JAIST Repository

https://dspace.jaist.ac.jp/

Title	動的な関数における複雑さの発展
Author(s)	
Citation	
Issue Date	2001-03
Туре	Thesis or Dissertation
Text version	author
URL	http://hdl.handle.net/10119/715
Rights	
Description	 Supervisor:橋本 敬, 知識科学研究科, 修士

Japan Advanced Institute of Science and Technology

Evolution of Complexity in Dynamical Functions

Jun Namikawa

School of Knowledge Science, Japan Advanced Institute of Science and Technology

March 2001

Keywords: Dynamical Functions, Homomorphism, Complexity of Functions, Redundancy, Functional Entropy.

Abstract

A new approach to study the evolution of complexity is presented as a formal system describing a dynamic change of functions. We study, analytically and numerically, how complexity of functions changes by transformation.

A dynamical function $f_n: S_n \to S \ (S_n \subseteq S)$ is defined by

$$f_{n+1} = g \circ f_n \circ g_n^* \tag{1}$$

where $g: S \to S$ and an indexed family $\{g_i^*\}_{i=0}^{\infty}$ with $g_n^*: S_{n+1} \to S_n$ are $g|S_n \circ g_n^* = i_{n+1}$. Here $i_{n+1}: S_{n+1} \to S$ is inclusion mapping.

For any function g, f_n and $S_n \subseteq S$, if $x \in g_n^*(S_{n+1})$ then $g \circ f_n(x) = f_{n+1} \circ g(x)$. Thus the Eq. (1) is homomorphic mapping in $g_n^*(S_{n+1}) \subseteq S_n$.

We propose measures of complexity of functions, "redundancy" and "functional entropy". Redundancy evaluates the number of inputs giving the same output in a function. Functional entropy measures the degree of randomness of outputs from a function when inputs are given randomly. Given any function describing a dynamical system, these measures identify whether it has periodicity. Thus, these measures represent complexity of functions. If there is an isomorphism between f and f', then both functions have the same value for each measure.

We find that these measures have the following characters:

- 1. If g is an injection, max redundancy decreases.
- 2. If g_n^* is an surjection, average redundancy increases.
- 3. If g is an injection and g_n^* is an surjection, redundancy is invariable.

Copyright © 2001 by Jun Namikawa

We study how redundancy and functional entropy change in terms of numerical simulations of Eq. (1), by choosing logistic map ax(1-x) and tent map a(0.5 - |x - 0.5|) as function g, and x^2 , $x + 0.3 \pmod{1}$, and $\frac{2}{\pi} \arctan(2x - 1) + 0.5$ as the initial function f_0 . Here, the domain and range of g and f_n are chosen to be [0, 1]. As results of simulations, we confirm that 1) redundancy changes largely for logistic map and not so large for tent map; 2) functional entropy is associated with lyapunov exponent.