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Abstract This paper reports comparative evaluations of twelve typical methods of estimating funda-

mental frequency (F0) over huge speech-sound datasets in artificial reverberant environments. They in-

volve several classic algorithms such as Cepstrum, AMDF, LPC, and modified autocorrelation algorithms.

Other methods involve a few modern instantaneous amplitude- and/or frequency-based algorithms, such as

STRAIGHT-TEMPO, IFHC, and PHIA. The comparative results revealed that the percentage of correct

rates and SNRs of the estimated F0s were reduced drastically as reverberation time increased. They also

demonstrated that homomorphic (complex cepstrum) analysis and the concept of the source-filter model

were relatively effective for estimating F0 from reverberant speech. This paper thus proposes a new method

of robustly and accurately estimating F0s in reverberant environments, by utilizing the modulation transfer

function (MTF) concept and the source-filter model in complex cepstrum analysis. The MTF concept is

used in this method to eliminate dominant reverberant characteristics from observed reverberant speech.

The source-filter model (liftering) is used to extract source information from the processed cepstrum. Fi-

nally, F0s are estimated from them by using the comb-filtering method. Additive-comparative evaluation

was carried out on the new approach with other typical methods. The results demonstrated that it was

better than the previously reported techniques in terms of robustness and providing accurate F0 estimates

in reverberant environments.

Keywords: F0 estimation, reverberant speech, complex cepstrum analysis, MTF concept, source-filter model

1. Introduction

The fundamental frequency (F0) as well as the fun-
damental period (T0) of speech can be utilized as sig-
nificant features to represent the source information
(glottal waveform or vocal-fold vibrations) of speech
sounds in various speech-signal processes. These are,
for example, in speech analysis/synthesis systems, au-
tomatic speech recognition (ASR) systems, and speech
emphasis methods. In particular, robust and accurate
F0 can generally be used as a powerful cue to reduce
the noise component in noisy speech and/or to remove
the reverberation effect in reverberant speech. There-
fore, robustly and accurately estimating the F0 of tar-
get speech in real environments, which is the same as
extracting the F0 of noiseless speech, is a particularly
important issue in these applications.

Many studies on extracting or estimating the F0

of target speech have been done in the literature on

speech-signal processing, and numerous methods have
been proposed [1, 2, 3] over the last half-century. The
traditional extraction/estimation methods can be di-
vided into processing in the time and frequency do-
mains, or both domains. Most of these have made
use of the periodic features of speech in the time do-
main (zero-cross [4, 5], periodgram [6], peak-picking
[4, 7], autocorrelation [4, 8], the amplitude magni-
tude difference function (AMDF) [9], and maximum
likelihood [10]), or harmonic features in the frequency
domain (comb filtering [11, 12], autocorrelation [13],
sub-harmonic summation (SHS) [14], and cepstrum
[15]).

The aim of all these methods has been to extract
the periodicity or harmonicity of source information
from observed speech. However, this still seems to be
incompletely resolved because three main issues re-
main, i.e., (1) observability: the observed speech is
an emitted sound passing through the mouth/nose so
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that it is impossible to directly observe glottal vibra-
tions from it without eliminating the effects of the
vocal tract, (2) flexibility and irregularity: glottal
vibrations are not complete periodic signals and the
range of variations in the periods is relatively wide,
and (3) robustness: the observed speech signals are
affected by noise and reverberation so that the signif-
icant features for estimating F0 are also smeared.

Most studies have focused on the first two issues
so that they have implicitly assumed all speech signals
are observed in clean environments or all observations
are only noiseless speech sounds. Various methods
of estimating F0 have been proposed under this as-
sumption to solve the first issue by suppressing the ef-
fects of filter characteristics (vocal tract), based on the
source-filter model, from the observed speech sounds.
For example, typical approaches based on this idea
have been homomorphic methods of analysis [15, 16]
and linear prediction (LP)-based methods [17, 18, 19].
A few examples of inverse filtering methods are lag-
windowing [20] and simplified inverse filter tracking
(SIFT) [21]. Center-clipping, band-limitation [22, 23],
and multi-windowing [24] techniques have also been
used in approaches based on the autocorrelation func-
tion.

A few approaches to precisely estimate the F0 of
target noiseless speech have been established (e.g.,
STRAIGHT-TEMPO [25] and YIN [26]) by compar-
ing electro-glottal-graph (EGG) information. The sta-
bility of the instantaneous frequency of speech has also
been used in the STRAIGHT-TEMPO method (re-
ferred to as “TEMPO” after this) to accurately esti-
mate F0s as significant features to resolve the first two
issues. This method plays an important role in con-
trolling “pitch” related features in STRAIGHT anal-
ysis/synthesis tools [27]. YIN has also been proposed
which combines autocorrelation functions and AMDF
to resolve these. It has been reported that both meth-
ods can be used to estimate the F0 of target noiseless
speech extremely precisely so that the first two issues
seem to be have been resolved. However, it has not
yet been clarified whether these methods can precisely
estimate F0 in real environments. Hence, we need to
investigate the last issue for realistic applications.

It is generally known that the method of estimating
F0 using periodic and/or harmonic features (e.g., au-
tocorrelation functions and comb filtering) is relatively
robust against background noise, but the estimated
F0 is not relatively accurate [2, 28, 29]. It has also
been reported that the comb-filtering-based method
is more robust against background noise than the
autocorrelation-based approach [29]. The cepstrum-
based method is not as robust against background
noise as either of these because it is composed of ho-
momorphic analysis so that noise components are not
clearly separated in the quefrency domain [29].

The time-frequency representation of speech ob-

tained by time-frequency analysis can also ade-
quately represent the periodic/harmonic components
of speech. The instantaneous amplitude (IA) of speech
signals has fine harmonic features that are robust
against background noise so that the comb-filtering
of instantaneous amplitude has been proposed [30] to
construct a sound-segregation model. The instanta-
neous frequency (IF) of speech has also been used to
accurately estimate F0s but their stability as used in
TEMPO is sensitive to noise. More robust methods
using instantaneous frequency have been proposed by
using bandwidth equations related to instantaneous
amplitude and frequency with harmonicity [28, 31].
Other robust techniques using instantaneous ampli-
tude and frequency-related approaches have been pro-
posed by using periodicity and harmonicity [29]. It
has been reported that these are more robust than
TEMPO and can precisely estimate the F0 in noisy
environments.

All these methods have focused on noiseless to
noisy conditions to estimate sufficiently accurate F0s
of target speech. Thus, methods using instantaneous
amplitude and frequency or those with robust features
against noise such as periodicity and harmonicity have
been regarded as accurately being able to estimate F0s
from noisy speech. The last issue seems to be have
been solved at this time; however, there have been no
studies on robustness in reverberant environments.

It can easily be predicted that no typical methods
will work as well and their percentage correct rates for
F0s will drastically be reduced as reverberation time
increases. If our prediction is correct, the last issue
has not yet been completely solved and needs to be
considered in reverberant environments and in noisy
reverberant environments. We evaluated traditional
methods of estimating F0 in terms of robustness and
accuracy in reverberant environments to investigate
this issue and discuss them in this paper. We then
propose a method of estimating F0 from reverberant
speech without measuring impulse response in room
acoustics (i.e., blind method of estimating F0) by tak-
ing the characteristics of reverberation into consider-
ation.

This paper is organized as follows. Section 2 de-
scribes the mathematical setup and then defines the
problem of estimating F0 from reverberant speech. We
discuss our evaluations of most typical methods of es-
timating F0 in reverberant environments in Section 3
and investigations into what the best model is. Sec-
tion 4 introduces complex cepstrum analysis and in-
vestigates what the significant features for robust es-
timates are. We then introduce the model concept
(complex cepstrum analysis, the modulation transfer
function (MTF) concept, and source-filter model). We
finally propose a method of estimating F0 in reverber-
ant environments. We discuss our evaluations of the
proposed method in Section 5 by comparing it with



3

other methods using the same simulations. Section 6
gives our conclusions and perspective regarding future
work.

2. Mathematical setup

2.1 Signal representation and STFT

A time-varying harmonic signal, x(t), can be rep-
resented as the analytic signal:

x(t) =
∑
k∈K

ak(t) exp(jωk(t)t + θk(t)) (1)

where ak(t) is the instantaneous amplitude and θk(t)
is the phase. Here, k denotes the harmonic index and
K is the number of harmonics so that ωk(t) can be
expressed as 2πkF0(t). Fundamental frequency F0(t)
is an instantaneous frequency so that this should be
extracted from x(t) using instantaneous cues.

The short-term Fourier transform (STFT) is usu-
ally used [32] to analyze x(t) in any given short-term
segment (windowing processing):

X(ω, τ) =
∫

x(t)w(t − τ) exp(−jωt)dt (2)

= A(ω, τ) exp(j argφ(ω, τ)) (3)
A(ω, τ) = |X(ω, τ)| (4)

φ(ω, τ) = arctan
(�[X(ω, τ)]
�[X(ω, τ)]

)
(5)

where w(t) is a window function and a short-term sig-
nal, x(t, τ), is defined as w(t−τ)x(t) for mathematical
convenience. A(ω, τ) is the amplitude spectrum and
φ(ω, τ) is the phase spectrum of X(ω, τ).

The task of extracting/estimating fundamental fre-
quency F0(t) in this formulation is, therefore, to es-
timate the F0 in each short-term segment using the
harmonicity of X(ω, τ) or to estimate segmental T0 =
1/F0 by using the periodicity of x(t, τ). Thus, tra-
ditional methods based on waveform processing (e.g.,
zero-cross [4, 5], periodgrams [6], peak-picking [4, 7],
autocorrelation [4, 8], AMDF [9], maximum likeli-
hood [10], STFT-based processes, and sub-harmonic
summation (SHS) [14]) estimate F0(t) from x(t, τ) or
X(ω, τ) by using periodicity or harmonicity.

2.2 Source-filter model

The source-filter model is a well-known concept to
separately represent the glottal (source information)
and vocal-tract (filter information) characteristics for
speech production. Based on this concept, the ob-
served clean speech signal, x(t), can be represented
as

x(t) = e(t) ∗ vτ (t) (6)

where e(t) is the source signal related to glottal infor-
mation and vτ (t) is the impulse response of the filter

Amplitude cepstrum

QuefrencyCepstrum component 
of filter characteristics

(vocal tract) Cepstrum component of 
source (glottal vibration)

Liftering

CA(q,τ)

l(q)

Csrc(q,τ)

Cflt(q,τ)

Csrc(q,τ)

Fig. 1 Separated representations of source and filter
characteristics in quefrency domain

related to the vocal tract at time τ . The asterisk “∗”
denotes convolution. Note that the emission effect has
been omitted from this formulation. Thus, Eq. (2) can
also be represented as

X(ω, τ) = S(ω, τ) · V (ω, τ) (7)

where S(ω, τ) is the STFT of s(t, τ) = w(t − τ)e(t)
and V (ω, τ) is that of v(t, τ) = vτ (t). V (ω, τ) rep-
resents filter characteristics so that the separation
effect of V (ω, τ) is usually used to estimate F0(t)
from X(ω, τ). Some traditional methods of estima-
tion are inverse filtering V −1(ω, τ) [21], whitening of
X(ω, τ) using |V (ω, τ)| (or lag windowing) [20], and
subtraction on logarithmic processing log X(ω, τ) =
log S(ω, τ) + log V (ω, τ) [22, 23].

The linear prediction (LP) method is also one of
the most powerful techniques of analyzing speech sig-
nals. LP coefficients have filter characteristics (all-
pole type) and the LP residue has source informa-
tion. The LP coefficients of x(t, τ) can thus be used
as inverse filtering V −1(ω, τ) in the source-filter model
[17, 21]. The LP residue can also be used as a short-
term signal s(t, τ) [19]. Waveform processing and
AMDF have also been incorporated [18].

2.3 Cepstrum representation

Cepstrum is also a well-known method of homo-
morphic analysis. The complex cepstrum of X(ω, τ)
in Eq. (2) can be represented as

C(q, τ) = F−1 [log {|X(ω, τ)| exp(jφ(ω, τ))}]
= F−1

[
log A(ω, τ)

]
+ F−1

[
jφ(ω, τ)

]
= CA(q, τ) + Cφ(q, τ) (8)

where F−1[·] is the Fourier inverse transform, CA(q, τ)
is the amplitude cepstrum, Cφ(q, τ) is the phase cep-
strum of C(q, τ), and q denotes the quefrency (time
domain). The complex cepstrum of X(ω, τ) in Eq. (7)



4 Journal of Signal Processing, Vol. , No. ,

can also be represented as

C(q, τ) = F−1 [log S(ω, τ)] + F−1 [log V (ω, τ)]
= Csrc(q, τ) + Cflt(q, τ) (9)

where Csrc(q, τ) is the complex cepstrum of source
S(ω, τ) and Cflt(q, τ) is that of filter V (ω, τ).

The amplitude cepstrum, CA(q, τ), is generally
used in the traditional method so that CA,src(q, τ) and
CA,flt(q, τ) are separately used for estimating F0(t)
from CA(q, τ). Figure 1 outlines the concept underly-
ing the source-filter model in the quefrency domain.
CA,flt(q, τ) represents the dominant spectrum enve-
lope of X(ω, τ) (lower Fourier component in quefrency
domain) so that they are compactly located in the
lower quefrency. In contrast, CA,src(q, τ) represents
the dominant fine structure of X(ω, τ) so that they
are compactly located in the higher quefrency domain.
Therefore, the task of estimating F0 with this concept
is to find the dominant quefrency from CA,src(q, τ) or
to detect periodicity or harmonicity from CA,src(q, τ)
by eliminating CA,flt(q, τ) from CA(q, τ). The last
processing is referred to as “liftering”. Typical ap-
proaches are Noll’s original method [15] and his clip-
strum method [16].

2.4 Problem with estimating F0

The task of estimating F0 in reverberant environ-
ments is to extract F0(t) from reverberant speech sig-
nal y(t) or respective STFT Y (ω, τ):

y(t) = x(t) ∗ h(t) = e(t) ∗ vτ (t) ∗ h(t) (10)
Y (ω, τ) = S(ω, τ)V (ω, τ)H(ω, τ) (11)

where h(t) is the impulse response and H(ω, τ) is the
STFT of h(t) in room acoustics (reverberation). Note
that, H(ω, τ) is actually required to present all char-
acteristics (H(ω) = H(ω, τ)) by using a long-term
Fourier transform (LTFT) so that the length of analy-
sis (at each τ) should be more than the reverberation
time.

The task of estimating F0 in reverberant environ-
ments is thus to select periodicity and harmonicity
from the convolved source signal, e(t), while that in
noisy environments is to select them from the noisy
(additive) source signal, e(t). If h(t) is simplified echo
or a minimum phase impulse response, the cepstrum-
based method can be used to adequately estimate F0

from the reverberant speech signal, y(t), because ho-
momorphic analysis is a powerful tool for dealing with
simplified echos. Realistic impulse responses in room
acoustics generally have non-minimum phase charac-
teristics and we therefore predicted that estimating F0

robustly and accurately would be more difficult than
in noisy environments.

3. Evaluation of typical methods

3.1 Typical methods of estimating F0

Many methods of estimating F0 have been pro-
posed in the literature on speech signal processing,
as described in Section 1. The most comprehensive
review remains that by Hess (1983) [1] and more re-
cent reviews are those by Hess (1992) and Cheveigné
and Kawahara (2001) [2, 3]. A few examples of
recent approaches are instantaneous-amplitude [30],
instantaneous-frequency [28, 31], and fundamental
wave-filtering [33]. There are also comparative evalua-
tions in Atake et al.’s (2000), Ishimoto et al.’s (2001),
and Nakatani and Irino (2004) [2, 3, 28, 29, 31].

We evaluated twelve typical methods to investi-
gate how robust estimates of F0 were in reverberant
environments: ACMWL (AutoCorrelation through
Multiple Window-Length) [24], AMDF [9], STFT-
ACorrLog (AutoCorrelation of Log-amplitude spec-
trum on STFT) [22, 23, 13], STFT-ACorrLag (Lag-
windowing on STFT) [20], STFT-Comb (Comb filter-
ing on STFT) [11, 12], SHS [14], Cepstrum [15], LPC-
residue [19], VFWFF (Voice Fundamental Wave Fil-
tering (Feed-forward type)) [33], TEMPO [25], IFHC
(Instantaneous Frequency of Harmonic Components)
[28], and PHIA (Periodicity/Harmonicity using In-
stantaneous Amplitude) [29]. Although other meth-
ods have been proposed, we choose these twelve be-
cause they are commonly used in comparative evalu-
ations and the others are just modifications or heavy
revisions of them.

The characteristics, parameters, and detailed con-
ditions on these algorithms that we used in this com-
parative evaluation are listed in Table 1. TEMPO
was used as a complete original version. As the other
methods implemented by the researchers were based
on their original research, they were the first or orig-
inal versions. Several parameters were set to obtain
appropriate results based on preliminary simulations.
For more detailed information on their technical im-
plementations and skill levels, please refer to their
original papers.

3.2 Sound dataset and evaluation measures

The sound dataset we used in this evaluation was
the speech database on simultaneous recordings of
speech and EGG by Atake et al. [28]. This dataset
consisted of 30 short Japanese sentences uttered by 14
males and 14 females with voiced-unvoiced labels (to-
tal of 840 utterances, sampling frequency of 16 kHz,
and quantization of 16-bits).

The reverberant speech sentences we used were cre-
ated by convolving the original signals, x(t)s, with the
following reverberant impulse responses, h(t)s, as a
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Table 1 Characteristics of typical methods of estimating F0 and their parameter settings

Algorithm domain Features Parameter setting

ACMWL [24] time x(t, τ) Window candidates of nine (15 to 60-ms in 5-ms steps)
AMDF [9] time x(t, τ) 40-ms window, 2-ms shift
STFT freq. 40-ms window, 2-ms shift
auto-corr. [22, 23, 13] freq. log |X(ω, τ)| 1.5-kHz band-limitation, averaged-clipping
Lag windowing [20] freq. |S(ω, τ)| 3-ms lag windowing, 1.5-kHz band-limitation, averaged clipping
Comb filtering [11, 12] freq. |X(ω, τ)| 10th order of the comb filter

SHS [14] freq. log |X(ω, τ)| 40-ms window length, 5-ms shift, N = 15 (harmonic order),
BL = 1.25 kHz (band limitation), weigh function: hn = 0.84n−1

Cepstrum [15] quef. CA(q, τ) 40-ms window, 2-ms shift, 3-ms liftering,
Noll’s method (hw = 0.54 + 0.46 cos(2πf/600))

LPC Residue [19] time s(t, τ) 40-ms window, 2-ms shift, LP order of 12, 1/4 down-sampling
F0 filtering [33] time s(t, τ) 80-ms window, 2-ms shift, 1/4 down-sampling, averaged-clipping,

1.5 kHz band-limitation, “Non-selfsupport mode”,
TEMPO [25] freq. Fixed point analysis 1-ms F0 shift length, nvo = 24, Heuristic factor: “on”

on Instant. freq. (IF)
IFHC [28] freq. Harmonicity of IFs Nm = 3 (harmonic order), 1/8 down-sampling,

adaptive-windowing based on BW equation
PHIA [29] time/ Instant. Amp. (IA) 400-channel CBFB, 64-channel CQFB,

freq. & Dempster’s law 1/4 down-sampling, averaged-clipping

(1) Hanning windowing function was used in STFT-based processing.
(2) Lower limits of estimated F0 were set at 60 Hz and higher were set at 800 Hz.

function of the reverberation time.

h(t) = a exp
(−6.9t

TR

)
n(t) (12)

a =

[
1
/∫ T

0

exp
(−13.8t

TR

)
dt

]1/2

(13)

where the “a” is a gain factor as the normalized
power of h(t), TR is reverberation time, and n(t)
is white noise. This is the well-known stochastic-
approximated impulse response in room acoustics re-
ported by Schroeder [34, 35], in which the response has
an envelope of exponential decay and is a white noise
carrier. This formulation for the impulse response has
been used in the study of speech intelligibility in room
acoustics [36] as general artificial reverberation and
thus has non-minimum phase components [34, 35]. Six
reverberation conditions (TR = 0.0, 0.1, 0.3, 0.5, 1.0,
and 2.0 s) were used in this study. There were a total
of 5, 040 stimuli.

Fine F0 error and gross F0 error within the voiced
section have been used as measures for some compar-
ative evaluations in noisy environments [2, 28, 29, 31].
These have concentrated on error analysis. Since we
concentrated on evaluating robustness and the accu-
racy of F0 estimates, we used two similar measures for
evaluation but not the same measures. The first was
the percent correct rate (%) and the second was SNR
(in dB).

Correct rateE =
NF0,Est(E)

NF0,Ref

× 100 (14)

SNR = 20 log10

∫
(F0,Ref(t) − F0,Est(t))2dt∫

F0,Ref(t)2dt
(15)

where F0,Ref(t) and F0,Est(t) are reference F0 and es-
timated F0, and this integral is done in the voiced
section (t). NF0,Est(E) is the size of the correct region
that satisfies

|F0,Ref(t) − F0,Est(t))|
F0,Ref(t)

≤ E (%)

within voiced section (t) where E is the error mar-
gin (%). NF0,Ref (E) is the size of region F0,Ref(t) in
the voiced section at the error margin E. In this pa-
per, the F0 estimated by TEMPO from the EGG sig-
nal is used as the correct F0 (reference F0, F0,Ref(t)).
F0,Est(t) was used to estimate F0 with the twelve
methods from reverberant speech signals. Two val-
ues for E (error margins of 5% and 10%) were used in
the percent correct rate.

Since gross F0 error is the ratio of the number of
frames giving “incorrect” F0 values to the total num-
ber of frames, the percent correct rate approximately
indicates gross F0 error. Since fine F0 error is the
normalized room mean square error between F0,Ref(t)
and F0,Est(t), SNR indicates a similar measure in dB.

3.3 Results

Figure 2 plots the results of comparative evalua-
tions for the twelve typical methods of estimating F0

from reverberant speech as a function of the reverber-
ation time, TR. The left panels (a), (c), and (e) plot
the results for the first six methods and the right pan-
els (b), (d), and (f) plot them for the last six. The
top panel plots the percent correct rates (expressed
as percentages) for F0 estimates within an error mar-
gin of 5 % and the middle panel plots these within
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within error margin of 10 %, and (e)–(f) SNR (s: original, n: error between original and estimated F0) of F0

estimates from reverberant speech using twelve typical methods as function of reverberation time, TR
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an error margin of 10 %. The bottom panel plots the
SNRs. The correct rates and SNRs of all 12 meth-
ods are drastically reduced as the reverberation time
increases. The correct rates within the 5 % error mar-
gin for all methods were less than 50 % and the SNRs
were less than about 15 dB, especially when reverber-
ation time TR was 2.0 s. Moreover, the correct rates
within the 10 % error margin as an approximate eval-
uation were also less than 70 %. We hence concluded
that none of these methods worked as well as robust
and accurate F0 estimates and they had drawbacks in
estimating F0 from reverberant speech.

However, we found a few clues in doing this evalu-
ation for improving these methods. We can see from
Fig. 2 that the cepstrum method is the most accu-
rate excluding the clean condition (TR = 0.0). Cep-
strum analysis is homomorphic and this can deal with
convolution processing as additive (subtractive) pro-
cessing. Although the impulse responses we used in
evaluations were not minimum-phase characteristics,
the cepstrum method seemed to reduce the effect of
reverberation for estimating F0 since this can treat a
direct sound and a reflected sound as the same signal.
Therefore, the cepstrum method has the possibility of
estimating F0 from reverberant speech if it is not af-
fected too much by reverberation. The comb-filtering
method is slightly more robust against reverberation
as we can see from Figs. 2(c) and (e). Maximization
of matched harmonicity may have the effect of track-
ing stationary fluctuations in harmonics that are not
often affected by reverberation.

4. Proposed method

4.1 Complex cepstrum analysis

Let us overview the results in Subsection 3.3 by
reconsidering the complex cepstrum representation of
reverberant speech y(t). From Eqs. (9)-(11), the com-
plex cepstrum of y(t) can be represented as

CY (q, τ) = Csrc(q, τ) + Cflt(q, τ) + CH(q, τ) (16)

where CH(q, τ) is the complex cepstrum of the rever-
berant impulse response, h(t). These cepstra can also
be represented as all amplitude and phase cepstra (de-
noted by subscripts “A” and “φ”).

Complex cepstrum analysis, on the other hand, is
usually used to separate minimum and non-minimum
phase characteristics. The complex cepstrum, C(q, τ),
can also be separately represented as

C(q, τ) = Cmin(ω, τ) + Call(ω, τ)
= CA,min(q, τ) + Cφ,min(q, τ)

+CA,all(q, τ) + Cφ,all(q, τ) (17)

where the subscripts “min” and “all” indicate mini-
mum and non-minimum phase characteristics. Here,

respective spectra can be represented as

X(ω, τ) = Xmin(ω, τ) · Xall(ω, τ)
= |Xmin(ω, τ)| exp(jφmin(ω, τ))

×|Xall(ω, τ)| exp(jφall(ω, τ)) (18)

where |Xall(ω, τ)| = 1 and CA,all(q, τ) = 0. Hence,
CY (q, τ) can be separately represented as

CY,A,min(q, τ) + CY,φ,min(q, τ) + CY,φ,all(q, τ)
= Csrc,A,min(q, τ) + Csrc,φ,min(q, τ) + Csrc,φ,all(q, τ)

+Cflt,A,min(q, τ) + Cflt,φ,min(q, τ) + Cflt,φ,all(q, τ)
+CH,A,min(q, τ) + CH,φ,min(q, τ) + CH,φ,all(q, τ)

(19)

Note that the amplitude cepstrum of all-pass phase
characteristics has been omitted from this equation.

According to Eq. (16), an optimal F0 estimate is
only used to extract Csrc(q, τ) from CY (q, τ) to deal
with the periodicity/harmonicity of source informa-
tion as a filter and the reverberation characteristics
are eliminated. It is too difficult only to deal with
Csrc(q, τ) in this estimation task, without measuring
h(t) or CH(q, τ) (i.e., blind F0 estimation). In addi-
tion, long-term CH(q, τ), in which the length of anal-
ysis is more than the reverberation time, is needed to
accurately extract Csrc(q, τ).

We did a preliminary investigation into which
component, CH,min(q, τ) or CH,all(q, τ), most affected
dealing with Csrc(q, τ) for estimating F0, using Eq.
(19). Figure 3 shows the process of estimating one of
the reverberant speech signals (/Tokushima-To-Ieba-
Awa-Odori-Ga-Yuumei-Desu/, female speaker, rever-
beration time TR of 2.0 s) we used in the evaluations.
Speech signals (x(t) and reverberant y(t)) are shown
in Figs. 3(a) and (b). The reference F0 (F0,Ref(t) by
TEMPO from the EGG signal) and the F0 (F0,Est(t))
estimated by the cepstrum method from y(t) corre-
spond to the dashed and solid lines in Fig. 3(c).
Note that F0,Ref(t) obtained by TEMPO are com-
pletely within the voiced part because TEMPO has
an Unvoiced/Voiced (U/V) decision. As can be seen,
the estimated F0 was not close to the reference in the
voiced part. This method, however, can be used to
accurately estimate F0 from y(t) by eliminating the
effect of h(t) from y(t) on the complex cepstrum in
the long-term Fourier transform, as plotted in Fig.
3(d). At the same time, two comparative F0s were
obtained as plotted in Figs. 3(e) and (f) by estimat-
ing F0 from y(t) by eliminating minimum phase or the
all-pass phase component from y(t).

The all-pass phase component of the reverberant
impulse response, h(t), we used appears to have a
dominant effect from these comparisons of robust and
accurate F0 estimates. Although the same compar-
isons of all the other stimuli are not presented in this
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Fig. 3 Examples: (a) original speech x(t), (b) re-
verberant speech y(t) (reverberation time of 2.0 s),
(c) reference F0 using TEMPO from EGG of x(t) in-
dicated by dashed-line and estimated F0 using cep-
strum method from y(t) indicated by solid line, (d)
estimated F0 from dereverberated y(t) using h−1(t),
(e) F̂0 from y(t) eliminated by minimum phase char-
acteristics, and (f) F̂0 from y(t) eliminated by all-pass
phase characteristics

paper, the same trends were observed. Hence, we con-
cluded that eliminating the all-pass phase character-
istics of h(t) would enable effective estimates of F0

from reverberant speech y(t). In addition, the cep-
strum method with the all-pass component eliminated
raised the possibility of achieving robust and accurate
estimates of F0 since we knew homomorphic analysis
could easily deal with minimum phase characteristics
such as simplified echoes.

4.2 Estimates of h(t) based on MTF concept

The MTF concept was proposed by Houtgast and
Steeneken [36] to account for the relation between the
transfer function of frequency in an enclosure in terms
of the envelopes of input and output signals (x(t) and
y(t)), and characteristics of the enclosure such as re-
verberation. This concept was introduced as a mea-
sure in room acoustics to assess what effect enclosure
had on the intelligibility of speech [36]. The complex
modulation transfer function, m(ω), is defined as

m(ω) =

∫∞
0 h(t)2 exp(jωt)dt∫∞

0
h(t)2dt

(20)

where h(t) is the impulse response of the room acous-
tics and ω is the radian frequency. This equation
means the Fourier transform of the squared impulse
response is divided by its total energy.

When reverberant impulse response h(t) as defined
in Eq. (12) is substituted into the equation above, the
MTF, m(ω), can be obtained as

m(ω) = |m(ω)| =

[
1 +

(
ω

TR

13.8

)2
]−1/2

(21)

where TR is the reverberation time, i.e., the time re-
quired for the power of h(t) to decay by 60 dB [36].
Figure 4 plots the MTF, m(ω), as a function of the
modulation frequency, Fm, (i.e., the dominant fre-
quency in the temporal envelope). These theoretical
curves were calculated by substituting five reverber-
ation times (TR = 0.1, 0.3, 0.5, 1.0, and 2.0 s) and
ω = 2πFm into Eq. (21). Here, m(ω) can also be
regarded as the modulation index with respect to Fm.
These curves reveal how much the modulation index
of the envelope will be reduced from 1.0 to 0.0 depend-
ing on TR at a specific Fm. In other words, TR can be
predicted from a specific m(2πFm) at a specific Fm.
Therefore, the temporal envelope of the reverberant
impulse response, a exp(−6.9t/TR), can also be pre-
dicted using TR and the “a” in Eq. (13).

Based on the MTF concept, we can establish how
much reverberation affects a reduction in m(ω) and we
can then predict the characteristics of room acoustics
(TR) using inverse MTF. MTF-based power-envelope
inverse-filtering methods, which have aimed at restor-
ing the reduced MTF in the temporal envelope of the
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signals, have been proposed by the present authors
[37, 38]. A technique of predicting TR using the inverse
MTF from the temporal envelope of observed signal
y(t) has also been proposed [37, 38]; this was used as a
constraint for deriving the optimal restoration of the
power envelope for the original signal based on the de-
convolution relationship between the power envelopes
of y(t) and h(t). (For details, see Appendix):

T̂R = max

(
arg min

TR,min≤TR≤TR,max

∫ T

0

∣∣min
(
êx,TR(t)2, 0

)∣∣ dt

)
(22)

where T is the signal duration and êx,TR(t)2 is the set
of candidates for the restored power envelope of clean
signal x(t) via inverse MTF [37] as a function of TR.
Note that the operation of “max(arg min{·})” means
that the maximum argument of TR needs to be de-
termined from a timing point where the negative area
of êx,TR(t)2 approximately equals zero or a particular
minimum area. Here, TR,min and TR,max are the lower
and upper limited regions of TR [37].

According to Eqs. (12), (13) and (22), h(t) can
be estimated by utilizing â exp(−6.9t/T̂R) with simu-
lated white noise n̂(t). This is referred to as ĥ(t). In
this case, long-term CH(q, τ) can be directly obtained
from ĥ(t). Although this does not completely equal
the original h(t) we used in the evaluation, long-term
amplitude cepstrum CH,A(q, τ) can only be matched
to the original. This is because the MTFs of h(t) and
ĥ(t) are the same if T̂R is a complete value, and Eqs.
(20) and (21) can be regarded as having characteris-
tics of CH,A(q, τ) that can be indirectly obtained from
F−1[log |m(ω)|] with the power factor on the LTFT.
Therefore, it can be easily predicted that CH,A(q, τ)
becomes a cepstral shape of exponential decay with
respect to quefrency (dominant at lower quefrencies).

In contrast, although it is difficult to obtain a com-
plete value with regard to phase cepstrum CH,φ(q, τ),
long-term CH,φ,all(q, τ) can be estimated from them
by using Eqs. (17) and (19). As explained in Sec.
4.1, using estimated CH,φ,all(q, τ) from ĥ(t) to elim-
inate the all-pass phase component from reverberant
speech y(t) on the basis of LTFT should be done to
estimate F0. Although the estimated CH,A,min(q, τ)
can also be canceled out in Eq. (19) on LTFT, the
elimination of minimum-phase characteristics in Eq.
(19) on LTFT is not as effective for eliminating all-
pass phase characteristics so that this has not been
used in this paper. The short-term CH,A,min(q, τ) and
CH,φ,min(q, τ) to be canceled out in Eq. (19) on STFT
will be considered in the next section.

4.3 Liftering on complex cepstrum

CH,φ,all(q, τ) is canceled out in Eq. (19) on LTFT
as explained in the previous section, so that the re-
maining terms are Cflt(q, τ) and CH,min(q, τ) to ex-
tract Csrc(q, τ). Complex cepstrum analysis and the
source-filter model are used to cancel out the remain-
ing terms in Eq. (19) on STFT to take the best ad-
vantage of homomorphic processing.

There is a Hilbert transform relationship between
CA,min(q, τ) and Cφ,min(q, τ), and the latter has the
same characteristics in the positive quefrency domain
based on the minimum phase characteristics. How-
ever, short-term CH,A,min(q, τ) and CH,φ,min(q, τ) are
not the same as the long-term versions when STFT
analysis is shorter than the reverberation time. How-
ever, amplitude cepstrum CH,min(q, τ) in the lower
quefrency parts is generally larger than that in the
higher parts and this exponentially attenuates as the
quefrency increases. Therefore, the minimum phase
characteristics, CH,min(q, τ), can be assumed to con-
centrate on the lower quefrency parts.

The cepstrum components of the source character-
istics are separately concentrated on the higher que-
frency parts and those of the filter are separately con-
centrated on the lower based on the advantages of the
source-filter model, as shown in Fig. 1. Therefore, if
a component on the low quefrency part can only be
removed by liftering, the filter characteristics as well
as the dominant components of the minimum-phase
characteristics of reverberation can be canceled out in
Eq. (19). Thus, the following lifter, l(q), is used in
this paper to cancel them out in Eq. (19).

l(q) =
{

0, q ≤ qlif

1, q > qlif
(23)

where qlif = 1.25 ms. This means the upper limit for
estimated F0 is 800 Hz.
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4.4 Proposed method of estimating F0

The algorithm for estimating F0 based on complex
cepstrum analysis, the MTF concept, and the source-
filter model are explained by Fig. 5. This method is
composed of three main processes: (1) estimating the
MTF-based reverberation impulse responses and elim-
inating them from reverberant speech, (2) extracting
Xsrc(ω, τ) from the processed reverberant speech by
using liftering on the complex cepstrum based on the
source-filter model, and (3) estimating F0 from them
by using a final decision block.

Comb filtering was employed in the final two blocks
in Fig. 5. As these are commonly used in classi-
cal methods of estimation, such as in comb-filtering
and autocorrelation functions, they can be replaced
by the autocorrelation function. In addition, since the

proposed method treats a complex cepstrum, the re-
stored short-term waveform s(t, τ) from Csrc(q, τ) can
be used to estimate F0 with the autocorrelation func-
tion and/or AMDF. As the aim of this paper was to
propose a model concept for robustly estimating F0

in reverberant environments, these kinds of consider-
ations with regard to modifications in processing are
beyond the scope of this paper.

5. Evaluation of proposed method

5.1 Method

We evaluated the proposed method with (la-
beled “Proposed(Est)”) and without (labeled “Pro-
posed(Org)”) TR estimates by using the same proce-
dure and sound dataset described in Section 3. With
and without comparisons of the proposed method
were done to find out how accurate the TR estimates
were. We compared them with TEMPO, the cepstrum
method, and a modified complex cepstrum method
based on the source-filter model (labeled “SrcFlt”).
The SrcFlt method was used to find out how effec-
tively CH,φ,all(q, τ) was eliminated on the LTFT with
the proposed method.

5.2 Results and discussion

Figure 6 plots the results for the comparative eval-
uations. The correct rates within error margins of 5 %
and 10 % for the proposed and the other methods are
plotted in Figs. 6(a) and (b). Their SNRs are plotted
in Fig. 6(c). The results for the cepstrum method in-
dicate the baselines in the evaluations while those for
TEMPO (dashed-line) indicate the lower limits.

Although the overall accuracy of F0 estimates
tended to be reduced as reverberation time increased,
about a 10 % improvement in the correct rates and
about a 5 dB improvement in the SNR could be ob-
tained with the new method. There are fewer differ-
ences in the results for both the proposed methods
with and without TR estimates. This means the TR

estimates can work as well. Since a correct rate of 60
% within an error margin of 5 %, a correct rate of
75 % within an error margin of 10 %, and an SNR of
17 dB at TR = 2.0 s were achieved with the method
we propose, we concluded that MTF-based impulse
responses can be precisely estimated by utilizing TR

estimates. For example, the results for extracting F0

at TR = 2.0 with the proposed method, with and with-
out TR estimates, from the same reverberant speech
(Fig. 3(b)) are plotted in Figs. 6(d) and (e).

The SrcFlt method results indicate a slight im-
provement (about 3 % in the correct rate) to that with
the cepstrum method. In contrast, there were about
7 % and 5 dB improvements in the percent correct
rate and in the SNR by using the new method. We
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concluded that the use of complex cepstrum analy-
sis with regard to non-minimum phase characteristics
effectively enabled F0 to be estimated in reverberant
environments.

As shown in Figs. 3(b), 6(d), and 6(e), most F0-
estimation methods including the proposed method,
which does not have the U/V decision output of re-
dundant information in the unvoiced and silent sec-
tions, while TEMPO does. An important issue is how
to determine the U/V decision rules for applications
of speech-signal processing in our next stage of re-
search. This issue should be able to be resolved by
incorporating power discrimination such as that used
in TEMPO with the U/V decision rules, but this is
beyond the scope of this paper.

6. Conclusion and Future Perspectives

We evaluated the robustness and accuracy of
twelve typical methods of estimating F0 (i.e., clas-
sic ACMWL, AMDF, STFT-based, cepstrum, LPC,
and SHS algorithms, and modern IFHC, PHIA, and
TEMPO algorithms) in artificial reverberant environ-
ments using huge speech datasets. The results re-
vealed that none of these methods could accurately es-
timate F0 in reverberant environments and that their
accuracies drastically decreased as reverberation time
increased. The results also demonstrated that the best
method was cepstrum-based and that the worst was
the instantaneous frequency-based model. We found
that periodicity and/or harmonicity on the complex
cepstrum effectively enabled F0 to be estimated in re-
verberant environments.

We proposed a robust and accurate method of
estimating F0 that was based on the source-filter
model concept and the MTF concept in complex cep-
strum analysis. This method included (1) eliminat-
ing the dominant reverberation effect from observed
speech by estimating MTF-based reverberant impulse
responses and (2) extracting source information from
them by subtracting the remaining cepstrum related
to filter characteristics and the remaining reverbera-
tion through liftering. We demonstrated that our new
method is robust against reverberation and can accu-
rately estimate F0 from observed reverberant speech,
using the same comparative evaluations.

Additional improvements may be possible by mod-
ifying the F0 determination block. Further evalua-
tions using real reverberant impulse responses in room
acoustics are required for real applications. Exten-
sional improvements may be possible by incorporating
the proposed method into the U/V decision rules and
by considering the robustness of the new method in
both noisy and reverberant environments, but these
are beyond the scope of this paper.

In future work, we hope to incorporate our new
robust and accurate approach to estimate F0 into the

MTF-based process of speech dereverberation [39, 40]
and then to improve them so that they can become a
more complete blind-dereverberation method. This
is because the current method, which consists of
MTF-based power-envelope inverse filtering and car-
rier restoration using F0 information can dereverber-
ate reverberant speech in power envelopes as well as in
resynthesized waveforms, assuming that F0 can be ac-
curately estimated. As mentioned in the Introduction,
robust and accurate F0 is a significant feature of our
new method so that it should be able to contribute
to resolving the problems we previously experienced
with speech dereverberation [39, 40].
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Appendix MTF-based power envelope inverse
filtering

In the model of inverse-filtering of the power enve-
lope [37], the observed reverberant signal, the original
signal, and the stochastic-idealized impulse response
in room acoustics are denoted as bfy(t), x(t), and
h(t), respectively, and are modeled as:

y(t) = x(t) ∗ h(t) (24)
x(t) = ex(t)n1(t) (25)
h(t) = eh(t)n2(t) = a exp(−6.9t/TR)n2(t)(26)

where the asterisks “*” denote the convolution oper-
ation, ex(t) and eh(t) are the envelopes of x(t) and
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h(t), and n1(t) and n2(t) are the mutually indepen-
dent respective white noise functions, i.e.,
< nk(t),nk(t − τ) >= δ(τ). The parameters of the
impulse response, a and TR, correspond to a constant
amplitude term and the reverberation time.

In this model, the power envelope of the reverber-
ant signal, ey(t)2, can be determined as〈

y2(t)
〉

= e2
x(t) ∗ e2

h(t) = e2
y(t) (27)

where < · > is the ensemble average operation. This
equation shows that there is a significant relationship
between the envelopes; i.e., the MTF concept. Based
on this result, e2

x(t) can be recovered by deconvoluting
e2

y(t) with e2
h(t). Here, the transmission functions of

power envelopes Ex(z), Eh(z), and Ey(z) are assumed
to correspond to the z-transforms of e2

x(t), e2
h(t), and

e2
y(t). Thus, the transmission function of the power

envelope of the original signal, Ex(z), can be deter-
mined from

Ex(z) =
Ey(z)

a2

{
1 − exp

(
− 13.8

TR · fs

)
z−1

}
(28)

where fs is the sampling frequency. Finally, the power
envelope, e2

x(t), can be obtained from the inverse z-
transform of Ex(z).

Figure 7 shows an example of how power-envelope
inverse filtering is related to the MTF concept. Fig-
ure 7(a) shows a sinusoidal power envelope as origi-
nal power envelope e2

x(t) (= 0.5(1 + sin(2πFmt)); the
modulation frequency, Fm, was 10 Hz and the mod-
ulation index, m, was 1.0). Figure 7(b) shows the
original signal, x(t), calculated from e2

x(t) and a white
noise carrier, n1(t), using Eq. (25). Figure 7(c) shows
power envelope e2

h(t) calculated using Eq. (26) with
TR = 0.5 s. Figure 7(d) shows the impulse response,
h(t), of Eq. (12), calculated from e2

h(t) and a white
noise carrier, n2(t). Figures 7(e) and (f) show the
power envelope, e2

y(t), obtained from a convolution of
e2

x(t)∗ e2
h(t) and the observed reverberant signal, y(t),

obtained from a convolution of x(t) with h(t), respec-
tively. The left panels ((a), (c), and (e)) show the
power envelopes of the signals and the right panels
((b), (d), and (f)) show the corresponding signals. In
this figure, the modulation index decreased from 1.0
(in Fig. 7(a)) to 0.404 (maximum deviation of enve-
lope between the dotted lines in Fig. 7(e) relative to
that in Fig. 7(a)). Since the MTF concept shows the
modulation index as a function of Fm and TR, it can
also be shown that the decreased modulation index is
derived from m(2πFm) = 0.402 using Eq. (21) by sub-
stituting TR = 0.5 s and Fm = 10 Hz into Eq. (21).
The solid line in Fig. 7(g) indicates the restored power
envelope ê2

x(t) obtained from reverberant power enve-
lope e2

y(t) (Fig. 7(e)) using Eq. (28) with TR = 0.5 s.
We can see that power-envelope inverse filtering can
accurately restore the power envelope from a rever-
berant signal in terms of shape and magnitude.
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