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Abstract— This paper presents a fail-safe platform on which
cooperative mobile robots rely for their motion. The plat-
form consists of a collision prevention protocol for a dynamic
group of cooperative mobile robots with asynchronous
communications. The collision prevention protocol is time-
free, in the sense that it never relies on physical time, which
makes it extremely robust for timing uncertainty common
in wireless networks. It guarantees that no two robots ever
collide, regardless of the respective activities of the robots.
The protocol is based on a fully distributed path reservation
system.

It assumes a mobile ad hoc network formed by the robots
themselves, and takes advantage of the inherent locality
of the problem in order to reduce communication. The
protocol requires neither initial nor complete knowledge of
the composition of the group.

A performance analysis of the protocol provides insights
for a proper dimensioning of system parameters in order to
maximize the average effective speed of the robots.

Index Terms— collision prevention, mobility, fail-safe, au-
tonomous cooperative robots, wireless ad hoc networks,
distributed algorithms.

I. INTRODUCTION

There is a marked trend in distributed systems research
toward studying problems in which hosts are mobile and
their physical location can no longer be abstracted out.
While most efforts are still aimed at mobile ad hoc
networks and sensor networks, there is also a gradual
realization that cooperative robotics raises many interest-
ing new challenges with respect to distributed systems,
and particularly in relation to mobility. Indeed, unlike
traditional distributed systems and even more so than ad
hoc or sensor networks, mobility becomes an essential
part of the problems to address.

Many interesting applications are envisioned that rely
on groups of cooperating mobile robots. Tasks may be
inherently too complex (or impossible) for a single robot
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to accomplish, or performance benefits can be gained
from using multiple robots [2].

As a simple and peaceful illustration, consider the
following example. A decentralized team of tiny au-
tonomous mobile robots cooperate to maintain a small
oriental garden. Based on the needs of the garden, the
team must carry on with many tasks concurrently, such
as looking after the moss, picking undesired weeds, nour-
ishing flowers, trimming the trees, bringing dead leaves to
the compost, distributing water, etc. These tasks require
the robots to almost constantly roam the same limited
space, namely the garden, while moving along according
to their respectively assigned tasks. Due to the nature of
the system, the robots cannot share exact knowledge of
each other’s location, speed, or even current intention.
Nevertheless, an important challenge is to ensure that
robots will not collide against each other, regardless of
their respective activities.

Context and problem statement: We consider that
the robots have the ability to communicate wirelessly and
also that they can query their own position according
a common referential, as given by a positioning sys-
tem (e.g., GPS, landmarks). However, the robots do not
have the ability to detect each other’s position in the
environment, and they are not synchronized. In addition,
communication delays are unpredictable, and actual robot
motion speed is unknown.

In that context, our goal is to ensure safe motion, in
the sense that, regardless of the respective activities of
the robots, no two robots ever collide. The safety of
the system must never be compromised, regardless of
the uncertainty of the underlying system. However, the
performance of the system may possibly degrade as the
result of badly unstable network characteristics or erratic
robot speed.

Related work: There are several approaches to ad-
dress the problem of avoiding collisions between robots.

First, a widespread approach consists in using prox-
imity sensors (e.g., infrared, sonar, laser) in the same
way fixed obstacles are detected [3]–[5]. This approach
is, however, sensitive to the robots respecting planned
speeds, and normally requires an unbroken line-of-sight.

A second approach consists in relying on global motion
planning, specifying the respective timing of robots as
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well as the path to follow [6], [7]. This approach is even
more sensitive to the speed of the robots, and normally
requires much synchronization between the robots.

A third approach uses wireless communication as a
means to synchronize the robots and their motion [8],
[9]. To do so, communication is extended to satisfy strict
real-time guarantees, or at least probabilistic ones [8].

With all three approaches, protocols must rely on
explicit time and the speed of the robots. This is fine as
long as both robots and communication meet their timing
assumptions. However, if a robot happens to move too
slowly or too fast, or a few messages are delayed for too
long, then there is a risk of collision. In contrast, our aim
is to rely as little as possible on the respect of timing
assumptions from the underlying system.

Contribution: We present a fail-safe platform on
which cooperative mobile robots rely for their motion,
thus ensuring that no (physical) collision ever occurs
between robots. Its core consists of a collision prevention
protocol for a dynamic group of cooperative mobile robots
with asynchronous communications. The protocol is time-
free, in the sense that it never relies on physical time
(as given by a clock), thus making it extremely robust
for timing uncertainty common in wireless networks.
Furthermore, although the communication range may be
limited, no routing is needed as robots only communicate
with their direct neighborhood.

This paper extends work that we presented recently
at an international conference [1]. The main additions
are that we present a more rigorous specification for
the collision prevention problem, and include proofs of
correctness of the protocol and its properties.

Structure of the paper: The remainder of the paper
is structured as follows. Section II describes the system
model, definitions, and terminology. Section III defines
the collision prevention problem and specification. In
Section IV, we present the collision prevention protocol.
Section V explains in detail the deadlock and starva-
tion problem. Section VI provides the proofs that the
protocol achieves the safety and the liveness properties.
Section VII presents a performance analysis and provides
insights to maximize the average effective speed of the
robots. Section VIII discusses other related work, and
Section IX concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

A. Model

We consider a dynamic distributed system of mobile
robots S = {Ri} in which each robot has a unique identi-
fier. The total composition of the system, of which robots
have only a partial knowledge, can change dynamically.
Robots have access to a global positioning device that,
when queried by a robot Ri, returns Ri’s position with
a bounded error εgps. The robots communicate using
wireless communication with a limited range Dtr. If the
distance between two robots Ri and Rj is less than Dtr,
then the two robots can communicate with each other.
Communications assume retransmission mechanisms such
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Figure 1. The neighborhood discovery primitive. Dtr is the transmission
range and Dch is the reservation range. The neighbors of Ra are: {Rb,
Rc, Rd}.

that communication channels are reliable. The system is
asynchronous in the sense that there is no bound on com-
munication delays, processing speed and on robots’ speed
of movement. Each robot has access to a neighborhood
discovery primitive1 named NDiscover .

Neighborhood discovery (NDiscover ):
Characteristics : The neighborhood discovery prim-

itive called NDiscover is a function that enables a robot
to detect its local neighbors. These neighbors are within
one communication hop and satisfy a certain known
predefined condition.

Implementation : NDiscover can be implemented as
the traditional neighborhood discovery primitive of mo-
bile ad hoc networks. An implementation of NDiscover
primitive can be performed by Geocasting2 a ping mes-
sage in a geographical region centered on the robot at
the time of calling NDiscover with a radius within the
transmission range. All the robots that receive the message
and satisfy the predefined condition acknowledge the
caller of NDiscover .3

In wireless environments, the delays in delivering mes-
sages are very difficult to anticipate. There are several
reasons for the asynchrony of communications in wireless
environments, such as the delays required to access the
shared medium, due to competition with other nodes.
The competition to access the wireless medium causes
message loss due to interference, collisions between mes-
sages, and fading. Therefore, a retransmission mechanism
is needed to ensure message delivery in wireless environ-
ments.

Figure 1 illustrates the NDiscover primitive. The robot
Ra starts NDiscover , the set of robots returned by
NDiscover is the set {Rb, Rc, Rd}. The robot Rb is
located within the reservation range Dch, the robots Rc

and Rd request zones that intersect with the reservation
circle which is the circle centered on Ra with radius Dch.
The robots Re and Rf request zones that do not intersect
with the reservation circle of Ra.

Node presence detector: Detecting the presence
of nodes in an asynchronous system where there are

1The wormhole of our platform is encapsulated in the primitive
Neighborhood Discovery which is available through most wireless
communication devices.

2Geocast is defined by the transmission of a message to a predefined
geographical region.

3An implementation of NDiscover requires timing property for
transmitting and processing the ping messages. NDiscover relies on
very lightweight ping messages carrying only the position coordinates
of the caller.
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no bounds on communication delays, cannot be solved
deterministically [10]. The impossibility is based on the
fact that, in such systems, a very slow node can not be
distinguished from an absent one. Thus, a timing property
is required to implement the primitive NDiscover .

Timing property: The primitive NDiscover relies on
the following timing property: there exists a known upper
bounded time delay called Tnd such that the following
property holds:
For any robot Ri, if Ri starts NDiscover at some time
t, then Ri receives an acknowledgment from every robot
Rj located in its communication range and satisfying a
certain predefined condition, at a time t′ such that: t′−t ≤
Tnd .

The protocol is based on a Neighborhood Discovery
service, which is the only synchronous part of the system.
The delay Tnd is specified large enough to cover the nec-
essary retransmissions and hence ensure the delivery of
messages related to the Neighborhood Discovery service.

B. Definitions and terminology

Paths : We denote by chunk a line segment along
which a robot moves. A path of a robot is a continuous
route composed of a series of contiguous chunks.

Errors : The are three sources of geometrical incer-
titude concerning the position and the motion of a robot.
An error related to the position information provided by
the positioning system is denoted εgps. In addition, the
motion of a robot creates two additional sources of errors.
The first error is related to the translational movement,
denoted: εtr. The second error is related to the rotational
movement, denoted: εθ

Zones : A zone is defined as the area needed by
a robot to move safely along a chunk. This includes
provisions for the shape of the robot, positioning error,
and imprecision in the moving of the robot. The zone
must be a convex shape and contain the chunk the robot
is following. Figure 2 shows the zone Zi for a robot Ri

moving along a chunk AB, where d represents the radius
of the geometrical shape of Ri. The zone Zi is composed
of the following three parts, illustrated in Figure 2: the
first part, named pre-motion zone and denoted pre(Zi),
is the zone that robot Ri possibly occupies while waiting
(before moving). The second part, named motion zone and
denoted motion(Zi), is the zone that robot Ri possibly
occupies while moving. The third part, named post-motion
zone and denoted post(Zi), is the zone that robot Ri

possibly reaches after the motion.

III. COLLISION PREVENTION: SPECIFICATION

The basic idea is essentially a mutual exclusion on ge-
ographical zones. The algorithm consists of a distributed
path reservation system, such that a robot must reserve a
zone before it moves. When a robot reserves a zone, it
can move safely inside the zone.

All robots run the same protocol. When a robot wants
to move along a given chunk, it must reserve the zone

pre-zone
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Figure 2. Reservation Zone.
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Figure 3. A robot Ri releases the
previous zone and keeps only the
place that may occupy pre(Zi )
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Figure 4. Dtr : transmission
range. Dch: reservation range.
Dch ≤ Dtr

2
. if Ra and Rb

can not communicate, then they
would not collide.

that surrounds this chunk. When this zone is reserved,
the robot moves along the chunk. Once the robot reaches
the end of the chunk, it releases the zone except for the
area that the robot occupies. When moving along a path,
the robot repeats this procedure for each chunk along the
path.

We say that a robot Ri is the owner of a zone Zi

(Zi is granted to Ri), if Ri reserves Zi and did not
release it yet. A robot Ri releases the zone Zi that it
has owned and keeps only a part of post(Zi) under its
reservation. The part of the zone that has been released
by Ri is denoted: RelZonei. Figure 3 shows that the
pre-motion zone pre(Zi) is entirely included within the
previous post-motion zone, and presents also the current
and the previous positions of Ri.

RelZonei = pre(Zi) ∪ motion(Zi) ∪ SubPost(Zi),
where: SubPost(Zi) ⊂ post(Zi)

pre(Zi) ⊂ PREVIOUS(post(Zi))
The relationship between robots and zones changes in

time. A zone is said to be free if it is not owned by
any robot. In order to resolve the collision prevention
problem, and to keep the system of mobile robots always
in progress towards its final goal, certain properties of
safety and liveness must hold. If a robot requests a zone,
then eventually it owns this zone or receives an exception.
We say that the robot owns the zone and all the points
contained in this zone. A given point can be owned by
only one robot. If a robot owns a zone, it eventually
releases that zone.
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A. Reservation range property

Robots have a limited wireless transmission range. It
follows that a reserved zone by a robot must be entirely
within a circle centered on the robot with a radius within
half of the transmission range. The motivation behind this
maximal value is that each robot can communicate with
all the robots that it might collide with. Figure 4 illustrates
the reservation range property.

The collision prevention protocol provides a parameter
named reservation range and denoted Dch, that is within
half of the transmission range (Dch ≤ Dtr

2 ), such that a
reserved zone by a robot is entirely within a circle cen-
tered on the robot with a radius equals to the reservation
range.

B. Properties

Property 1 (Mutual exclusion): If a zone Zi of a robot
Ri intersects with a zone Zj of a robot Rj , then either
Ri or Rj (but not both) is the owner of its zone.
Consequently, a point in the plane can be owned by only
one robot.

Property 2 (Liveness): If a robot Ri requests a zone
Zi, then eventually (Ri owns Zi or an exception is raised).

Exception is potentially raised by the protocol only if
a deadlock or a starvation situation occurs.

The following property must hold to ensure the integrity
of the system. If a robot owns a zone, then eventually it
leaves that zone. If a robot leaves a zone, then it releases
that zone.

IV. COLLISION PREVENTION: LOCALITY-PRESERVING
PROTOCOL

All robots run the same distributed algorithm. When
a robot Ri requests a zone Zi, Ri must determine all
the robots Rj that conflict with Ri. The robots Rj are
located within one communication hop with respect to
Ri, because the reservation range of the robots must
be within half of the transmission range. The Neigh-
borhood Discovery primitive returns the set of neighbors
Neighbor i within one communication hop with respect to
Ri. Therefore, Ri can determine the set of robots Rj that
conflict with Ri. Ri multicasts Zi to the list of neighbors
Neighbor i, then Ri waits until it receives the response
messages. Consequently, Ri determines the set of robots
that it conflicts with. Intuitively, Ri performs a pair-wise
negotiation with each of the robots that Ri conflicts with.
Therefore, Ri and each robot Rj decide consistently about
the scheduling of their requests. So, a dynamic scheduling
for the conflicting requests takes place. When Ri receives
a release message from all the robots that Ri waits for, it
reserves Zi and becomes the owner of Zi. After Ri has
reached the post-motion zone, Ri releases Zi except for
the area occupied by Ri.

A. Protocol variables

We present the variables used by the collision preven-
tion protocol.

• Zi is the zone currently requested or owned by
robot Ri.

• Neighbor i represents the set of robots that may
possibly conflict with robot Ri (i.e., the output of
the neighborhood discovery primitive NDiscover ).

• Gi is a set of {(Rj , Zj)} such that Rj belongs to
Neighbor i, and Zj is the requested or the owned
zone of Rj . Zj intersects with Zi.

• After i is the list of robots waiting for Ri until it
releases its zone.

• Beforei is the list of robots that Ri waits for.
• Dependi is the dependency set. If a robot Ri re-

quests Zi then it conflicts with a set of robots each
of which conflicts with another set of robots and so
on. The dependency set is the union of Gk for each
robot Rk related to Ri by the transitive closure of
the relation conflict.

• Dag is a wait-for graph such that the vertices rep-
resent robots and a directed edge from Ri to Rj

represent that Ri waits for Rj to release Zj .
• msg is a message exchanged during the run of the

protocol. Each msg message consists of three fields,
the first is the type of the message which belongs to
the set {REQUEST, RELEASE, WAITFORME, ACK,
PROHIBITED}, the second field is the identifier of
the robot sending the message, and the third field
is the body of the message which consists of the
specifications and the parameters of the requested (or
owned) zone. The type REQUEST denotes a request
message, RELEASE denotes a release message, and
the type WAITFORME means that the receiver of
the message must wait for the sender. The type ACK
indicates the sender and receiver do not conflict. The
type PROHIBITED indicates that the receiver requests
a zone that intersects with the pre-motion zone of the
stationary sender, which does not move any more.

• Request pendingi is a boolean indicates that robot
Ri has a requested zone and that Ri has determined
its wait-for graph Dagwait.

B. Protocol phases

We explain the phases of the protocol with respect to
a robot Ri. The robot Ri is located in the pre-motion
zone pre(Zi). When robot Ri requests a new zone Zi, it
proceeds as follows.

1) Discovery phase: Ri calls the neighborhood dis-
covery primitive NDiscover , to determine the set
Neighbor i. This set consists of robots Rj , that may
possibly come in conflict with Ri for Zi, since Zj

intersects with the circle centered on Ri with radius
equals to the reservation range.

2) Negotiation phase: The Negotiation phase of Ri

starts by the determination of the set Gi which
consists of the robots of Neighbor i that conflict
with Ri. The output of the Negotiation phase is
the wait-for graph, Dagwait. Thus, Ri determines
the set of robots that it waits for. If Ri receives a
request from a robot Rk (Zk intersects with Zi) and
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Rk does not belong to Gi, then Rk must wait for
Ri. The Negotiation phase proceeds as follows.

• Ri multicasts msgi = (REQUEST, i,Zi) indi-
cating that Ri requests Zi to all the members
of Neighbor i carrying the parameters of Zi.
This multicast does not require any routing
because the neighbors are located within one
communication hop with respect to Ri.

• Ri waits until it receives a response message
msgj from each member Rj ∈ Neighbor i.

• After Ri has received the messages msgj , Ri

determines the set of robots Gi that conflict
with Ri. (Gi is obtained from the received
messages msgj after discarding the release
messages msgj = (RELEASE, j,Zj), and dis-
carding also the request messages msgj =
(REQUEST, j,Zj) such that Zj does not inter-
sect with Zi). The set Gi contains two dis-
joint subsets of robots: the first subset denoted
(G1 )i is composed of robots Rj such that
Ri does not belong to Gj (i.e., Ri must wait
for Rj , Rj has sent the message msgj =
(WAITFORME, j,Zj)). The second is the com-
plementary subset denoted (G2 )i, which is
composed of robots Rj such that Ri belongs
to Gj . Thus Ri must wait for all the robots
of (G1 )i, in addition to a subset of (G2 )i.
(This subset would be determined by the Con-
flict Resolver and the Pathologic Detector).

• Ri determines the dependency set Dependi by
applying an Echo algorithm inspired from [11].
The Echo algorithm is explained as follows. Ri

multicasts a token message to each robot that
belongs to Gi. Upon receipt of the first message
of Ri by a robot Rk from Rj (Rj is called
the father of Rk), it multicasts the message of
Ri to all the robots of Gk except its father
Rj . When a robot Rk has received the token
message of Ri from all the robots of Gk, Rk

adds the contents of Gk to the token message
and sends it (echo) to the father Rj . When Ri

has received the token message from all the
robots of Gi, it obtains the dependency set4.
The motivation for building the dependency set
is to enable the conflicting robots to build the
wait-for graph Dagwait in a consistent manner
and so to avoid cyclic wait-for relations.

• Ri uses the dependency set Dependi to con-
struct Dagwait. The vertices represent the
robots of the set Dependi and a directed
edge from Ri to Rj means that Ri waits
for Rj . Dagwait is built as follows. Ri starts
by establishing the imposed wait-for relations
(Subsection. IV-C), and then it breaks ties for
the remainder of the conflicting robots by the

4The dependency set is piggybacked with the messages of type
WAITFORME. Ri computes the dependency set when it does not receive
any WAITFORME message.

Conflict Resolver. (Subsection IV-E) At first,
Ri builds the WAITFORME graph, denoted
Dagwm. This graph corresponds to the relation
between Ri and Rj from the set (G1 )i. The
next step, Ri builds Dagpg by adding the
directed edges imposed by the pathological
intersection situations, explained in section V.
After having established the imposed wait-
for relations, Ri adds the directed edges that
result from resolving the conflicts according
to a specified policy. The conflicting robots
build the directed acyclic graph Dagwait in a
consistent manner.

• According to the graph Dagwait, Ri deter-
mines Beforei the set of robots that Ri

waits for. Beforei = (G1 )i ∪ subset((G2 )i).
Ri dynamically updates the set After i by
adding robots Rk that does not belong to Gi

and whose requested zone Zk intersects with
Zi. (Ri sends to Rk the message msgi =
(WAITFORME, i,Zi)). Ri keeps updating the
set After i until Ri releases Zi.

• Ri waits until it receives a release message
from each robot in the set Beforei.

3) Reservation phase: When Ri has received a release
message from all the robots of the set Beforei, or
(when the set Beforei is empty), Ri reserves Zi and
becomes the owner of Zi.

4) Release phase: When Ri reaches the post-motion
zone post(Zi), it releases Zi except the place that
Ri occupies. Ri multicasts a release message to
all the robots that belong to the set After i. These
robots are within one communication hop with
respect to Ri, due to the reservation range property.
Therefore, the robots of the set After i can receive
the release message of Ri.

C. Imposed wait-for relations

The imposed wait-for relations are the WAITFORME
relations in addition to the wait-for relations imposed by
the pathological intersection situations.

WAITFORME Handler: The input of the WAIT-
FORME Handler is the dependency set Dependi, and the
output is the directed acyclic graph Dagwm. This handler
generates Dagwm by establishing the imposed wait-for
directed edges that correspond to the situation where Ri

must wait for Rj because Rj is a member of the set
(G1 )i. The relation WAITFORME is transitive, so if a
robot Ri must wait for Rj and the robot Rj must wait
for Rk, then Ri must wait for Rk. Therefore, no cycles
can be created in the graph Dagwm.

D. Pathologic Detector

The pathological intersection situations discussed in
section V lead to a deadlock situation or potentially to a
starvation situation. Consequently, there exist pathological
intersection situations between two zones Zi and Zj that
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Algorithm 1 Collision prevention protocol (Code for
robot Ri)
1: Initialization: Gi := ∅; Beforei := ∅; After i := ∅; Neighbor i := ∅;

Requested zonei := ⊥; Request pendingi := false;

2: when receive (REQUEST, k, Zk) from Rk

3: if Request pendingi then
4: if Rk /∈ Neighbor i and Zk ∩Zi 6= ∅ then
5: Send(WAITFORME, i,Zi) to Rk {Ri piggybacks the

wait-for graph Dagwait.}
6: After i = After i ∪ {Rk} {Ri keeps updating the set

After i until Ri releases RelZonei}
7: end if
8: if Zk ∩ Zi = ∅ then
9: Send(ACK, i) to Rk

10: end if {If Rk ∈ Neighbor i and Zk ∩Zi 6= ∅, then the
Pathologic Detector or the Conflict Resolver handles it.}

11: else
12: if Requested zonei = ⊥ then
13: if Zk ∩pre(Zi ) 6= ∅ then
14: Send(PROHIBITED, i, pre(Zi )) to Rk

15: else
16: Send(ACK, i, ⊥) to Rk

17: end if
18: end if
19: end if
20: end when

21: procedure Request(Zi)
22: Requested zonei := Zi

23: Phase 1:
24: Neighbor i := NDiscover () {Neighborhood Discovery}

25: Phase 2:
26: multicast (REQUEST, i,Zi) to Neighbor i {Negotiation}
27: wait until receive response from all Rj ∈ Neighbor i
28: build the set Gi := (Rj , Zj ) such that Rj ∈ Neighbor i and

Zj intersects with Zi.
29: Dependi := Dependency set {Dependi is received with a

WAITFORME message.}
{If Ri does not receive any WAITFORME message, then

Dependi is computed using the echo algorithm.}

30: Dagwm := WAITFORME Handler(Dependi)
31: Dagpg := Pathologic Detector(Dagwm, Dependi)
32: Dagwait := Conflict Resolver(Dagpg , Dependi, policy)
33: Request pendingi := true
34: build the set Beforei and update the set After i according to

the directed acyclic graph Dagwait
35: if Beforei 6= ∅ then
36: when receive (RELEASE, j, Zj ) from Rj ∈ Beforei
37: Gi := Gi \ {Rj , Zj} {Ri removes the entry of Rj

from the set Gi}
38: end when {receive the release message from all Rj of the

set Beforei}
39: end if
40: end Request

41: Phase 3:
42: reserve(Zi) {Ri reserves the zone Zi}

43: procedure Release(Zi)
44: Phase 4:
45: when Ri reaches the post-motion zone post(Zi )
46: if After i 6= ∅ then
47: multicast(RelZonei) to After i {release(Ri,

RelZonei)}
{Ri multicasts a release message to all Rj of the set

After i}
48: end if
49: end when
50: end Release

Algorithm 2 WAITFORME Handler algorithm
1: function WAITFORME Handler (Dependi)
2: for all (Rx, Ry) ∈ Dependi do
3: if Rx must wait for Ry (WAITFORME) then
4: Dagwm := Dagwm ∪ DirEdge(Rx, Ry) {Rx must wait

for Ry , because Ry ∈ Gx but Rx /∈ Gy}
5: end if
6: if DirEdge(Rx, Ry) and DirEdge(Ry , Rz) then
7: Dagwm := Dagwm ∪ DirEdge(Rx, Rz) {The relation

WAITFORME is transitive}
8: end if
9: end for

10: return Dagwm
11: end

Zi

Zj

Ri

Rj

(a) Zi intersects with
pre(Zj ), so Ri must
wait for Rj .

Zi

Zj

Rj

Ri

(b) Zi intersects with
post(Zj ), so Rj must
wait for Ri.

Figure 5. Pathological intersection situations impose wait-for relations
between Ri and Rj .

impose certain wait-for relations between the requesting
robots. The imposed wait-for relations are presented as
follows.

1) [Zi∩pre(Zj ) 6= ∅] and [post(Zi)∩post(Zj ) = ∅] ⇒
Ri must wait-for Rj .

2) [Zi ∩ post(Zj ) 6= ∅] and [post(Zi) ∩ post(Zj ) =
∅] ⇒ Rj must wait-for Ri.

Figure 5 illustrates the imposed wait-for relations due to
pathological intersection situations. Figure 5(a) illustrates
that Ri must wait for Rj , and Figure 5(b) illustrates that
Rj must wait for Ri.

The input of the Pathologic Detector is the dependency
set Dependi and the graph Dagwm. It outputs the graph
Dagpg by adding the directed edges according to the
imposed wait-for relations due to the two previous patho-
logical intersection situations.

If a cycle is created by adding a directed edge, then
the Pathologic Detector calls the Deadlock Resolution
policy. The cycle is created because of the two possible
pathological situations.

• A pathological intersection case which leads to a
deadlock situation between n robots (n > 2). In case
of three robots, for example, Ra, Rb, and Rc. Za

intersects with pre(Zb), Zb intersects with pre(Zc),
and Zc intersects with pre(Za). It is the general form
of the deadlock situation.

• Zi intersects with post(Zj ) and Ri must wait for Rj

because of an imposed wait-for relation.
When the Pathologic Detector detects a deadlock or a
starvation situation, then it calls the Deadlock Resolution
policy, which handles the deadlock or the starvation
situation. If the Deadlock Resolution policy does not find
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a solution then an exception is raised by the protocol. The
Deadlock Resolution policy is discussed in subsection IV-
F. Therefore, the graph Dagpg has no cycles.

E. Conflict Resolver

The Conflict Resolver breaks ties and determines the
wait-for relation between two conflicting robots according
to a conflict resolution policy, if there is no imposed wait-
for relation between the two robots. A conflict resolution
policy can be as follows. Ri waits-for Rj if the number
of the previous requested zones by Ri is higher than that
of Rj . The conflict resolution policy is specified by the
robotic application. For example, the robot farther to the
intersection zone waits-for the closer one, and in case
of an equidistance situation, their identifiers are used to
break the symmetry. The Conflict Resolver generates the
graph Dagwait by breaking ties between each pair of
the robots of the dependency set Dependi. The graph
Dagwait is generated in a consistent manner, such that
each robot of the set Dependi generates the same graph
Dagwait starting from the graph Dagpg by adding the
directed edges representing the wait-for relations after
resolving the conflict between each pair of the conflicting
robots. The dependency set is scanned according to the
increasing order of the identifiers of robots and the con-
flict resolution policy is applied. If adding a directed edge
creates a cycle, then the new directed edge is reversed to
break the cycle.

Algorithm 3 Conflict Resolver algorithm
1: function Conflict Resolver (Dagpg , Dependi, policy)
2: Dagwait := Dagpg
3: for each robot’s identifier x from MINID to MAXID such that

Rx ∈ Dependi do
4: for each robot’s identifier y > x to MAXID such that Ry

∈ Dependi do
5: if Conflict(Rx, Ry) and no edge (Rx, Ry) then
6: DirEdge(Rx, Ry) := policy(Rx, Ry) {apply the conflict

resolution policy}
7: Dagwait := Dagwait ∪ DirEdge(Rx, Ry)
8: if DetectCycle then
9: DirEdge(Rx, Ry) := DirEdge(Ry , Rx) {If a cycle is

detected, then inverse the direction of the edge}
10: end if
11: end if
12: end for
13: end for
14: return Dagwait
15: end

F. Deadlock Resolution policy

The Deadlock Resolution policy handles deadlock and
starvation situations detected by the Pathologic Detector.
The policy used to resolve a deadlock or a starvation
situation is based on a Request Preemption strategy. For
a deadlock situation between two requests (Ri, Zi) and
(Rj , Zj), the Deadlock Resolution policy preempts one of
the two requests in a deterministic manner. If the request
(Ri, Zi) is preempted, then Ri cancels its request of the
zone Zi.

Ri retries its request (Ri, Zi) at a later time, by
restarting the protocol for the same zone Zi. If the request
is still preempted after a certain number of retrials, then
the protocol raises an exception.

The upper layer (e.g., motion planning layer) may then
catch the exception and applies some alternative strategy.
For instance, in the case of motion planning, the strategy
may simply consist in retrying with an alternate route.
Of course, if no alternative strategy is available, then that
upper layer may itself propagate the exception to higher
layers.

G. Optimizations and discussion

Pipelining of requests. Actually, in the collision pre-
vention protocol, a robot Ri starts to request the next
zone when it reaches the post-motion zone post(Zi). A
possible optimization of the protocol performance can be
achieved as follows. Ri starts to request the next zone
when it reserves Zi. So, Ri performs the negotiation for
the next zone in parallel while moving inside the reserved
zone Zi.

The Deadlock Resolution policy applies an application-
based strategy in order to resolve deadlock and starvation
situations. The performance of the protocol depends on
the number of retrials of the same zone and also on the
time durations between the retrials.

A robot can know, without any additional cost, the
parameters of the requested zones in its local neighbor-
hood region due to the multicast and antenna properties
in wireless networks. So, if possible, the motion planning
layer can plan an alternative chunk of a robot’s path that
avoids highly contended areas.

V. DEADLOCK AND STARVATION SITUATIONS

There are pathological intersection cases between two
zones Zi and Zj , such that neither Ri nor Rj can be
granted its requested zone (deadlock situation). If a robot
Ri could not be granted its requested zone Zi, we say
that robot Ri starves. (starvation situation)

Certain pathological intersection cases constitute neces-
sary conditions but not sufficient for a potential starvation
situation.

Definition 1 (Deadlock situation): We say that robot
Ri and robot Rj are in a deadlock situation when neither
Ri can be granted Zi nor Rj can be granted Zj , due to
a pathological intersection between the two zones Zi and
Zj . This pathological intersection occurs if the requested
zone Zi intersects with the pre-motion zone pre(Zj ) and
the requested zone Zj intersects with the pre-motion zone
pre(Zi).

The pathological intersection case which leads to a
deadlock situation between two robots Ri and Rj is the
following.
Pathological situation 1 (Zi, Zj): [Zi ∩ pre(Zj ) 6= ∅] and
[Zj ∩ pre(Zi) 6= ∅].
The deadlock situation is illustrated in Figure 6(a).
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Figure 6. Deadlock and starvation situations.
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Figure 7. Pathological intersection situations. The necessary conditions
that potentially lead to a starvation.

Definition 2 (Starvation situation): We say that robot
Ri starves when Zi cannot be granted to Ri. The starva-
tion of Ri is due to a pathological intersection case. This
pathological intersection occurs if Zi intersects with the
pre-motion zone pre(Zj ) and Rj does not request a zone.

Figure 6(b) illustrates the starvation situation for robot
Ri.

The pathological intersection situations that potentially
lead to a starvation situation are the following.
Pathological situation 2 (Zi, Zj):
[Zi ∩ post(Zj ) 6= ∅] and [Zj ∩ post(Zi) 6= ∅] and
[post(Zi) ∩ post(Zj ) = ∅]
Pathological situation 3 (Zi, Zj):
[Zi ∩ pre(Zj ) 6= ∅] and [Zi ∩ post(Zj ) 6= ∅] and
[post(Zi) ∩ post(Zj ) = ∅]
Pathological situation 4 (Zi, Zj):
post(Zi) ∩ post(Zj ) 6= ∅

The pathological situation that leads to a starvation
situation for Ri is the following.
Pathological situation 5: Zi ∩ pre(Zj ) 6= ∅ and Rj does
not request a zone.

VI. PROOF OF CORRECTNESS

We prove that the collision prevention protocol satisfies
the Safety and the Liveness properties.

Lemma 1: The wait-for graph Dagwait has no cycles.
Proof: The wait-for graph Dagwait is based on

Dagwm and Dagpg .
• The graph Dagwm is a directed acyclic graph, since

the WAITFORME relation is transitive. if a robot Rx

must wait for Ry and the robot Ry must wait for Rz ,

Ra

Rc
Rb

Rd

Figure 8. A directed edge (Rc,
Ra) is added.

Ra

RcRb

Rd

Figure 9. The direction is re-
versed, so the directed edge is
replaced by (Ra, Rc).

then Rx must wait for Rz . (Algorithm 2, Line 7).
Therefore, the graph Dagwm has no cycles.

• The graph Dagpg has no cycles, because if a cycle
is created, then the Deadlock Resolution policy is
called to break the cycle. So, the graph Dagpg has
no cycles.

• We prove that the graph Dagwait is a directed acyclic
graph. Dagwait is generated starting from Dagpg

which is a directed acyclic graph. If adding a directed
edge to Dagwait creates a cycle, then the direction is
reversed. We prove that reversing the direction of the
edge does not create a cycle and hence the wait-for
graph Dagwait is a directed acyclic graph.
For a graph with no cycles that consists of three
vertices {Ra, Rb, Rc}, if adding a directed edge
creates a cycle, then it is obvious that reversing the
direction of the edge does not create a cycle. For a
graph with no cycles that consists of more than three
vertices, the proof proceeds by contradiction.
Figure 8 shows that when the directed edge (Rc, Ra)
is added to Dagwait, it creates the cycle (Ra, Rb, Rc,
Ra). So, the graph has already the directed edges:
(Ra, Rb) and (Rb, Rc). Figure 9 shows that the edge
(Rc, Ra) is replaced by (Ra, Rc).
Let us assume that the directed edge (Ra, Rc)
creates a cycle (Ra, Rc, Rd, Ra). So, the graph has
already the directed edges: (Rc, Rd) and (Rd, Ra).
Consequently, the graph has already the cycle (Ra,
Rb, Rc, Rd, Ra) (the graph has already a cycle),
which leads to a contradiction. Therefore, if adding
a directed edge creates a cycle, then reversing the
direction would not create a cycle in Dagwait.

Therefore, the wait-for graph Dagwait has no cycles.
Lemma 2: The wait-for relations between the robots

related by the transitive closure of the relation conflict,
are generated consistently, so the robots build the same
wait-for graph Dagwait.

Proof: The set Dependi consists of the union of Gk

for each robot Rk related to Ri by the transitive closure
of the relation conflict, so Dependi equals to Dependk.

The robots that Ri conflicts with, belong to Gi or to
After i. We prove that the set Gi is sufficient to build the
wait-for graph Dagwait consistently.

Let us consider three conflicting robots Ra, Rb and
Rc, such that each zone intersects with the two other
zones. Let us assume that the set Ga contains Rb, but
does not contain Rc, (Rc ∈ Aftera). Assume that the
set Gb contains both Ra and Rc. When the dependency
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set Dependb is determined, then Rb deduces the wait-for
relation between Ra and Rc and that Rc waits for Ra,
since the Za intersects with Zc and Rc /∈ Ga.

If Ra receives the set Gb (due to the dependency set
Dependa) before Ra receives the request message of Rc,
then Ra deduces that a request message of Rc eventually
arrives, and that Rc belongs to the set Aftera, since Za

intersects with Zc.
If Rc /∈ Ga and Rc /∈ Gb, then Rc ∈ Aftera and Rc

∈ After b, so Rc waits for both Ra and Rb.
The wait-for graph Dagwait is generated based on the

set Dependi, by applying a sequence of deterministic
functions. The graph Dagwm is generated according to
the imposed wait-for relation WAITFORME. The graph
Dagpg is generated starting from the graph Dagwm

according to the imposed wait-for relations of the patho-
logical situations.

The Conflict Resolver defines a deterministic function
(policy) to break ties between two conflicting robots,
starting from the graph Dagpg and the set Dependi

which is scanned according to the increasing order of the
robots identifiers. Therefore, the wait-for graph Dagwait

is generated consistently, and the robots that are related
by the transitive closure of the relation conflict build the
same wait-for graph.

Theorem 1 ( Mutual Exclusion): If a zone Zi of a
robot Ri intersects with a zone Zj of a robot Rj , then
either Ri or Rj (but not both) is the owner of its zone.

Proof: If Zi intersects with Zj , then Ri and Rj are
within the transmission range of each other, (reservation
range property), thus Ri and Rj can communicate.

Let us assume that Rj ∈ Gi.
• If Ri /∈ Gj , then Ri must wait for Rj (WAITFORME

relation). If Zi intersects with post(Zj ), then this
situation is detected by the Pathologic Detector and
the request (Ri, Zi) is preempted.

• If Ri ∈ Gj and there is no deadlock situation
between Ri and Rj , then the wait-for relation is
determined either by the Pathologic Detector if there
is an imposed wait-for relation due to pathological
situations, or by the Conflict Resolver. If there is
a deadlock situation between Zi and Zj , then one
of the requests is deterministically selected and pre-
empted.

Consequently, there is a wait-for relation between Ri

and Rj . According to Lemma 2 the wait-for relations
between conflicting robots are generated consistently, so
Ri and Rj establish the same wait-for relation and either
Ri waits for Rj or Rj waits for Ri.

Let us assume that Ri waits for Rj . When Rj releases
RelZonej , then Ri owns Zi. When the robot Ri is the
owner of Zi, the robot Rj is deprived from the ownership
of Zj . The robot Rj just keeps a part of post(Zj ) under its
reservation. Zi does not intersect with the part of post(Zj )
that is still owned by Rj , because:

1) pre(Zi) ∩ post(Zj ) = ∅ (Proof by contradiction).
If pre(Zi) intersects with post(Zj ), then Rj had
to wait for Ri according to the imposed wait-for

relations. This leads to a contradiction, since we
assume that Ri has wait for Rj .

2) motion(Zi) ∩ post(Zj ) = ∅ (Proof by contradic-
tion). If the motion zone of Ri intersects with the
post-motion zone of Rj , then Rj had to wait for Ri.

3) post(Zi) ∩ post(Zj ) = ∅ (Proof by contradiction).
If the post-motion zones intersect, then the situation
is the pathological situation 4. This leads to a
contradiction.

Consequently, the Safety property holds.
Theorem 2 (Liveness): If a robot Ri requests a zone

Zi, then eventually (Ri owns Zi or an exception is raised).

Proof: If a robot Ri requests a zone Zi, then:

1) If Zi does not intersect with a zone Zj , then Ri

owns Zi.
2) If Zi intersects with a zone Zj , then a wait-for

relation is established between Ri and Rj and a di-
rected edge is added to the wait-for graph Dagwait.
According to Lemma. 1 the graph Dagwait has no
cycles. Therefore, Ri eventually owns Zi.

3) If a deadlock or a starvation situation is detected,
then the Deadlock Resolution policy is called. If
the Deadlock Resolution policy fails to resolve the
situation, then an exception is raised.

4) Robot Rj ∈ After i eventually receives the release
message of Ri when Ri reaches post(Zi). Because,
Ri multicasts a release message to all the robots that
belong to the set After i and to robots Ra such that
Ri ∈ Neighbora and the request message msga =
(REQUEST, a, Za) of Ra has not yet been received
by Ri. When Ri reaches the post-motion zone, the
robots of the set After i and the robots Ra are within
one communication hop with respect to Ri (due to
the reservation range property). Hence the robots
of the set After i and the robots Ra can receive the
release message of Ri.

Consequently, the liveness property holds.

VII. PERFORMANCE ANALYSIS

We study the performance of our protocol in terms of
the time needed by a robot Ri to reach a given desti-
nation when robots are active (robots do not sleep). We
compute the average effective speed of robots executing
our collision prevention protocol. We provide insights for
a proper dimensioning of system parameters in order to
maximize the average effective speed of the robots. For
simplicity, we assume in this section that the physical
dimensions of the robots are very small, such that a robot
can be considered as a point in the plane. The geometrical
incertitude related to the positioning system, translational
and rotational movements are neglected. Consider a set
of robots, each one moving along a chunk (line segment)
of length equal to the reservation range Dch.
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A. Time needed to reserve and move along a chunk

The average physical speed of a robot is denoted: Vmot.
We calculate5 the average time required for a robot Ri to
reserve and move along a chunk of length Dch with a
physical speed Vmot.

Number of robots to wait for: The total number of
robots navg that Ri waits for to reserve a chunk is:

navg =
1

1− nreg

π(π+2)

−1, nreg < π(π +2) ≈ 16 (1)

where, nreg is the number of robots in the region reg,
which is the region of possible collisions for a robot Ri

that moves along a line segment of length Dch.
Communication delays: In order to evaluate the

performance of the protocol, we need to consider the
average of communication delays in the system, although
the protocol is time-free. The average communication
delays is denoted: Tcom. The delay of the neighborhood
discovery primitive NDiscover is denoted: Tnd. The time
Tch needed to reserve and move along a chunk is the
following:

Tch = Tnd +2navgTcom +navg(Tcom +
Dch

Vmot
)+

Dch

Vmot
(2)

The optimal time Tch for a robot Ri is when it is alone,
so there are no robots in the region reg. In this case, the
time Tch is: Tch(alone) = Tnd + Dch

Vmot
.

B. Optimal reservation range

We compute the average effective speed V of a robot
Ri as a function of the reservation range and the density
of robots in the system (the density is denoted: s), then
we determine an optimal value of the reservation range
that maximizes the average effective speed of Ri for a
given value of the density of robots. In our protocol the
reservation range is a constant parameter given by the
system.

V =
−sD3

ch + πDch

(3Tcom − Tnd)sD2
ch + π

Vmot
Dch + πTnd

,Dch <

√
π√
s
(3)

The previous relation shows that the effective speed is a
function of the reservation range and the density of robots,
and also that the average effective speed depends on
some system-based fixed parameters such as the average
communication delays and the physical speed of robots.
Figure 10(a) presents the relationship between the speed
and the reservation range for different densities. The
values of density extend from zero (Ri is alone) to
3[robots/m2]. Figure 10(a) shows the optimal reservation
range for a given density. The value of the optimal
reservation range maximizes the average effective speed
of the robots. The curve that corresponds to the density
zero (when robot is alone), in Figure 10(a), shows that
the effective speed always increases as the reservation
range increases, until the effective speed V approaches

5The details and the proofs are not presented in the paper due to
space limitations; see our research report [12].

the physical speed Vmot when the value of the reservation
range becomes very large. The curve has a horizontal
asymptote at V = Vmot = 1[m/s]. The effective speed
of Ri depends on the reservation range, even in the
case when Ri is alone, because it needs to perform a
certain number of steps to reach a destination, and the
number of steps is a function of the reservation range.
When the reservation range increases, the number of steps
decreases. The relation between the effective speed and
the reservation range (when Ri is alone), is the following:
V = Dch

Dch
Vmot

+Tnd

. In each step, Ri needs Tnd time units to

discover that it is alone. If Dch approaches infinity, then
V approaches Vmot.

Numerical values.: The values of the fixed system
parameters are: Tcom = 10[ms],Tnd = 1[s], the physical
speed Vmot = 1[m/s]. For a density s = 0.3[robot/m2],
the optimal reservation range is ≈ 1.53 [m], which gives
a maximal speed ≈ 0.51 [m/s].

C. Speed vs density of robots

The average effective speed always decreases when the
density of robots increases for a given reservation range.
Figure 10(b) presents the relationship between the average
effective speed and the density for different values of the
reservation range, (from 0.7[m] to 2[m]).

VIII. RELATED WORK

Martins et al. [8] demonstrated the avoidance of col-
lisions between three cars, elaborated in the CORTEX
project. They rely on the coexistence of two networks,
as defined in the Timely Computing Base of Verı́ssimo
and Casimiro [13]. One network, the payload network, is
asynchronous and carries the information payload of the
application. The second network, the control network or
wormhole, enforces strict real-time guarantees and is used
sparingly by the protocol. Although the system allows for
deadlines to be adapted dynamically (called time-elastic),
their approach differs from ours because the use of time
remains explicit in their protocol. A second difference is
that we assume that robots do not know the existence
of other robots that are not in their local neighborhood.
This said, our neighborhood discovery primitive has a
role similar to the wormhole of Martins et al. in that it
encapsulates the synchrony required by the protocol.

Nett et al. [9] presented a protocol for cooperative
mobile systems in real-time applications. They considered
a traffic control application in which a group of mobile
robots share a specified predetermined space. Communi-
cation is done through WiFi (802.11) with a base station.
All robots can communicate directly with each other,
and the system assumes the existence of a known upper
bound on communication delays. Needless to say that
the protocol relies on the strict enforcement of timing
assumptions.

Based on the ad hoc protocol presented in this paper,
we have recently developed a simpler version [14] aimed
at small groups of mobile robots, the composition of
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Figure 10. Average effective speed as a function of the reservation range and the density of robots.

which is static and known to all. In that simpler variant, all
robots can communicate directly. In contrast, the protocol
presented in this paper is more challenging as it relies on
ad hoc communication and supports dynamic groups of
robots.

Clark et al. [15] presented a collision avoidance based
on a motion planning framework by combining cen-
tralized with decentralized motion planning techniques.
When robots become within communication range of each
other, they dynamically establish a network. Their proto-
col ensures that at any time, robots in each network share
a common world model by accessing sensing information
of all other robots in the same network. Robots avoid
collisions by re-planning their paths. Their approach relies
on proper timing of communications and robots speed.

Jager et al. [7] presented a decentralized collision
avoidance mechanism based on motion coordination be-
tween robots. When the distance between two robots
goes below a certain threshold, they exchange informa-
tion about their respective planned paths and determine
whether there is a risk of collision. If a collision is possi-
ble, then they monitor each other’s movements and may
change their speed to avoid the collision. The approach is
highly dependent on the proper timing of communication
and, to some extent, on the proper control of robots’
speed. Besides, the composition of the system is static
and known to all robots.

Similarly, Azarm et al. [6] presented an on line dis-
tributed motion planning. When a conflict is detected
between two robots, they exchange their information and
determine their respective priorities. The robot with the
highest priority keeps its original path while other robots
must re-plan their motion.

The problem of robots’ collision avoidance has also
been handled using different strategies which are sensor-
based motion planning methods. The detailed information
about motion planning strategies is inspired from [3].

Minguez et al. [3] compute collision-free motion for
a robot operating in dynamic and unknown scenarios.
Motion planning algorithms compute a collision-free path
between a robot’s location and its destination. Robots

involve sensing directly within the motion planning by
sensing periodically at a high rate.

Some of these approaches (e.g., [4]) apply mathemati-
cal equations to the sensory information and the solutions
are transformed into motion commands. Another group
of methods (e.g., [5]) computes a set of suitable motion
commands to select one command based on navigation
strategy. Finally, other methods (e.g., [3]) compute a high-
level information description (e.g., entities near obstacles,
areas of free space) from the sensory information, and
then apply different techniques simplifying the difficulty
of the navigation to obtain a motion command in complex
scenarios.

Sensor-based approaches depend on real-time guaran-
tees for processing the sensory information. Furthermore,
the information provided by proximity sensors is unreli-
able and much more limited in range than most wireless
network interfaces.

IX. CONCLUSION

We have presented a fail-safe platform on which coop-
erative mobile robots rely for their motion. This platform
consists of a collision prevention protocol for a dynamic
group of cooperative mobile robots with asynchronous
communications. The platform ensures that no (physical)
collision ever occurs between robots regardless of the
respective activities of the robots.

The protocol is time-free, in the sense that it never
relies on physical time, which makes it extremely robust
with regard to timing uncertainty common in wireless
networks. It requires neither initial nor complete knowl-
edge of the composition of the group, and it relies
on a neighborhood discovery primitive which is readily
available through most wireless communication devices.
Furthermore, although the transmission range may be
limited, no routing is needed as robots only communicate
with their local neighborhood.

We have also presented a performance analysis of the
protocol, which provided insights for a proper dimension-
ing of system parameters in order to maximize the average
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effective speed of the robots. The design of the protocol
yields scalability due to its locality-preserving property.
Therefore, the protocol can handle a large-sized dynamic
group of cooperative mobile robots, provided with limited
energy resources and limited transmission range.

If a robot crashes, then the local neighbors that are
located within one communication hop with respect to the
crashed robot at the time of the crash are blocked waiting
for the crashed robot. The two-hop and farther neighbors
that do not conflict with any of the blocked robots, are not
affected at the time of the crash. Therefore, the impact of
a crash is limited in space and affects only a part of the
system for a period of time, however, the Snowball effect
takes place with the progress of time.

In the future, we intend to further investigate and
optimize the performance of the protocol, and consider
the problem of a crash of a certain number of robots.
In particular, we will analyze the performance of the
resulting protocols using simulations and experimentation.
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