<table>
<thead>
<tr>
<th>Title</th>
<th>Collision prevention platform for a dynamic group of asynchronous cooperative mobile robots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yared, Rami; Defago, Xavier; Iguchi-Cartigny, Julien; Wiesmann, Matthias</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Network, 2(4): 28-39</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-08</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/7770</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright (C) 2007 Academy Publisher. Yared, Rami; Defago, Xavier; Iguchi-Cartigny, Julien; Wiesmann, Matthias, Journal of Network, 2(4), 2007, 28-39.</td>
</tr>
</tbody>
</table>

Description

- The platform is designed to prevent collisions among a group of mobile robots working together.
- It uses asynchronous control strategies to ensure safe operation.
- The system is capable of adapting to changes in the environment.
- Applications include areas such as manufacturing and rescue operations.
Collision Prevention Platform for a Dynamic Group of Asynchronous Cooperative Mobile Robots

Rami Yared, Xavier Défago, Julien Iguchi-Cartigny∗, Matthias Wiesmann†
JAIST, Graduate School of Information Science
Japan Advanced Institute of Science and Technology
Email: {r-yared, defago}@jaist.ac.jp, julien.cartigny@unilim.fr, wiesmann@google.com

Abstract—This paper presents a fail-safe platform on which cooperative mobile robots rely for their motion. The platform consists of a collision prevention protocol for a dynamic group of cooperative mobile robots with asynchronous communications. The collision prevention protocol is time-free, in the sense that it never relies on physical time, which makes it extremely robust for timing uncertainty common in wireless networks. It guarantees that no two robots ever collide, regardless of the respective activities of the robots. The protocol is based on a fully distributed path reservation system.

It assumes a mobile ad hoc network formed by the robots themselves, and takes advantage of the inherent locality of the problem in order to reduce communication. The protocol requires neither initial nor complete knowledge of the composition of the group.

A performance analysis of the protocol provides insights for a proper dimensioning of system parameters in order to maximize the average effective speed of the robots.

Index Terms—collision prevention, mobility, fail-safe, autonomous cooperative robots, wireless ad hoc networks, distributed algorithms.

I. INTRODUCTION

There is a marked trend in distributed systems research toward studying problems in which hosts are mobile and their physical location can no longer be abstracted out. While most efforts are still aimed at mobile ad hoc networks and sensor networks, there is also a gradual realization that cooperative robotics raises many interesting new challenges with respect to distributed systems, and particularly in relation to mobility. Indeed, unlike traditional distributed systems and even more so than ad hoc or sensor networks, mobility becomes an essential part of the problems to address.

Many interesting applications are envisioned that rely on groups of cooperating mobile robots. Tasks may be inherently too complex (or impossible) for a single robot to accomplish, or performance benefits can be gained from using multiple robots [2].

As a simple and peaceful illustration, consider the following example. A decentralized team of tiny autonomous mobile robots cooperate to maintain a small oriental garden. Based on the needs of the garden, the team must carry on with many tasks concurrently, such as looking after the moss, picking undesired weeds, nourishing flowers, trimming the trees, bringing dead leaves to the compost, distributing water, etc. These tasks require the robots to almost constantly roam the same limited space, namely the garden, while moving along according to their respectively assigned tasks. Due to the nature of the system, the robots cannot share exact knowledge of each other’s location, speed, or even current intention. Nevertheless, an important challenge is to ensure that robots will not collide against each other, regardless of their respective activities.

Context and problem statement: We consider that the robots have the ability to communicate wirelessly and also that they can query their own position according a common referential, as given by a positioning system (e.g., GPS, landmarks). However, the robots do not have the ability to detect each other’s position in the environment, and they are not synchronized. In addition, communication delays are unpredictable, and actual robot motion speed is unknown.

In that context, our goal is to ensure safe motion, in the sense that, regardless of the respective activities of the robots, no two robots ever collide. The safety of the system must never be compromised, regardless of the uncertainty of the underlying system. However, the performance of the system may possibly degrade as the result of badly unstable network characteristics or erratic robot speed.

Related work: There are several approaches to address the problem of avoiding collisions between robots.

First, a widespread approach consists in using proximity sensors (e.g., infrared, sonar, laser) in the same way fixed obstacles are detected [3]–[5]. This approach is, however, sensitive to the robots respecting planned speeds, and normally requires an unbroken line-of-sight.

A second approach consists in relying on global motion planning, specifying the respective timing of robots as
well as the path to follow [6], [7]. This approach is even more sensitive to the speed of the robots, and normally requires much synchronization between the robots.

A third approach uses wireless communication as a means to synchronize the robots and their motion [8], [9]. To do so, communication is extended to satisfy strict real-time guarantees, or at least probabilistic ones [8].

With all three approaches, protocols must rely on explicit time and the speed of the robots. This is fine as long as both robots and communication meet their timing assumptions. However, if a robot happens to move too slowly or too fast, or a few messages are delayed for too long, then there is a risk of collision. In contrast, our aim is to rely as little as possible on the respect of timing assumptions from the underlying system.

Contribution: We present a fail-safe platform on which cooperative mobile robots rely for their motion, thus ensuring that no (physical) collision ever occurs between robots. Its core consists of a collision prevention protocol for a dynamic group of cooperative mobile robots with asynchronous communications. The protocol is time-free, in the sense that it never relies on physical time (as given by a clock), thus making it extremely robust for timing uncertainty common in wireless networks. Furthermore, although the communication range may be limited, no routing is needed as robots only communicate with their direct neighborhood.

This paper extends work that we presented recently at an international conference [1]. The main additions are that we present a more rigorous specification for the collision prevention problem, and include proofs of correctness of the protocol and its properties.

Structure of the paper: The remainder of the paper is structured as follows. Section II describes the system model, definitions, and terminology. Section III defines the collision prevention problem and specification. In Section IV, we present the collision prevention protocol. Section V explains in detail the deadlock and starvation problem. Section VI provides the proofs that the protocol achieves the safety and the liveness properties. Section VII presents a performance analysis and provides insights to maximize the average effective speed of the robots. Section VIII discusses other related work, and Section IX concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

A. Model

We consider a dynamic distributed system of mobile robots \(S = \{R_i\} \) in which each robot has a unique identifier. The total composition of the system, of which robots have only a partial knowledge, can change dynamically. Robots have access to a global positioning device that, when queried by a robot \(R_i \), returns \(R_i \)'s position with a bounded error \(\varepsilon_{gps} \). The robots communicate using wireless communication with a limited range \(D_{tr} \). If the distance between two robots \(R_i \) and \(R_j \) is less than \(D_{tr} \), then the two robots can communicate with each other. Communications assume retransmission mechanisms such that communication channels are reliable. The system is asynchronous in the sense that there is no bound on communication delays, processing speed and on robots’ speed of movement. Each robot has access to a neighborhood discovery primitive named \(\text{ND} \text{Discover} \).

Neighborhood discovery (\text{ND} \text{Discover}):

Characteristics: The neighborhood discovery primitive called \(\text{ND} \text{Discover} \) is a function that enables a robot to detect its local neighbors. These neighbors are within one communication hop and satisfy a certain known predefined condition.

Implementation: \(\text{ND} \text{Discover} \) can be implemented as the traditional neighborhood discovery primitive of mobile ad hoc networks. An implementation of \(\text{ND} \text{Discover} \) primitive can be performed by Geocasting\(^2\) a ping message in a geographical region centered on the robot at the time of calling \(\text{ND} \text{Discover} \) with a radius within the transmission range. All the robots that receive the message and satisfy the predefined condition acknowledge the caller of \(\text{ND} \text{Discover} \).\(^3\)

In wireless environments, the delays in delivering messages are very difficult to anticipate. There are several reasons for the asynchrony of communications in wireless environments, such as the delays required to access the shared medium, due to competition with other nodes. The competition to access the wireless medium causes message loss due to interference, collisions between messages, and fading. Therefore, a retransmission mechanism is needed to ensure message delivery in wireless environments.

Figure 1 illustrates the \(\text{ND} \text{Discover} \) primitive. The robot \(R_a \) starts \(\text{ND} \text{Discover} \), the set of robots returned by \(\text{ND} \text{Discover} \) is the set \(\{R_b, R_c, R_d\} \). The robot \(R_b \) is located within the reservation range \(D_{ch} \), the robots \(R_c \) and \(R_d \) request zones that intersect with the reservation circle which is the circle centered on \(R_a \) with radius \(D_{ch} \). The robots \(R_e \) and \(R_f \) request zones that do not intersect with the reservation circle of \(R_a \).

Node presence detector: Detecting the presence of nodes in an asynchronous system where there are

\[^1\] The wormhole of our platform is encapsulated in the primitive Neighborhood Discovery which is available through most wireless communication devices.

\[^2\] Geocast is defined by the transmission of a message to a predefined geographical region.

\[^3\] An implementation of \(\text{ND} \text{Discover} \) requires timing property for transmitting and processing the ping messages. \(\text{ND} \text{Discover} \) relies on very lightweight ping messages carrying only the position coordinates of the caller.
no bounds on communication delays, cannot be solved deterministically [10]. The impossibility is based on the fact that, in such systems, a very slow node can not be distinguished from an absent one. Thus, a timing property is required to implement the primitive $\textit{ND}iscove\textit{r}$.

Timing property: The primitive $\textit{ND}iscove\textit{r}$ relies on the following timing property: there exists a known upper bounded time delay called T_{nd} such that the following property holds:

For any robot R_i, if R_i starts $\textit{ND}iscove\textit{r}$ at some time t, then R_i receives an acknowledgment from every robot R_j located in its communication range and satisfying a certain predefined condition, at a time t' such that: $t' - t \leq T_{\text{nd}}$.

The protocol is based on a Neighborhood Discovery service, which is the only synchronous part of the system. The delay T_{nd} is specified large enough to cover the necessary retransmissions and hence ensure the delivery of messages related to the Neighborhood Discovery service.

B. Definitions and terminology

Paths : We denote by chunk a line segment along which a robot moves. A path of a robot is a continuous route composed of a series of contiguous chunks.

Errors : The are three sources of geometrical inexactitude concerning the position and the motion of a robot. An error related to the position information provided by the positioning system is denoted ε_{gps}. In addition, the motion of a robot creates two additional sources of errors. The first error is related to the translational movement, denoted: ε_{tr}. The second error is related to the rotational movement, denoted: ε_{θ}.

Zones : A zone is defined as the area needed by a robot to move safely along a chunk. This includes provisions for the shape of the robot, positioning error, and imprecision in the moving of the robot. The zone must be a convex shape and contain the chunk the robot is following. Figure 2 shows the zone Z_i for a robot R_i moving along a chunk AB, where d represents the radius of the geometrical shape of R_i. The zone Z_i is composed of the following three parts, illustrated in Figure 2: the first part, named pre-motion zone and denoted $\textit{pre(Z}_i\text{)}$, is the zone that robot R_i possibly occupies while waiting (before moving). The second part, named motion zone and denoted $\textit{motion(Z}_i\text{)}$, is the zone that robot R_i possibly occupies while moving. The third part, named post-motion zone and denoted $\textit{post(Z}_i\text{)}$, is the zone that robot R_i possibly reaches after the motion.

III. COLLISION PREVENTION: SPECIFICATION

The basic idea is essentially a mutual exclusion on geographical zones. The algorithm consists of a distributed path reservation system, such that a robot must reserve a zone before it moves. When a robot reserves a zone, it can move safely inside the zone.

All robots run the same protocol. When a robot wants to move along a given chunk, it must reserve the zone that surrounds this chunk. When this zone is reserved, the robot moves along the chunk. Once the robot reaches the end of the chunk, it releases the zone except for the area that the robot occupies. When moving along a path, the robot repeats this procedure for each chunk along the path.

We say that a robot R_i is the owner of a zone Z_i (Z_i is granted to R_i), if R_i reserves Z_i and did not release it yet. A robot R_i releases the zone Z_i that it has owned and keeps only a part of $\textit{post}(Z_i)$ under its reservation. The part of the zone that has been released by R_i is denoted: $\textit{RelZone}_i$. Figure 3 shows that the pre-motion zone $\textit{pre}(Z_i)$ is entirely included within the previous post-motion zone, and presents also the current and the previous positions of R_i.

$\textit{RelZone}_i = \textit{pre}(Z_i) \cup \textit{motion}(Z_i) \cup \textit{SubPost}(Z_i)$, where: $\textit{SubPost}(Z_i) \subset \textit{post}(Z_i)$

$\textit{pre}(Z_i) \subset \textit{Previous}(\textit{post}(Z_i))$

The relationship between robots and zones changes in time. A zone is said to be free if it is not owned by any robot. In order to resolve the collision prevention problem, and to keep the system of mobile robots always in progress towards its final goal, certain properties of safety and liveness must hold. If a robot requests a zone, then eventually it owns this zone or receives an exception. We say that the robot owns the zone and all the points contained in this zone. A given point can be owned by only one robot. If a robot owns a zone, it eventually releases that zone.
A. Reservation range property

Robots have a limited wireless transmission range. It follows that a reserved zone by a robot must be entirely within a circle centered on the robot with a radius within half of the transmission range. The motivation behind this maximal value is that each robot can communicate with all the robots that it might collide with. Figure 4 illustrates the reservation range property.

The collision prevention protocol provides a parameter named reservation range and denoted Dch, that is within half of the transmission range ($Dch \leq \frac{D}{2}$), such that a reserved zone by a robot is entirely within a circle centered on the robot with a radius equals to the reservation range.

B. Properties

Property 1 (Mutual exclusion): If a zone Z_i of a robot R_i intersects with a zone Z_j of a robot R_j, then either R_i or R_j is the owner of its zone. Consequently, a point in the plane can be owned by only one robot.

Property 2 (Liveness): If a robot R_i requests a zone Z_i, then eventually (R_i owns Z_i or an exception is raised).

Exception is potentially raised by the protocol only if a deadlock or a starvation situation occurs.

The following property must hold to ensure the integrity of the system. If a robot owns a zone, then eventually it leaves that zone. If a robot leaves a zone, then it releases that zone.

IV. Collision prevention: locality-preserving protocol

All robots run the same distributed algorithm. When a robot R_i requests a zone Z_i, R_i must determine all the robots R_j that conflict with R_i. The robots R_j are located within one communication hop with respect to R_i, because the reservation range of the robots must be within half of the transmission range. The Neighborhood Discovery primitive returns the set of neighbors Neighbor_i within one communication hop with respect to R_i. Therefore, R_i can determine the set of robots R_j that conflict with R_i. R_i multicasts Z_i to the list of neighbors Neighbor_i, then R_i waits until it receives the response messages. Consequently, R_i determines the set of robots that it conflicts with. Intuitively, R_i performs a pair-wise negotiation with each of the robots that R_i conflicts with. Therefore, R_i and each robot R_j decide consistently about the scheduling of their requests. So, a dynamic scheduling for the conflicting requests takes place. When R_i receives a release message from all the robots that R_i waits for, it reserves Z_i and becomes the owner of Z_i. After R_i has reached the post-motion zone, R_i releases Z_i except for the area occupied by R_i.

A. Protocol variables

We present the variables used by the collision prevention protocol.

- Z_i is the zone currently requested or owned by robot R_i.
- Neighbor_i represents the set of robots that may possibly conflict with robot R_i (i.e., the output of the neighborhood discovery primitive NDiscover).
- G_i is a set of $\{(R_j, Z_j)| Z_j \in \text{Requested}, Z_j \text{the requested or the owned zone of } R_j, Z_j \text{intersects with } Z_i\}$.
- After_i is the list of robots waiting for R_i until it releases its zone.
- Before_i is the list of robots that R_i waits for.
- Depend_i is the dependency set. If a robot R_i requests Z_i then it conflicts with a set of robots each of which conflicts with another set of robots and so on. The dependency set is the union of G_k for each robot R_k related to R_i by the transitive closure of the relation conflict.
- Dag is a wait-for graph such that the vertices represent robots and a directed edge from R_i to R_j represent that R_i waits for R_j to release Z_j.
- msg is a message exchanged during the run of the protocol. Each msg message consists of three fields, the first is the type of the message which belongs to the set $\{\text{REQUEST, RELEASE, WAITFORME, ACK, PROHIBITED}\}$, the second field is the identifier of the robot sending the message, and the third field is the body of the message which consists of the specifications and the parameters of the requested (or owned) zone. The type REQUEST denotes a request message, RELEASE denotes a release message, and the type WAITFORME means that the receiver of the message must wait for the sender. The type ACK indicates the sender and receiver do not conflict. The type PROHIBITED indicates that the receiver requests a zone that intersects with the pre-motion zone of the stationary sender, which does not move any more.
- Request_i is a boolean indicates that robot R_i has a requested zone and that R_i has determined its wait-for graph Dag_i.

B. Protocol phases

We explain the phases of the protocol with respect to a robot R_i. The robot R_i is located in the pre-motion zone $\text{pre}(Z_i)$. When robot R_i requests a new zone Z_i, it proceeds as follows.

1) Discovery phase: R_i calls the neighborhood discovery primitive NDiscover, to determine the set Neighbor_i. This set consists of robots R_j, that may possibly come in conflict with R_i for Z_j, since Z_j intersects with the circle centered on R_i with radius equals to the reservation range.

2) Negotiation phase: The Negotiation phase of R_i starts by the determination of the set G_i which consists of the robots of Neighbor_i that conflict with R_i. The output of the Negotiation phase is the wait-for graph, Dag_i. Thus, R_i determines the set of robots that it waits for. If R_i receives a request from a robot R_k (Z_k intersects with Z_i) and
detector). The Negotiation phase proceeds as follows.

- \(R_i \) multicasts \(msg_j = (\text{REQUEST}, i, Z_i) \) indicating that \(R_i \) requests \(Z_i \) to all the members of \(\text{Neighbor}_i \), carrying the parameters of \(Z_i \). This multicast does not require any routing because the neighbors are located within one communication hop with respect to \(R_i \).

- \(R_i \) waits until it receives a response message \(msg_j \) from each member \(R_j \in \text{Neighbor}_i \).

- After \(R_i \) has received the messages \(msg_j \), \(R_i \) determines the set of robots \(G_i \) that conflict with \(R_i \). \(G_i \) is obtained from the received messages \(msg_j \) after discarding the release messages \(msg_j = (\text{RELEASE}, j, Z_i) \), and discarding also the request messages \(msg_j = (\text{REQUEST}, j, Z_i) \) such that \(Z_j \) does not intersect with \(Z_i \). The set \(G_i \) contains two disjoint subsets of robots: the first subset denoted \((G1)_i \) is composed of robots \(R_j \) such that \(R_i \) does not belong to \(G_j \) (i.e., \(R_i \) must wait for \(R_j \). \(R_i \) has sent the message \(msg_j = (\text{WAITFORME}, j, Z_j) \)). The second is the complementary subset denoted \((G2)_i \), which is composed of robots \(R_j \) such that \(R_i \) belongs to \(G_j \). Thus \(R_i \) must wait for all the robots of \((G1)_i \), in addition to a subset of \((G2)_i \). (This subset would be determined by the ConflictResolver and the PathologicDetector).

- \(R_i \) determines the dependency set \(\text{Depend}_i \) by applying an Echo algorithm inspired from [11]. The Echo algorithm is explained as follows. \(R_i \) multicasts a token message to each robot that belongs to \(G_i \). Upon receipt of the first message of \(R_i \), by a robot \(R_k \) from \(R_j \) (\(R_j \) is called the father of \(R_k \)), it multicasts the message of \(R_i \) to all the robots of \(G_k \) except its father \(R_j \). When a robot \(R_k \) has received the token message of \(R_i \) from all the robots of \(G_k \), \(R_k \) adds the contents of \(G_k \) to the token message and sends it (echo) to the father \(R_j \). When \(R_i \) has received the token message from all the robots of \(G_i \), it obtains the dependency set\(^4\). The motivation for building the dependency set is to enable the conflicting robots to build the wait-for graph \(\text{Dag}_\text{wait} \) in a consistent manner and so to avoid cyclic wait-for relations.

- \(R_i \) uses the dependency set \(\text{Depend}_i \) to construct \(\text{Dag}_\text{wait} \). The vertices represent the robots of the set \(\text{Depend}_i \) and a directed edge from \(R_k \) to \(R_j \) means that \(R_k \) waits for \(R_j \). \(\text{Dag}_\text{wait} \) is built as follows. \(R_i \) starts by establishing the imposed wait-for relations (Subsection IV-C), and then it breaks ties for the remainder of the conflicting robots by the ConflictResolver. (Subsection IV-E) At first, \(R_i \) builds the \text{WaitFORME} graph, denoted \(\text{Dag}_\text{wm} \). This graph corresponds to the relation between \(R_i \) and \(R_j \) from the set \((G1)_i \). The next step, \(R_i \) builds \(\text{Dag}_\text{pg} \) by adding the directed edges imposed by the pathological intersection situations, explained in section V. After having established the imposed wait-for relations, \(R_i \) adds the directed edges that result from resolving the conflicts according to a specified policy. The conflicting robots build the directed acyclic graph \(\text{Dag}_\text{wait} \) in a consistent manner.

- According to the graph \(\text{Dag}_\text{wait} \), \(R_i \) determines \(\text{Before}_i \) the set of robots that \(R_i \) waits for. \(\text{Before}_i = (G1)_i \cup \text{subset}(G2)_i \). \(R_i \) dynamically updates the set \(\text{After}_i \) by adding robots \(R_k \) that does not belong to \(G_i \) and whose requested zone \(Z_k \) intersects with \(Z_i \). (\(R_i \) sends to \(R_k \) the message \(msg_i = (\text{WAITFORME}, i, Z_i) \)). \(R_i \) keeps updating the set \(\text{After}_i \) until \(R_i \) releases \(Z_i \).

- \(R_i \) waits until it receives a release message from each robot in the set \(\text{Before}_i \).

3) Reservation phase: When \(R_i \) has received a release message from all the robots of the set \(\text{Before}_i \), or (when the set \(\text{Before}_i \) is empty), \(R_i \) reserves \(Z_i \) and becomes the owner of \(Z_i \).

4) Release phase: When \(R_i \) reaches the post-motion zone \(\text{post}(Z_i) \), it releases \(Z_i \) except the place that \(R_i \) occupies. \(R_i \) multicasts a release message to all the robots that belong to the set \(\text{After}_i \). These robots are within one communication hop with respect to \(R_i \), due to the reservation range property. Therefore, the robots of the set \(\text{After}_i \) can receive the release message of \(R_i \).

C. Imposed wait-for relations

The imposed wait-for relations are the \text{WAITFORME} relations in addition to the wait-for relations imposed by the pathological intersection situations.

\text{WAITFORME_Handler}: The input of the \text{WAITFORME} Handler is the dependency set \(\text{Depend}_i \), and the output is the directed acyclic graph \(\text{Dag}_\text{wm} \). This handler generates \(\text{Dag}_\text{wm} \) by establishing the imposed wait-for directed edges that correspond to the situation where \(R_i \) must wait for \(R_j \) because \(R_j \) is a member of the set \((G1)_i \). The relation \text{WAITFORME} is transitive, so if a robot \(R_i \) must wait for \(R_j \) and the robot \(R_j \) must wait for \(R_k \) then \(R_i \) must wait for \(R_k \). Therefore, no cycles can be created in the graph \(\text{Dag}_\text{wm} \).

D. PathologicDetector

The pathological intersection situations discussed in section V lead to a deadlock situation or potentially to a starvation situation. Consequently, there exist pathological intersection situations between two zones \(Z_i \) and \(Z_j \) that

\(^4\) The dependency set is piggybacked with the messages of type \text{WAITFORME}. \(R_i \) computes the dependency set when it does not receive any \text{WAITFORME} message.
Algorithm 1 Collision prevention protocol (Code for robot \(R_i \))

1: **Initialization:** \(G_i := \emptyset \); \(\text{Before}_i := \emptyset \); \(\text{After}_i := \emptyset \); \(\text{Neighbor}_i := \emptyset \);
2: \(\text{Requested}_{\text{zone}}_i := \perp \); \(\text{Request}_{\text{pending}}_i := \text{false} \);
3: when receive \((\text{REQUEST}, k, Z_k) \) from \(R_k \)
4: if \(\text{Request}_{\text{pending}}_i \) then
5: \(\text{Send}(\text{WAITFORME}_i, i, Z_j) \) to \(R_k \) \{\(R_i \) piggybacks the wait-for graph \(\text{Dag}_{\text{wait}} \)\}
6: \(\text{After}_i = \text{After}_i \cup \{R_k\} \{ R_i \) keeps updating the set \(\text{After} \) \} until \(R_i \) releases \(\text{RelZone}_i \)
7: end if
8: if \(Z_k \cap Z_i = \emptyset \) then
9: \(\text{Send}(\text{ACK}, i) \) to \(R_k \)
10: end if
11: \(\{ \text{If} \ R_i \in \text{Neighbor}_i \text{ and} \ Z_k \cap Z_i \neq \emptyset \text{ then the Pathologic_Detector or the Conflict_Resolver handles it.} \} \)
12: else
13: if \(\text{Requested}_{\text{zone}}_i = \perp \) then
14: \(\text{Send}(\text{PROHIBITED}, i, \text{pre}(Z_j)) \) to \(R_k \)
15: else
16: \(\text{Send}(\text{ACK}, i, \perp) \) to \(R_k \)
17: end if
18: end if
19: end if
20: end when
21: **procedure Request(Z_i)**
22: \(\text{Requested}_{\text{zone}}_i := Z_i \)
23: **Phase 1:**
24: \(\text{Neighbor}_i := \text{NDiscover}() \) \{Neighborhood Discovery\}
25: **Phase 2:**
26: multicast \((\text{REQUEST}, i, Z_j) \) to \(\text{Neighbor}_i \) \{Negotiation\}
27: \(\text{wait until} \) receive response from all \(R_j \in \text{Neighbor}_i \)
28: build the set \(G_i := (R_j, Z_j) \) such that \(R_j \in \text{Neighbor}_i \) and \(Z_j \) intersects with \(Z_i \), \(\text{Depend}_i := \text{Dependency set} \{\text{Depend}_i \) is received with a WAITFORME message.\}
29: \(\text{If} \ R_i \) does not receive any WAITFORME message, then \(\text{Depend}_i \) is computed using the echo algorithm.
30: \(\text{Dag}_{\text{wm}} := \text{WAITFORME}_i \) \{\text{Wait-for graph}\}
31: \(\text{Dag}_{\text{wp}} := \text{Pathologic_Detector}(\text{Dag}_{\text{wm}}, \text{Depend}_i) \)
32: \(\text{Dag}_{\text{wait}} := \text{Conflict_Resolver}(\text{Dag}_{\text{wp}}, \text{Depend}_i, \text{policy}) \)
33: \(\text{Request}_{\text{pending}}_i := \text{true} \)
34: build the set \(\text{Before}_i \), and update the set \(\text{After}_i \) according to the directed acyclic graph \(\text{Dag}_{\text{wait}} \)
35: \(\text{if} \ \text{Before}_i \neq \emptyset \) then
36: when receive \((\text{RELEASE}, j, Z_j) \) from \(R_j \in \text{Before}_i \)
37: \(G_i := G_i \setminus \{R_j, Z_j\} \) \{\(R_i \) removes the entry of \(R_j \) from the set \(G_i \)\}
38: end when
39: end if
40: end Request
41: **Phase 3:**
42: \(\text{reserve}(Z_i) \) \{\(R_i \) reserves the zone \(Z_i \)\}
43: **procedure Release(Z_i)**
44: **Phase 4:**
45: \(\text{when} \ R_i \) reaches the post-motion zone \(\text{post}(Z_i) \)
46: \(\text{if} \ \text{After}_i \neq \emptyset \) then
47: \(\text{multicast}(\text{RelZone}_i) \) to \(\text{After}_i \) \{\(R_i \) multicasts a release message to all \(R_j \) of the set \(\text{After}_i \)\}
48: end if
49: end when
50: end Release

Algorithm 2 \text{WAITFORME}_i \text{.Handler} algorithm

1: function \text{WAITFORME}_i \text{.Handler} (\text{Depend}_i) as follows:
2: for all \((R_x, R_y) \in \text{Depend}_i \) do
3: \(\text{if} \ R_x \) must wait for \(R_y \) \{\text{WAITFORME}\} then
4: \(\text{Dag}_{\text{wm}} := \text{Dag}_{\text{wm}} \cup \text{DirEdge}(R_x, R_y) \) \{\(R_x \) must wait for \(R_y \), because \(R_y \in G_x \), but \(R_x \notin G_y \}\)
5: end if
6: \(\text{if} \ \text{DirEdge}(R_x, R_y) \) and \(\text{DirEdge}(R_y, R_x) \) then
7: \(\text{Dag}_{\text{wm}} := \text{Dag}_{\text{wm}} \cup \text{DirEdge}(R_x, R_y) \) \{The relation \text{WAITFORME} is transitive\}
8: end if
9: end for
10: return \(\text{Dag}_{\text{wm}} \)
11: end

![Figure 5](image-url) Pathological intersection situations impose wait-for relations between \(R_i \) and \(R_j \).

Figure 5. Pathological intersection situations impose wait-for relations between \(R_i \) and \(R_j \).

impose certain wait-for relations between the requesting robots. The imposed wait-for relations are presented as follows.

1. \([Z_i \cap \text{pre}(Z_j) \neq \emptyset \] and \(\text{post}(Z_i) \cap \text{post}(Z_j) = \emptyset \] \) \(\Rightarrow \) \(R_i \) must wait-for \(R_j \).
2. \([Z_i \cap \text{post}(Z_j) \neq \emptyset \] and \(\text{post}(Z_i) \cap \text{post}(Z_j) = \emptyset \] \) \(\Rightarrow R_j \) must wait-for \(R_i \).

Figure 5 illustrates the imposed wait-for relations due to pathological intersection situations. Figure 5(a) illustrates that \(R_i \) must wait for \(R_j \), and Figure 5(b) illustrates that \(R_j \) must wait for \(R_i \).

The input of the \text{Pathologic_Detector} is the dependency set \text{Depend}_i and the graph \text{Dag}_{\text{wm}}. It outputs the graph \text{Dag}_{\text{wp}} by adding the directed edges according to the imposed wait-for relations due to the two previous pathological intersection situations.

If a cycle is created by adding a directed edge, then the \text{Pathologic_Detector} calls the \text{Deadlock_Resolution} policy. The cycle is created because of the two possible pathological situations.

- A pathological intersection case which leads to a deadlock situation between \(n \) robots (\(n > 2 \)). In case of three robots, for example, \(R_a, R_b, \) and \(R_c \), \(Z_a \) intersects with \(\text{pre}(Z_b) \), \(Z_b \) intersects with \(\text{pre}(Z_c) \), and \(Z_c \) intersects with \(\text{pre}(Z_a) \). It is the general form of the deadlock situation.
- \(Z_i \) intersects with \(\text{post}(Z_j) \) and \(R_i \) must wait for \(R_j \) because of an imposed wait-for relation.

When the \text{Pathologic_Detector} detects a deadlock or a starvation situation, then it calls the \text{Deadlock_Resolution} policy, which handles the deadlock or the starvation situation. If the \text{Deadlock_Resolution} policy does not find
a solution then an exception is raised by the protocol. The Deadlock Resolution policy is discussed in subsection IV-F. Therefore, the graph Dag_{pg} has no cycles.

E. Conflict Resolver

The Conflict Resolver breaks ties and determines the wait-for relation between two conflicting robots according to a conflict resolution policy, if there is no imposed wait-for relation between the two robots. A conflict resolution policy can be as follows. R_i waits-for R_j if the number of the previous requested zones by R_i is higher than that of R_j. The conflict resolution policy is specified by the robotic application. For example, the robot farther to the intersection zone waits-for the closer one, and in case of an equidistance situation, their identifiers are used to break the symmetry. The Conflict Resolver generates the graph Dag_{wait} by breaking ties between each pair of the robots of the dependency set $Depend_i$. The graph Dag_{wait} is generated in a consistent manner, such that each robot of the set $Depend_i$ generates the same graph Dag_{wait} starting from the graph Dag_{pg} by adding the directed edges representing the wait-for relations after resolving the conflict between each pair of the conflicting robots. The dependency set is scanned according to the increasing order of the identifiers of robots and the conflict resolution policy is applied. If adding a directed edge creates a cycle, then the new directed edge is reversed to break the cycle.

Algorithm 3 Conflict Resolver algorithm

1: function Conflict Resolver (Dag_{pg}, Depend i, policy)
2: $Dag_{wait} := Dag_{pg}$
3: for each robot’s identifier x from MINID to MAXID such that $R_x \in Depend_i$, do
4: for each robot’s identifier $y > x$ to MAXID such that $R_y \in Depend_i$, do
5: if Conflict(R_x, R_y) and no edge (R_x, R_y) then
6: DirEdge(R_x, R_y) := policy(R_x, R_y) (apply the conflict resolution policy)
7: end if
8: end for
9: end if
10: return Dag_{wait}

F. Deadlock Resolution policy

The Deadlock Resolution policy handles deadlock and starvation situations detected by the Pathologic Detector. The policy used to resolve a deadlock or a starvation situation is based on a Request Preemption strategy. For a deadlock situation between two requests (R_i, Z_i) and (R_j, Z_j), the Deadlock Resolution policy preempts one of the two requests in a deterministic manner. If the request (R_i, Z_i) is preempted, then R_i cancels its request of the zone Z_i.

R_i retries its request (R_i, Z_i) at a later time, by restarting the protocol for the same zone Z_i. If the request is still preempted after a certain number of retrials, then the protocol raises an exception.

The upper layer (e.g., motion planning layer) may then catch the exception and applies some alternative strategy. For instance, in the case of motion planning, the strategy may simply consist in retrying with an alternate route. Of course, if no alternative strategy is available, then that upper layer may itself propagate the exception to higher layers.

G. Optimizations and discussion

Pipelining of requests. Actually, in the collision prevention protocol, a robot R_i starts to request the next zone when it reaches the post-motion zone post(Z_i). A possible optimization of the protocol performance can be achieved as follows. R_i starts to request the next zone when it reserves Z_i. So, R_i performs the negotiation for the next zone in parallel while moving inside the reserved zone Z_i.

The Deadlock Resolution policy applies an application-based strategy in order to resolve deadlock and starvation situations. The performance of the protocol depends on the number of retrials of the same zone and also on the time durations between the retrials.

A robot can know, without any additional cost, the parameters of the requested zones in its local neighborhood region due to the multicast and antenna properties in wireless networks. So, if possible, the motion planning layer can plan an alternative chunk of a robot’s path that avoids highly contended areas.

V. DEADLOCK AND STARVATION SITUATIONS

There are pathological intersection cases between two zones Z_i and Z_j, such that neither R_i nor R_j can be granted its requested zone (deadlock situation). If a robot R_i could not be granted its requested zone Z_i, we say that robot R_i starves. (starvation situation)

Certain pathological intersection cases constitute necessary conditions but not sufficient for a potential starvation situation.

Definition 1 (Deadlock situation): We say that robot R_i and robot R_j are in a deadlock situation when neither R_i can be granted Z_i nor R_j can be granted Z_j, due to a pathological intersection between the two zones Z_i and Z_j. This pathological intersection occurs if the requested zone Z_i intersects with the pre-motion zone $pre(Z_j)$ and the requested zone Z_j intersects with the pre-motion zone $pre(Z_i)$.

The pathological intersection case which leads to a deadlock situation between two robots R_i and R_j is the following.

Pathological situation 1 (Z_i, Z_j): $[Z_i \cap pre(Z_j) \neq \emptyset]$ and $[Z_j \cap pre(Z_i) \neq \emptyset]$.

The deadlock situation is illustrated in Figure 6(a).
Resolution policy is a deadlock situation between robots R_i and R_j. If $Z_i \cap \text{pre}(Z_j) \neq \emptyset$ and $Z_j \cap \text{pre}(Z_i) \neq \emptyset$, then R_x must wait for R_y and the robot R_y must wait for R_z, and R_z must wait for R_x. (Algorithm 2, Line 7). Therefore, the graph Dag_{pg} has no cycles.

- The graph Dag_{pg} has no cycles, because if a cycle is created, then the Deadlock Resolution policy is called to break the cycle. So, the graph Dag_{pg} has no cycles.

- We prove that the graph Dag_{wait} is a directed acyclic graph.

Dag_{wait} is generated starting from Dag_{pg} which is a directed acyclic graph. If adding a directed edge to Dag_{wait} creates a cycle, then the direction is reversed. We prove that reversing the direction of the edge does not create a cycle and hence the wait-for graph Dag_{wait} is a directed acyclic graph.

For a graph with no cycles that consists of three vertices $\{R_a, R_b, R_c\}$, if adding a directed edge creates a cycle, then it is obvious that reversing the direction of the edge does not create a cycle. For a graph with no cycles that consists of more than three vertices, the proof proceeds by contradiction.

Figure 8 shows that when the directed edge (R_c, R_a) is added to Dag_{wait}, it creates the cycle (R_a, R_b, R_c, R_a). So, the graph has already the directed edges: (R_a, R_b) and (R_b, R_c). Figure 9 shows that the edge (R_c, R_a) is replaced by (R_a, R_c).

Let us assume that the directed edge (R_a, R_c) creates a cycle (R_a, R_c, R_d, R_a). So, the graph has already the directed edges: (R_c, R_d) and (R_d, R_a). Consequently, the graph has already the cycle $(R_a, R_b, R_c, R_d, R_a)$ (the graph has already a cycle), which leads to a contradiction. Therefore, if adding a directed edge creates a cycle, then reversing the direction would not create a cycle in Dag_{wait}.

Therefore, the wait-for graph Dag_{wait} has no cycles.

Lemma 2: The wait-for relations between the robots related by the transitive closure of the relation conflict, are generated consistently, so the robots build the same wait-for graph Dag_{wait}.

Proof: The set Depend_c consists of the union of G_b for each robot R_b related to R_c by the transitive closure of the relation conflict, so Depend_c equals to Depend_k.

The robots that R_i conflicts with, belong to G_i or to Depend_c. We prove that the set G_c is sufficient to build the wait-for graph Dag_{wait} consistently.

Let us consider three conflicting robots R_a, R_b and R_c, such that each zone intersects with the two other zones. Let us assume that the set G_a contains R_b, but does not contain R_c. ($R_a \in \text{Depend}_a$). Assume that the set G_b contains both R_a and R_c. When the dependency
set \(\text{Depend}_b \) is determined, then \(R_b \) deduces the wait-for relation between \(R_a \) and \(R_c \) and that \(R_e \) waits for \(R_a \), since the \(Z_a \) intersects with \(Z_e \) and \(R_c \not\in G_a \).

If \(R_a \) receives the set \(G_a \) (due to the dependency set \(\text{Depend}_b \)) before \(R_a \) receives the request message of \(R_e \), then \(R_a \) deduces that a request message of \(R_c \) eventually arrives, and that \(R_c \) belongs to the set \(\text{After}_a \), since \(Z_a \) intersects with \(Z_e \).

If \(R_e \not\in G_a \) and \(R_c \not\in G_b \), then \(R_c \in \text{After}_a \) and \(R_c \in \text{After}_b \), so \(R_e \) waits for both \(R_a \) and \(R_b \).

The wait-for graph \(\text{Dag}_{\text{wait}} \) is generated based on the set \(\text{Depend}_d \), by applying a sequence of deterministic functions. The graph \(\text{Dag}_{\text{wait}} \) is generated according to the imposed wait-for relation \(\text{WAITFORME} \). The graph \(\text{Dag}_{\text{pre}} \) is generated starting from the graph \(\text{Dag}_{\text{wait}} \) according to the imposed wait-for relations of the pathological situations.

The Conflict Resolver defines a deterministic function (policy) to break ties between conflicting robots, starting from the graph \(\text{Dag}_{\text{pre}} \) and the set \(\text{Depend}_d \) which is scanned according to the increasing order of the robots identifiers. Therefore, the wait-for graph \(\text{Dag}_{\text{wait}} \) is generated consistently, and the robots that are related by the transitive closure of the relation conflict build the same wait-for graph.

Theorem 1 (Mutual Exclusion): If a zone \(Z_i \) of a robot \(R_i \) intersects with a zone \(Z_j \) of a robot \(R_j \), then either \(R_i \) or \(R_j \) (but not both) is the owner of its zone.

Proof: If \(Z_i \) intersects with \(Z_j \), then \(R_i \) and \(R_j \) are within the transmission range of each other, (reservation range property), thus \(R_i \) and \(R_j \) can communicate.

Let us assume that \(R_i \in G_i \).

- If \(R_i \not\in G_j \), then \(R_i \) must wait for \(R_j \) (\(\text{WAITFORME} \) relation). If \(Z_j \) intersects with \(\text{post}(Z_i) \), then this situation is detected by the Pathologic Detector and the request \((R_i, Z_i)\) is preempted.
- If \(R_i \in G_j \) and there is no deadlock situation between \(R_i \) and \(R_j \), then the wait-for relation is determined either by the Pathologic Detector if there is an imposed wait-for relation due to pathological situations, or by the Conflict Resolver. If there is a deadlock situation between \(Z_i \) and \(Z_j \), then one of the requests is deterministically selected and preempted.

Consequently, there is a wait-for relation between \(R_i \) and \(R_j \). According to Lemma 2 the wait-for relations between conflicting robots are generated consistently, so \(R_i \) and \(R_j \) establish the same wait-for relation and either \(R_i \) waits for \(R_j \) or \(R_j \) waits for \(R_i \).

Let us assume that \(R_i \) waits for \(R_j \). When \(R_i \) releases \(\text{RelZone}_j \), then \(R_i \) owns \(Z_i \). When the robot \(R_i \) is the owner of \(Z_i \), the robot \(R_j \) is deprived from the ownership of \(Z_j \). The robot \(R_j \) just keeps a part of \(\text{post}(Z_j) \) under its reservation. \(Z_i \) does not intersect with the part of \(\text{post}(Z_j) \) that is still owned by \(R_i \), because:

1) \(\text{pre}(Z_i) \cap \text{post}(Z_j) = \emptyset \) (Proof by contradiction).

If \(\text{pre}(Z_i) \) intersects with \(\text{post}(Z_j) \), then \(R_j \) had to wait for \(R_i \) according to the imposed wait-for relations. This leads to a contradiction, since we assume that \(R_i \) has wait for \(R_j \).

2) \(\text{motion}(Z_i) \cap \text{post}(Z_i) = \emptyset \) (Proof by contradiction). If the \(\text{motion} \) zone of \(R_i \) intersects with the \(\text{post-motion} \) zone of \(R_j \), then \(R_j \) had to wait for \(R_i \).

3) \(\text{post}(Z_i) \cap \text{post}(Z_j) = \emptyset \) (Proof by contradiction). If the \(\text{post-motion} \) zones intersect, then the situation is the pathological situation 4. This leads to a contradiction.

Consequently, the Safety property holds.

Theorem 2 (Liveness): If a robot \(R_i \) requests a zone \(Z_i \), then eventually (\(R_i \) owns \(Z_i \) or an exception is raised).

Proof: If a robot \(R_i \) requests a zone \(Z_i \), then:

1) If \(Z_i \) does not intersect with a zone \(Z_j \), then \(R_i \) owns \(Z_i \).

2) If \(Z_i \) intersects with a zone \(Z_j \), then a wait-for relation is established between \(R_i \) and \(R_j \) and a directed edge is added to the wait-for graph \(\text{Dag}_{\text{wait}} \).

According to Lemma 1 the graph \(\text{Dag}_{\text{wait}} \) has no cycles. Therefore, \(R_i \) eventually owns \(Z_i \).

3) If a deadlock or a starvation situation is detected, then the Deadlock Resolution policy is called. If the Deadlock Resolution policy fails to resolve the situation, then an exception is raised.

4) Robot \(R_j \in \text{After}_i \) eventually receives the release message of \(R_i \) when \(R_i \) reaches \(\text{post}(Z_i) \). Because, \(R_i \) multicasts a release message to all the robots that belong to the set \(\text{After}_i \) and to robots \(R_a \) such that \(R_i \in \text{Neighbor}_a \) and the request message \(\text{msg}_a = (\text{REQUEST}, a, Z_a) \) of \(R_a \) has not yet been received by \(R_i \). When \(R_i \) reaches the \(\text{post-motion} \) zone, the robots of the set \(\text{After}_i \) and the robots \(R_a \) are within one communication hop with respect to \(R_i \) (due to the reservation range property). Hence the robots of the set \(\text{After}_i \) and the robots \(R_a \) can receive the release message of \(R_i \).

Consequently, the liveness property holds.

VII. Performance Analysis

We study the performance of our protocol in terms of the time needed by a robot \(R_i \) to reach a given destination when robots are active (robots do not sleep). We compute the average effective speed of robots executing our collision prevention protocol. We provide insights for a proper dimensioning of system parameters in order to maximize the average effective speed of the robots. For simplicity, we assume in this section that the physical dimensions of the robots are very small, such that a robot can be considered as a point in the plane. The geometrical incertitude related to the positioning system, translational and rotational movements are neglected. Consider a set of robots, each one moving along a chunk (line segment) of length equal to the reservation range \(D_{ch} \).
A. Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted: \(V_{\text{mot}} \). We calculate\(^5\) the average time required for a robot \(R_i \) to reserve and move along a chunk of length \(D_{\text{ch}} \) with a physical speed \(V_{\text{mot}} \).

Number of robots to wait for: The total number of robots \(n_{\text{avg}} \) that \(R_i \) waits for to reserve a chunk is:

\[
n_{\text{avg}} = \frac{1}{1 - \frac{n_{\text{reg}}}{2 \pi} + 1}, \quad n_{\text{reg}} < \pi (\pi + 2) \cong 16 (1)
\]

where, \(n_{\text{reg}} \) is the number of robots in the region \(\text{reg} \), which is the region of possible collisions for a robot \(R_i \) that moves along a line segment of length \(D_{\text{ch}} \).

Communication delays: In order to evaluate the performance of the protocol, we need to consider the average of communication delays in the system, although the protocol is time-free. The average communication delays is denoted: \(T_{\text{com}} \). The delay of the neighborhood discovery primitive \(N\text{Discover} \) is denoted: \(T_{\text{nd}} \). The time \(T_{\text{ch}} \) needed to reserve and move along a chunk is the following:

\[
T_{\text{ch}} = T_{\text{nd}} + 2n_{\text{avg}}T_{\text{com}} + n_{\text{avg}}(T_{\text{com}} + \frac{D_{\text{ch}}}{V_{\text{mot}}}) + \frac{D_{\text{ch}}}{V_{\text{mot}}} (2)
\]

The optimal time \(T_{\text{ch}} \) for a robot \(R_i \) when it is alone, so there are no robots in the region \(\text{reg} \), is denoted: \(T_{\text{ch}}(\text{alone}) = T_{\text{nd}} + \frac{D_{\text{ch}}}{V_{\text{mot}}} \).

B. Optimal reservation range

We compute the average effective speed \(V \) of a robot \(R_i \) as a function of the reservation range and the density of robots in the system (the density is denoted: \(s \)), then we determine an optimal value of the reservation range that maximizes the average effective speed of \(R_i \) for a given value of the density of robots. In our protocol the reservation range is a constant parameter given by the system.

\[
V = \frac{-sD_{\text{ch}}}{(3T_{\text{com}} - T_{\text{nd}})sD_{\text{ch}} + \frac{2}{V_{\text{mot}}} D_{\text{ch}} + \pi T_{\text{nd}}} D_{\text{ch}}, \quad D_{\text{ch}} < \frac{\sqrt{\pi}}{\sqrt{s}} (3)
\]

The previous relation shows that the effective speed is a function of the reservation range and the density of robots, and also that the average effective speed depends on some system-based fixed parameters such as the average communication delays and the physical speed of robots. Figure 10(a) presents the relationship between the speed and the reservation range for different densities. The values of density extend from zero (\(R_i \) alone) to \(3 \text{[robots/m}^2\text{]} \). Figure 10(a) shows the optimal reservation range for a given density. The value of the optimal reservation range maximizes the average effective speed of the robots. The curve that corresponds to the density zero (when robot is alone), in Figure 10(a), shows that the effective speed always increases as the reservation range increases, until the effective speed \(V \) approaches the physical speed \(V_{\text{mot}} \) when the value of the reservation range becomes very large. The curve has a horizontal asymptote at \(V = V_{\text{mot}} = 1 \text{[m/s]} \). The effective speed of \(R_i \) depends on the reservation range, even in the case when \(R_i \) is alone, because it needs to perform a certain number of steps to reach a destination, and the number of steps is a function of the reservation range.

When the reservation range increases, the number of steps decreases. The relation between the effective speed and the reservation range (when \(R_i \) is alone), is the following:

\[
V = \frac{D_{\text{ch}}}{\frac{sD_{\text{ch}}}{(3T_{\text{com}} - T_{\text{nd}})sD_{\text{ch}} + \frac{2}{V_{\text{mot}}} D_{\text{ch}} + \pi T_{\text{nd}}} + T_{\text{nd}}} (4)
\]

In each step, \(R_i \) needs \(T_{\text{nd}} \) time units to discover that it is alone. If \(D_{\text{ch}} \) approaches infinity, then \(V \) approaches \(V_{\text{mot}} \).

Numerical values: The values of the fixed system parameters are: \(T_{\text{com}} = 10 \text{[m/s]} \), \(T_{\text{nd}} = 1 \text{[s]} \), the physical speed \(V_{\text{mot}} = 1 \text{[m/s]} \). For a density \(s = 0.3 \text{[robot/m}^2\text{]} \), the optimal reservation range is \(\approx 1.53 \text{[m]} \), which gives a maximal speed \(\approx 0.51 \text{[m/s]} \).

C. Speed vs density of robots

The average effective speed always decreases when the density of robots increases for a given reservation range. Figure 10(b) presents the relationship between the average effective speed and the density for different values of the reservation range, (from 0.7 to 2).

VIII. RELATED WORK

Martins et al. [8] demonstrated the avoidance of collisions between three cars, elaborated in the CORTEX project. They rely on the coexistence of two networks, as defined in the Timely Computing Base of Veríssimo and Casimiro [13]. One network, the payload network, is asynchronous and carries the information payload of the application. The second network, the control network or wormhole, enforces strict real-time guarantees and is used sparingly by the protocol. Although the system allows for deadlines to be adapted dynamically (called time-elastic), their approach differs from ours because the use of time remains explicit in their protocol. A second difference is that we assume that robots do not know the existence of other robots that are not in their local neighborhood. This said, our neighborhood discovery primitive has a role similar to the wormhole of Martins et al. in that it encapsulates the synchrony required by the protocol.

Nett et al. [9] presented a protocol for cooperative mobile systems in real-time applications. They considered a traffic control application in which a group of mobile robots share a specified predetermined space. Communication is done through WiFi (802.11) with a base station. All robots can communicate directly with each other, and the system assumes the existence of a known upper bound on communication delays. Needless to say that the protocol relies on the strict enforcement of timing assumptions.

Based on the ad hoc protocol presented in this paper, we have recently developed a simpler version [14] aimed at small groups of mobile robots, the composition of

\(^5\)The details and the proofs are not presented in the paper due to space limitations; see our research report [12].
which is static and known to all. In that simpler variant, all robots can communicate directly. In contrast, the protocol presented in this paper is more challenging as it relies on ad hoc communication and supports dynamic groups of robots.

Clark et al. [15] presented a collision avoidance based on a motion planning framework by combining centralized with decentralized motion planning techniques. When robots become within communication range of each other, they dynamically establish a network. Their protocol ensures that at any time, robots in each network share a common world model by accessing sensing information of all other robots in the same network. Robots avoid collisions by re-planning their paths. Their approach relies on proper timing of communications and robots speed.

Jager et al. [7] presented a decentralized collision avoidance mechanism based on motion coordination between robots. When the distance between two robots goes below a certain threshold, they exchange information about their respective planned paths and determine whether there is a risk of collision. If a collision is possible, then they monitor each other’s movements and may change their speed to avoid the collision. The approach is highly dependent on the proper timing of communication and, to some extent, on the proper control of robots’ speed. Besides, the composition of the system is static and known to all robots.

Similarly, Azarm et al. [6] presented an on line distributed motion planning. When a conflict is detected between two robots, they exchange their information and determine their respective priorities. The robot with the highest priority keeps its original path while other robots must re-plan their motion.

The problem of robots’ collision avoidance has also been handled using different strategies which are sensor-based motion planning methods. The detailed information about motion planning strategies is inspired from [3].

Míguez et al. [3] compute collision-free motion for a robot operating in dynamic and unknown scenarios. Motion planning algorithms compute a collision-free path between a robot’s location and its destination. Robots involve sensing directly within the motion planning by sensing periodically at a high rate.

Some of these approaches (e.g., [4]) apply mathematical equations to the sensory information and the solutions are transformed into motion commands. Another group of methods (e.g., [5]) computes a set of suitable motion commands to select one command based on navigation strategy. Finally, other methods (e.g., [3]) compute a high-level information description (e.g., entities near obstacles, areas of free space) from the sensory information, and then apply different techniques simplifying the difficulty of the navigation to obtain a motion command in complex scenarios.

Sensor-based approaches depend on real-time guarantees for processing the sensory information. Furthermore, the information provided by proximity sensors is unreliable and much more limited in range than most wireless network interfaces.

IX. CONCLUSION

We have presented a fail-safe platform on which cooperative mobile robots rely for their motion. This platform consists of a collision prevention protocol for a dynamic group of cooperative mobile robots with asynchronous communications. The platform ensures that no (physical) collision ever occurs between robots regardless of the respective activities of the robots.

The protocol is time-free, in the sense that it never relies on physical time, which makes it extremely robust with regard to timing uncertainty common in wireless networks. It requires neither initial nor complete knowledge of the composition of the group, and it relies on a neighborhood discovery primitive which is readily available through most wireless communication devices. Furthermore, although the transmission range may be limited, no routing is needed as robots only communicate with their local neighborhood.

We have also presented a performance analysis of the protocol, which provided insights for a proper dimensioning of system parameters in order to maximize the average

Figure 10. Average effective speed as a function of the reservation range and the density of robots.
effective speed of the robots. The design of the protocol yields scalability due to its locality-preserving property. Therefore, the protocol can handle a large-sized dynamic group of cooperative mobile robots, provided with limited energy resources and limited transmission range.

If a robot crashes, then the local neighbors that are located within one communication hop with respect to the crashed robot at the time of the crash are blocked waiting for the crashed robot. The two-hop and farther neighbors that do not conflict with any of the blocked robots, are not affected at the time of the crash. Therefore, the impact of a crash is limited in space and affects only a part of the system for a period of time, however, the Snowball effect takes place with the progress of time.

In the future, we intend to further investigate and optimize the performance of the protocol, and consider the problem of a crash of a certain number of robots. In particular, we will analyze the performance of the resulting protocols using simulations and experimentation.

ACKNOWLEDGMENTS

We are grateful to Nak-Young Chong, Nikolaos Galatos, Maria Gradinariu, Yoshiaki Kakuda, Takuya Katayama, Richard D. Schlichting, Yasuo Tan and Tatsuhiro Tsuchiya for their kind feedback.

REFERENCES

Rami Yared is a researcher at the Japan Advanced Institute of Science and Technology (JAIST; Japan) since 2006. He obtained his Ph.D. in computer science from the Japan Advanced Institute of Science and Technology in 2006, his MS degree in computer science in 2001 from the Laboratory of Analysis and Systems Architecture LAAS-CNRS in Toulouse, France. His research interests include distributed algorithms, fault-tolerance, mobile ad hoc networks, and cooperative autonomous mobile robots.

Xavier Défago is an associate professor at the Japan Advanced Institute of Science and Technology (JAIST; Japan) since 2003. He obtained his PhD in computer science from the Swiss Federal Institute of Technology (EPFL; Switzerland) in 2000, and joined JAIST as a research associate shortly thereafter. From 1995 to 1996 he also worked at the NEC C&C Research Labs in Kawasaki (Japan). His research interests include distributed algorithms, fault-tolerance, large-scale distributed systems, group communication, and cooperative autonomous mobile systems.

Julien Iguchi-Cartigny is an assistant professor at the Laboratory XLIM, Limoges, France since 2005. He received a MSc and PhD degrees in computer science from the University of Lille, France, in 2000 and 2003 respectively. He joined the Japan Advanced Institute of Science and Technology (JAIST; Japan) as a JSPS postdoctoral researcher in 2004. His research interests include routing and security in dense and/or large ad-hoc networks.

Matthias Wiesmann is a software engineer for Google Switzerland in Zürich. He received his PhD in computer science from the Swiss Federal Institute of Technology in Lausanne (EPFL; Switzerland) in 2002. He graduated in computer science at the Geneva University in 1997. He worked as a research fellow at the European Organization for Nuclear Research on the Atlas project. He then did a post-doc at the Japan Advanced Institute of Science and Technology (JAIST; Japan).