214 0.066 0.519 0.112 0.245 0.066 0.519

MED 0.565 0.375 0.520 0.430 0.518 0.460 0.458 0.521 0.422 0.531 0.375 0.585

5.2.2 Evaluation of TRSM Hierarchical Clustering Efficiency

From a given collection of documents we need to prepare all the files before running the

TRSM hierarchical clustering algorithm. It consists of making an index term file, term

encoding, document-term and term-document (inverted) relation files as indexing files,

files of term co-occurrences and tolerance classes for each value of θ. A direct

implementation of these procedures requires the time complexity of O(M+N2), but we

implemented the system by applying a sorting algorithm (quick-sort) of O(NlogN) to make

the indexing files, then created the TRSM related files for the term co-occurrence,

tolerance classes, upper and lower approximations files in the time of O(M+N).

All the experiments reported in this paper were performed on a conventional workstation

��

GP7000S Model 45 (Fujitsu, 250 MHz Ultra SPARC-II, 512 MB). Note that the search for

clusters requires in average log M, and the search will be done with a subset of documents

in the clusters. However, the time complexity of the clustering is of O(M2+N), and the

space is of O(M2+N), because of using an M×M-matrix to store the similarities/distances

between clusters in the hierarchy. Concerned with generating the TRSM files for the

JSAI database, the direct implementation with O(M+N2), required up to 6 minutes [14

hours for CRAN], but the quicksort-based implementation with O(NlogN) took about 3

seconds (JSAI) [23 minutes for CRAN] for making the files by running a package of shell

scripts on UNIX.

Table 5-5 summaries the time for generating the TRSM files, clustering, full search,

cluster-based search, and the required memory size for each collection. The clustering time

included the time for reading the TRSM files into the RAM memory. Thanks to short time

for preparing the database files as well as shorter time for cluster-based search in

comparing with the full search, the proposed TRSM-based method is applicable to large

document collections�

Table 5-5: Performance Measurements of the TRSM Cluster-based Retrieval

Collection Size
(MB)

Number of
queries

TRSM
Time

Clustering
Time

Full Search
(sec)

Cluster
Search (sec)

Memory

(MB)
-6$, 0.1 20 14.9s 14.9s 0.8 0.1 8
CACM 2.2 64 22m2.8s 26m46.8s 13.3 1.2 201
CISI 2.2 76 13m16.8s 4m49.8s 40.1 3.4 84
CRAN 2.6 225 23m9.9s 3m6.9s 20.5 1.8 71
MED 1.1 30 40.1s 1m30.8s 2.5 0.3 25
Reuters 5.0 n/a 16m42.3s 173m n/a n/a 820

��

5.2.3 Text Categorization

For evaluating how well the TRSM clustering work for text categorization, the Reuters

collection is used, because it is the most commonly used collection for text categorization

evaluation in the literature [Yang 99]. In case of category ranking with machine learning

algorithms, the measures for evaluation are precision and recall like in document retrieval.

The definitions of those measures here are:

 recall = categories found and correct / total categories correct

 precision = categories found and correct / total categories correct

where “categories found” means categories above the decision threshold.

However, in case of the proposed TRSM without learning algorithm, as a somehow

deterministic approach for the dataset, it is not able to say whether clusters located at

certain levels reflect their corresponding categories. Therefore, firstly, the relationship

between clusters and categories are checked. An assumption is applied that, in the

hierarchy of documents, the nodes are regarded as homogeneous when there is a large

proportion (regarding some threshold δ, for example 0.5) of documents belonging to one

category and the upper nodes do not satisfy the condition. An additional condition is the

averaged distance between the representatives of each cluster and included documents

should be has less than some other threshold. The clustering results reflecting the

assumption made clusters labeled by categories as shown in Table 5-6.

Figure 5-3 illustrates the numbers of clusters which includes 1, 2-5, 6-10, …, and more

than 1000 documents for each condition. According to the given condition, more than half

numbers of clusters consist of only one document, and other clusters include less than 21

documents close to the averages, but categories representing them are sometimes same so

that documents belong to other categories are dispersed into different clusters.

��

Table 5-6: The homogeneity of generated clusters

Number of cluster
(averaged distance)

δ = 0.5 δ = 0.4 δ = 0.3
cluster category cluster category cluster category

Reuters version 3 1273 62(17) 493 46(26) 294 37(30)

Reuters version 4 478 44(15) 936 57(18) 801 51(38)

Figure 5-3: Documents distribution of categorized clusters

º Ȩ̈¼¾ÆÉÀÑ¼» ºÃÌÊË¼ÉÊ

�

���

���

���

���

���

���

���

���

���

� ���� ������ ����

ÅÌÄ¹¼É Æ½ »ÆºÌÄ¼ÅËÊ ÀÅºÃÌ»¼» ÀÅ ¼ º̧¿

ºÃÌÊË¼É

Å
Ì
Ä
¹
¼
É
Æ
½
º
ÃÌ
Ê
Ë
¼
É
Ê ­¼ÉÊÀÆÅ��»�����

­¼ÉÊÀÆÅ��»�����

­¼ÉÊÀÆÅ��»�����

­¼ÉÊÀÆÅ��»�����

­¼ÉÊÀÆÅ��»�����

­¼ÉÊÀÆÅ��»�����

��

Figure 5-4: Number of documents included in categorized clusters

As a result, only a few clusters can represent corresponding categories. It depends on

which dataset to use because this algorithm groups related documents according to their

keywords and co-occurrences of keywords.

5.3 Validation

The result of clustering is validated whether it is a valid summary of the documents or

whether unwarranted or inappropriate structure is being imposed on the collection.

The extent of support for hierarchical structure in a data set has also been assessed by

stability. For the validation, five collections except Reuters are used because these

validation measures need to use the relevant documents.

º Æ Å Ê Ë ÀËÌ Ë ÀÆ Å Æ ½ º ¸ Ë¼ ¾Æ É ÀÑ ¼ » º ÃÌ Ê Ë¼ ÉÊ

�|

�� |

�� |

�� |

�� |

�� |

�� |

�� |

�� |

�� |

�� �|

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

­
¼É
ÊÀ
ÆÅ
��
»�
��
��

Ë¼ Ê Ë º Æ ÃÃ¼ º Ë ÀÆ Å
�¸ Í ¼ É¸ ¾ ¼ » ÀÊ Ë¸ Å º ¼ �

�� ��

�� �� ��

�� ��

Å ÌÄ ¹ ¼ É Æ ½

» Æ º ÌÄ ¼ Å ËÊ

ÀÅ º ÃÌ »¼ » ÀÅ

Ë¿ ¼ º ÃÌ Ê Ë¼ É

��

5.3.1 Clustering Tendency

The experiments attempt to determine whether worthwhile retrieval performance would be

achieved by clustering a database, before investing the computational resources which

clustering the database would entail [Fakes 92], [Willet 88].

The nearest neighbor test [Willet 88] is employed here by considering, for each relevant

document of a query, how many of its n nearest neighbors are also relevant; and by

averaging over all relevant documents for all queries in a test collection in order to obtain

single indicators.

The experiments are carried out to calculate the percentage of relevant documents in the

database that had 0, 1, 2, 3, 4, or 5 relevant documents in the set of 5 nearest neighbors of

each relevant document. Data collections used for validation of clustering tendency are

described in Table 5-1. Columns 4 and 5 show the number of queries and total number of

relevant documents for all queries in each test collection. Table 5-6 reports the

experimental results synthesized from those done on five test collections. The each rows

with numbered as 0, 1, 2, 3, 4 and 5 stand for the percentage average of the relevant

documents in a collection that had 0, 1, 2, 3, 4, and 5 relevant documents in their sets of 5

nearest neighbors. For example, the meaning of row JSAI column 6 is “among all relevant

documents for 20 queries of JSAI collection, 11.5 % of them have 5 nearest neighbor

documents are all relevant documents”. The last column shows the average number of

relevant documents among 5 nearest neighbors of each relevant document. This value is

relatively high for JSAI and MED collections and vice-versa for the others.

As the finding of nearest neighbors of a document in this method is based on the similarity

between the upper approximations of documents, this tendency suggests if the TRSM

clustering method is appropriate for the retrieval purpose. This tendency can be clearly

observed in concordance with the high retrieval effectiveness for JSAI and MED shown in

Table 5-7 and Figure 5-5.

��

Table 5-7: Results of clustering tendency

Average percentage of relevant documents (%)

Test collection 0 1 2 3 4 5 Ave.

JSAI 19.9 19.8 18.5 18.5 11.8 11.5 2.2

CACM 50.3 22.5 12.8 7.9 4.2 2.3 1.0

CISI 45.4 25.8 15.0 7.5 4.3 1.9 1.1

CRAN 33.4 32.7 19.2 9.0 4.6 1.0 1.2

MED 10.4 18.7 18.6 21.6 19.6 11.1 2.5

Figure 5-5: Clustering tendency

5.3.2 Clustering stability

Clustering stability is an assessment that the original classifications are compared with

classifications of modified versions of the data. If there is a large difference between those

classifications, the clustering is considered unstable.

The experiments were done for the JSAI test collection in order to validate the stability of

the TRSM clustering, i.e., to verify that whether the TRSM clustering method produces a

hierarchy which is unlikely to be altered drastically when further documents are

incorporated.

�ÃÌÊË¼ÉÀÅ¾ «¼Å»¼ÅºÐ

�

��

��

��

��

��

��

� � � � � �

ÅÌÄ¹¼É Æ½ É¼Ã¼Í¸ÅË »ÆºÌÄ¼ÅËÊ

¸
Í
¼
É¸
¾¼

Æ
½
É¼
Ã¼
Í
¸
Å
Ë

»
Æ
º
Ì
Ä
¼
Å
ËÊ
�|
� ¡ª�

���¤

� ª

�É¸Å½À¼Ã»

¤¼»Ã¸ÉÊ

��

Table 5-8 and Figure 5-6 show the experimental results of clustering stability for JSAI test

collection with different values of s from 210 experiments with s% = 1%, 2%, 3%, 4%, 5%,

10% and 15%. For each value 2, 3, and 4 of θ, the experiments are done 10 times each for

a reduced database of size (100 - s)% of D [Willet 88]. The way is, first, to remove

randomly a specified amount of s% documents from the collection, then re-determine the

new tolerance space for the reduced database to perform the TRSM clustering algorithm

and evaluate the change of clusters due to the change of the database. Note that a little

change of data implies a possible little change of hierarchy (about at the same percentage

as for θ = 4). The experiments for other test collections have nearly the same results. It

suggests that the TRSM hierarchical clustering is stable.

Table 5-8: Synthesized results about the stability

Percentage of cluster stability (%)T

1 2 3 4 5 10 15

2 2.84 5.62 7.20 5.66 5.48 11.26 14.41

3 3.55 4.64 4.51 6.33 7.93 12.06 15.85

4 0.97 2.65 2.74 4.22 5.62 8.02 13.78

Figure 5-6: Synthesized results about the stability

§¼Éº¼ÅË¸¾¼ Æ½ ºÃÌÊË¼É ÊË¸¹ÀÃÀËÐ

�

�

��

��

��

� � � � � �� ��

Ç¼Éº¼ÅË¸¾¼ Æ½ É¼»Ìº¼» »ÆºÌÄ¼ÅËÊ

Ê
Ë¸

¹
ÀÃ
ÀË
Ð �

�

�

��

Chapter 6

Conclusion

This paper has presented a TRSM-based clustering algorithm within the HACM

framework. TRSM is a tool that offers a new method of semantics calculations in text

processing. In the framework of TRSM, this algorithm has achieved relatively remarkable

results on its effectiveness, efficiency and validity thank to finding some kinds of semantic

relations that do not directly appear in the textual database. The representation of

documents and clusters enriched by not only normalized term weighting but also by

approximations allows us to calculate exquisite distances. The experimental results suggest

that this algorithm can be applied to the field of text processing. However, in order to apply

this algorithm to text categorization, as it cannot show any appealing result, there is a room

for more consideration of improvement on the method. About efficiency, the

implementation has achieved an efficient improvement on the processing time, while this

method has the order of N square computational complexity depending on the number of

terms and document and the trial implementation shows the memory consuming of nearly

1giga bytes for 15550 terms in about 10000 documents. It means that it is difficult to apply

this hierarchical clustering algorithm to much larger databases.

According to such kinds of limitations, further investigation of this method can be able to

be considered on the following directions:

��

• Introducing similarity relations instead of tolerance relations [Skowron 97]. Similarity

relation does not require the reflexive property for the classes in a set so that it seems

to introduce more flexible semantic relations into the model.

• Using lower approximations in the part acquired by upper approximations may reflect

the strength of term relationship more precisely.

• Development of a hybrid method that combines hierarchical clustering and non-

hierarchical clustering for databases of large size. The merit of non-hierarchical

clustering method is that it requires much less computational time and space than any

hierarchical clustering method. A considerable way for dealing with very large text

collection consists of two parts, i.e., at first the collection is divided into a certain

numbers of clusters by the non-hierarchical clustering based on TRSM, then TRSM

based hierarchical clustering constructs the hierarchical structure for of each obtained

cluster.

For practical use, this method should be link to other methods appropriate for user

purposes, especially concerning with user interfaces to visualize of results and procedures

of a series of interactive procedures between users and machines.

��

Acknowledgements

First of all, I would like to express profoundly my appreciation to Professor Tu Bao Ho for

his a lot of kindness, patience and effectual support during the work. I would not be able to

complete this thesis without his advice and encouragement. Then I appreciate a lot for Dr.

Ngoc Binh Nguyen, our previous Associate, for helping me a lot on programming. My

program would not run without him. Mr. Kaname Funakoshi’s work has suggested so

many things that I am obliged him even if I have never seen him.

And, I profoundly thank Associate Professor Masato Ishizaki in Knowledge Creating

Laboratory for his pertinent and sound comments and advice about natural language

processing, and Professor Yoshiteru Nakamori for his warm help. Then thanks a lot for

Saitou-san and Fujikawa-san, member of the same laboratory, for sharing daily activities

with friendship.

Since I like lectures here which I took as my required course works, I would like to

appreciate all of them and people who provided them for introducing me basics and ideas

which were new and fresh for an ex-working women.

Next thank is for people who were assigned temporary on 7th floor and for other friends in

JAIST in sharing with me a jolly college life with good dishes.

Finally, I would like to thank sincerely my father, mother, grandmother and sisters not only

to allow me to stay and study far from them after a long absence of my previous student

life and jobs, but also to have given me a lot of supports in many aspects.

August, 2000

��

Bibliography

[Baeza-Yates 99] Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval,

Addison Wesley, 1999.

[Boyce 94] Boyce, B. R., Meadow, C. T., and Donald, H. K., Measurement in Information

Science, Academic Press, 1994.

[Fakes 92] Fakes, W. B. and Baeza-Yates, Information Retrieval. Data Structures and

Algorithms (Eds.), Prentice Hall, 1992.

[Fox 90] Fox, E., Virginia Disk One (Ed.), Blacksburg: Virginia Polytechnic Institute and

State University, 1990

[Gordon, 96] Gordon, A. D., “Hierarchical Classification”, Clustering and Classification,

World Scientific, 1996, 65-121.

[Ho 98] Ho, T. B. and Funakoshi K., “Information retrieval using rough sets”, Journal of

Japanese Society for Artificial Intelligence, Vol. 13, N. 3, 1998, 424-433.

[Iwayama 95] Iwayama and M, Tokunaga, T., “Hierarchical Bayesian Clustering for

Automatic Text Classification”, International Joint Conference on Artificial

Intelligence IJCAI’95, Morgan Kaufmann, 1995, 1322-1327.

[Kawasaki 00] Kawasaki, S, Nguyen, N.B. and Ho, T.B., “Hierarchical Document

Clustering Based on Tolerance Rough Set Model”, 4th European Conference on

Principles and Practice of Knowledge Discovery in Databases, Lyon, France,

September 13-16, 2000. Lecture Notes in Artificial Intelligence, Springer, 2000, 6

pages.

��

 [Larsen 99] Larsen, B. and Aone, C., “Fast and effective text mining using linear-time

document clustering”, International Conference on Knowledge Discovery and Data

Mining KDD'99, Morgan Kaufmann, 1999, 16-22.

[Lebart 98] Lebart, L., Salem, A., and Berry, L., Exploring Textual Data, Kluwer

Academic Publishers, 1998.

[Lin 97] Lin, T. Y. and Cercone, N., Rough Sets and Data Mining. Analysis of Imprecise

Data (Eds.), Kluwer Academic Publishers, 1997.

[Manning 99] Manning, C. D. and Schutze, H., Foundations of Statistical Natural

Language Processing, The MIT Press, 1999.

[Miyamoto 90] Miyamoto, S., Fuzzy Sets in Information Retrieval and Cluster Analysis,

Kluwer Academic Publishers, 1990.

[Pawlak 91] Pawlak, Z., Rough sets: Theoretical Aspects of Reasoning about Data, Kluwer

Academic Publishers, 1991.

[Polkowski 98] Polkowski, L. and Skowron, A., Rough Sets in Knowledge Discovery.

Applications, Case Studies and Software Systems (Eds.), Physica-Verlag, 1998.

[Raghavan 86] Raghavan, V.V. and Sharma, R.S., “A Framework and a Prototype for

Intelligent Organization of Information”, The Canadian Journal of Information

Science, Vol. 11, 1986, 88-101.

[Salton 88] Salton, G. and Buckley, C., “Term-Weighting Approaches in Automatic Text

Retrieval”, Information Processing & Management, Vol. 24, N. 5, 1988, 513-523.

[Sharma 96] Sharma, S., Applied Multivariate Techniques, John Wiley & Sons, Inc., 1996.

��

[Skowron 94] Skowron, A. and Stepaniuk, J., “Generalized approximation spaces”, The

3rd International Workshop on Rough Sets and Soft Computing RSKD’93, Springer-

Verlag, 1994, 156-163.

[Skowron 97] Skowron, A. and Vanderpooten, D., “Similarity Relation as a Basis for

Rough Approximations”, Advances in Machine Intelligence and Soft Computing, P.

Wang (Ed.), Vol. 4, 1997, 17-33

[Srinivasan 89] Srinivasan, P., “Intelligent Information Retrieval Using Rough Set

Approximations”, Information Processing and Management, Vol. 25, No.4, 1989,

347-361.

[Srinivasan 91] Srinivasan, P., “The Importance of Rough Approximations for Information

Retrieval, International Journal of Man-Machine Studies, Vol. 34, No. 5, 1991, 657-

671.

[Van Rijsbergen 77] Van Rijsbergen, C.J.: “A Theoretical Basis for the Use of Co-

occurrence Data in Information Retrieval”, Journal of Documentation, Vol. 33, No. 2,

1977, 106-119.

[Willet 88] Willet, P., “Recent trends in hierarchical document clustering: A critical

review”, Information Processing and Management, 1988, 577-597.

[Yang 99] Yang, Y., “An evaluation of Statistical Approaches to Text Categorization”,

Information Retrieval Journal, Kluwer Academic Publishers, 1999, 1-19.

[y� 98] y�aWnI°÷/, ±�éRàænÊPj¥ ����:ã

��P�, �ªÔ�G Vol. 28, No. 2, 1998, 107-121.

��

[PW 99] PWXnüW�n­Û³�n­¹µ&, 9 ,;:o2Q�>f#æn

Ê���¥ I\�+f#, ãÄ0H;���|G³:o2Q�>f#bo

"*Z6J, 1999.

[Pna 99] Pna, 9 ,;Æ�é±�ý´Ù¥ Æ�$oé±�
îÈ

´ÔÙ, ±�£�, 40-4,1999, 370-373.

[�Û 96] �Û�ndÄ_Þn°�³nÊ�a, \Hø'ãØé�ª, q¿n»

 G³y Vol. 11, No. 2, 1996, 209-215.

[ÊÇ¹ 99] ÊÇ¹·¦nÉÅ\�n3��, 9 ,;Q�>f#Ù�"å¥ :

o2éDG½�æ��n��×Ù, ±�£�, 40-4,1999, 358-364.

[®° 99] ®°´µ, D|��£�
ÑªÒÚ±�é��n½�óé�J`o4,

 ±�£�, 40-4,1999, 352-357.

��

Contributions

[1] Kawasaki, S., Nguyen, N. B. and Ho, T. B., “Hierarchical Document Clustering

Based on Tolerance Rough Set Model”, The Fourth European Conference on

Principles and Practice of Knowledge Discovery in Databases (PKDD2000), Lyon,

France, September 13-16, 2000.

��

Appendix.

Programs for TRSM-based hierarchical clustering (basic version)

