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An approach is presented for extracting phase equations from multivariate time series data recorded
from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of
the phase equations including natural frequencies and interaction functions between the oscillators. Our
approach requires the measurement of an experimental observable of the oscillators; in contrast with
previous methods it does not require measurements in isolated single or two-oscillator setups. This
noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may
be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime.
Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators;
the obtained phase model is utilized to predict the synchronization diagram of the system.
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Synchronization is a ubiquitous phenomenon of coupled
nonlinear oscillators commonly found in both natural sci-
ence and engineering. Significant developments have been
made in theory and experiments on synchronization of
coupled limit cycle or chaotic oscillators [1,2]. An impor-
tant theoretical development in this field is the phase
reduction theory of weakly coupled limit cycle oscillators
[3]. This theory has become a standard technique with
applications in a wide variety of systems such as electro-
chemical oscillators [4], neurons [5], brain activity [6,7],
genetic networks [8], and circadian oscillations [9,10].
However, an important problem of construction of the
phase models from experimental data still remains open.
It is of special interest to infer phase equations that char-
acterize the underlying coupled system simply in terms of
natural frequencies of individual oscillators and interaction
functions between the oscillatory elements. Up to now,
several techniques have been developed to construct phase
equations from nonlinear systems [3,5,11-13]. One of
them is the perturbation method that estimates the interac-
tion function from the phase response curve and the oscil-
lation waveform [3,11,12]. Despite its reliability, the
method has a limitation in use with experimental data,
since it requires the application of external perturbations
to a nonlinear oscillator in an isolated condition. Other
methods also have restrictions such as applicability only to
a system of two coupled oscillators [5,13].

For wider application of the phase models to experimen-
tal (most notably biological) systems, which often have a
network structure composed of many oscillators, there is a
need for additional techniques. A noninvasive approach is
desired that does not destroy the original configuration of
the biological network.

The aim of this Letter is to demonstrate an approach to
the development of experiment-based phase models of
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rhythmic, weakly interacting systems. Our approach is
based upon the construction of the model by the
multiple-shooting method combined with the cross-
validation technique. This approach has the important
practical advantages that (1) it can be applied to a network
of many oscillators, (2) it is a noninvasive approach, (3) the
numerical techniques can be easily implemented, and
(4) the parameter estimation has an excellent convergence
property.

We start with the problem formulation. Consider a sys-
tem of N weakly coupled nearly identical limit cycle
oscillators:

C N
;= Filx) + > Glx;, x)), (1)
iFi
where x; and F; (i = 1,2, ..., N) represent state variables

and dynamics of the ith oscillator, C and G represent the
coupling constant and the interaction function between the
ith and jth oscillators. Our assumption is that in isolated
condition (C = 0) each oscillator F; gives rise to a stable
limit cycle with similar natural frequencies w;. Then the
phase reduction theory [3] states that for weak uniform
coupling C the network dynamics can be reduced to the
phase equations: 6; = w; + £ ¥ | H(0; — 6,) (0;, phase
of ith oscillator; H, interaction function). As a recording
condition, we assume that simultaneous measurement of
all oscillators is made as {x;(nA): n=1,..., M}, (Ar:
sampling time).

Our goal is to infer the phase equations from the mea-
surement data under the conditions that (i) the underlying
dynamics (1) are unknown, (ii) the coupling constant C
associated with the measured data is taken from a non-
synchronous regime, and (iii) the coupling type is known to
be uniform and all-to-all connection. The estimation does
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not require a priori knowledge of the specific value of the
coupling constant (without loss of generality it can be
taken to be unity).

Our approach to the problem can be described as
follows.

(1) Determine phases 6,(¢) from data x;(¢). Among vari-
ous definitions of phases [2], a simple formula is chosen,
where the phase 6 is increased by 27 at every local
maximum of x(r) and between the local maxima the phase
grows proportionally in time.

(2) Fit the phases {6,()} to the phase equations:

9i=wi+

zZ|Q

N
S A6, - 0)), @
j=1

where the interaction function H, which is in general non-
linear and periodic with respect to 24, is approximated by
a Fourier expansion up to order of D as H(Af) =
Zj[.’:l a;sinjAf + b;(cosjA@ — 1). [For simplicity, we
consider difference coupling. Thus the interaction function
is set to zero for zero phase difference, i.e., H(0) = 0].

The unknown parameters p = {w;, a b j} are estimated
by the multiple-shooting method [14]. We denote the time
evolution of the phase equations (2) with respect to the
initial condition #(0) by 6(r) = ¢'(6(0), p). Then, at each
sampling time ¢ = iAt, the phase equation must satisfy the
boundary conditions: 6((n + 1)A7) = ¢2(8(nA1), p).
With respect to the unknown parameters p, we solve these
nonlinear equations by the generalized Newton method.
The evolution function ¢’ is integrated numerically. For
the computation of the gradients d¢/d p which are needed
for the Newton method, variational equations of the phase
equations (2) are also solved numerically.

A necessary condition to solve the nonlinear equations is
that the number of the unknown parameters is less than the
number of the equations, corresponding in this case to N +
2D < N(M — 1). This always holds in the case of enough
data M.

(3) To avoid overfitting problem, a cross-validation
technique is utilized to determine the optimum number
of higher harmonics in the interaction function D [15].
We divide the multivariate data into two parts. For the first
half of the data, the parameter values p are estimated. Then
we apply the estimated parameters to the latter half
data and measure the error E =Y ,16((n + 1)Ar) —
¢*(6(nAt), p)|>. The order number D providing the mini-
mum error is considered to be the optimum.

We apply this technique to a prototypical example of
weakly coupled limit cycle oscillators. We consider the
following network of Rdssler equations with diffusive
coupling: X; = —a;y; — 2 yi = a;x; + 0.15y; +
CSN by —y), &=02+2z(—2) (i=1...N).
Each Rossler oscillator gives rise to a limit cycle attractor
for the chosen parameter values without coupling C = 0.
To consider an inhomogeneity in the network, parameter

values «;, which determine rotation speed in the (x,y)
space, are varied among the oscillators. The multivariate
data are recorded as {y;(1)},.

We start with the case of N = 16. Inhomogeneous pa-
rameter values are set as a; = 1 + 0.0002(i — 8.5) (i =
1,2,...,16). The data {y;(1)}!%, are recorded at the cou-
pling strength C = 0.002, which gives rise to non-
synchronized dynamics. The sampling interval was set to
be Ar = 0.08 for the extraction of the phase {#;(r)}. Then to
apply the multiple-shooting method the data have been
downsampled to Ar= 1000 X 0.08 and a total of
200 data points have been collected for the parameter
estimation. (As an initial condition, unknown parameter
values are all set to be zero, i.e., w; = 0,a; = b; = 0.) The
convergence property of the multiple shooting was excel-
lent; a single Newton procedure gives a good estimate.

Figure 1 shows the estimated natural frequencies of the
uncoupled oscillators and the interaction function with the
Fourier order of D = 2, which is optimized by the cross-
validation test. The statistical errors indicated by the error
bars were computed from the inverse of the Hessian matrix
of the squared error function, based on the assumption that
the phase data contain uncorrelated observational noise
[16]. The estimated natural frequencies are distributed on
a diagonal line with the original frequencies computed
from each of the Rossler oscillators. Moreover, the esti-
mated interaction function H(A#@) is in very good agree-
ment with that estimated by applying the perturbation
method to a single isolated Rossler oscillator [3,11]. (For
the comparison, we utilized the coupling constant as prior
knowledge.) The error bars, which overlap with the per-
turbation method, imply that the slight deviation is due to
the fitting error to the phase data.

It is important to note that the estimation results depend
on the coupling strength C used to generate the time series.
Figure 2(a) shows dependence of estimation error on
the coupling strength. The estimation error e is evaluated
as the normalized deviation of the estimated
interaction function H,(A@) from H,(A) estimated by
the perturbation method; ie., e =100 [37 |H (A6) —
H,(A6)|dA6/ [3™ |H ,(A6)|dA6 [%]. When the coupling

Interaction Function
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FIG. 1. (a) The estimated natural frequencies (vertical axis)
{w}1®, of 16 Réssler oscillators versus the natural frequencies of
the noncoupling simulation (horizontal axis). (b) Interaction
function H(A#) estimated by the present method (dotted line)
is compared with that estimated by the perturbation method
(solid line).
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strength is too small, the interaction effect is weak. This
makes it difficult to recover the precise structure of the
interaction function, resulting in a relatively large estima-
tion error. On the other hand, when the coupling strength is
very close to the onset of synchronization, the estimation
error increases significantly. This can be understood as
follows. When the network is synchronized, phase differ-
ences between all the oscillators become nearly constant
A6 = const. This provides no information at all about the
interaction function. A similar result has been reported
from modeling of coupled chaotic oscillators [17].
Hence, the most efficient condition for precise estimation
of phase equations is to utilize an intermediate coupling
strength between the two extreme situations. One possibil-
ity to overcome the problem of synchronized data is to
apply an external perturbation to destroy the network
synchronization and to utilize the relaxation process for
the parameter estimation.

Another important dependence of the model estimation
is on the network size. As shown in Fig. 2(b), the estima-
tion error increases almost linearly as the network size N is
increased. This might be due to the fact that the procedure
becomes more sensitive to the estimate of interaction effect
from each individual oscillator, when interactions from
many other oscillators are summed up in the term
Z?’: H(6; — 6,) of Eq. (2). This difficulty applied to large
systems with all-to-all connection. However, for non-all-
to-all coupled systems the limitation is not expected to be
so severe because a typical node may only be connected to
a small number of other elements. Such small number of
local connectivities in complex networks is important in
many biological systems [18].

Let us apply our technique to experimental data. We use
an electrochemical oscillatory system in which the inter-
action function was recently calculated [12] with the per-
turbation method and thus direct comparison between the
two approaches can be made.

The experiments were carried out in a standard electro-
chemical cell containing 3 mol/dm? sulfuric acid kept at a
temperature of 11 °C with an 8 X 8 array of 1 mm diameter
nickel, a Hg/Hg,S0,/K,SO, reference, and a Pt counter-
electrode. (For the experiments with 32 electrodes only
half of the electrodes were connected in the array.) The
currents, proportional to the rate of electrodissolution,
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FIG. 2. (a) Dependence of the estimation error e on the cou-
pling strength C wused to generate multivariate data.
(b) Dependence of the estimation error e on the network size N.

were measured at a frequency of 100 Hz using zero resist-
ance ammeters. The electrodes, held at a potential of V =
1.105 V, were connected to a potentiostat through one
series (collective) resistor R and through N parallel resis-
tors (N is the number electrodes). The dimensionless in-
teraction strength K = NR,/R » was controlled through the
external resistors by keeping the equivalent resistance
R.q = R, + NR, constant [4]. [The physical coupling
strength is obtained as C = K/(R.qC,), C; = 1.3 mS as
measured by impedance spectroscopy.]

First, we consider a network of 32 electrochemical
oscillators. Multivariate data {y;(r)}}2, were measured
from all N = 32 oscillators with a coupling strength of
C = 0.018 1/s, which gives rise to nonsynchronized dy-
namics. The recording interval of 5 s was utilized for the
parameter estimation. Figure 3 shows the estimation results
based on the optimum D = 1. Natural frequencies are well
estimated with slightly higher values than those obtained
with C = 0. Moreover, the shape of the estimated interac-
tion function H(A@) is in a good agreement with that
estimated by applying the perturbation method to a single
isolated electrochemical oscillator [12]. The interaction
function consists of strong sin(A¢) and 1 — cos(A¢)
terms and higher harmonics are very weak; this functional
form is consistent with theoretical prediction of Stuart-
Landau oscillators close to a Hopf bifurcation [3]. The
difference in amplitude between the interaction functions
obtained with the two different methodologies is e =
23.7% in Fig. 3(b).

We found that the estimation procedure was efficient in
extracting the phase model for sufficiently strong coupling.
With very weak coupling strengths, small drifts of the
natural frequencies of oscillators caused the estimation of
the relatively weak coupling effects to be rather inaccurate.

Finally, we demonstrate the capability of our approach
to predict the synchronization structure. For another net-
work of 64 globally coupled electrochemical oscillators a
synchronization diagram (dependence of the order parame-
ter ® on the coupling strength in the range of C €
[0, 0.17]) has been previously obtained [19]. We examine
the power of the extracted experiment-based phase model
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Estimated Frequency [Hz]
Interaction Function

FIG. 3. (a) Estimated natural frequencies (vertical axis)
{w}32, of 32 electrochemical oscillators versus the measured
natural frequencies (horizontal axis). (b) Interaction function
H(AG) estimated by the present method (dotted line) is com-
pared with that estimated by applying the perturbation to a single
isolated electrochemical oscillator (solid line) [12].
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FIG. 4. Synchronization diagram of a network of 64 electro-
chemical oscillators. The order parameter ® is plotted against
the coupling strength K. The model prediction (dotted line) is
compared with the experimental curve (solid line with crosses).
(a),(b) correspond to the modeling data measured at K = 0.033
and K = 0.039 (boxes), respectively.

in recovering this diagram. The estimated model is simu-
lated to produce the synchronization diagram. Figure 4(a)
shows the dependence of the order parameter @ on the
coupling strength when only a single data set with K =
0.033 close to the Kuramoto transition point was used to
obtain the phase model. (The order parameter can be
computed according to Re'® = 1 Zj\’zl ¢! [3,4].) In spite
of the drift, relative shortness of the time series, and the
larger (64) population size, the phase model gives an
excellent prediction of the order versus coupling strength
curve. We note that the modeling accuracy has a depen-
dency on the data location. For example, when a relatively
short data set with only a few phase slips among the
oscillators at K = 0.022 was analyzed, the reconstruction
of the synchronization diagram was not successful.
However, when enough phase slips are present, the syn-
chronization diagram can be well recovered as demon-
strated at K = 0.039 in Fig. 4(b).

To conclude, an approach has been presented for infer-
ring phase equations from multivariate time series.
Analysis of measurement data from electrochemical oscil-
lators demonstrated practical applicability to experimental
systems. The present approach is rather general and can be
extended to more complex situations such as the case of
nonuniform coupling C; ;. Such extended cases will be
investigated in forthcoming studies. One of the future
challenges is to apply the present approach to a network
of oscillators in biological systems. Recent technological

advances made simultaneous (optical or electrical) mea-
surements of the rhythmic cells possible in networks;
examples include circadian gene expressions of supra-
chiasmatic nucleus [9] or the synchronous electrical activ-
ity in neuronal pacemakers [20]. Such recording conditions
would facilitate the construction of phase models from
experimental data that could be used for the simple yet
accurate description of a large number of rhythmic, inter-
acting cells.

[1] A.T. Winfree, The Geometry of Biological Time (Springer,
New York, 1980).

[2] A. Pikovsky, M. Rosenblum, and J. Kurths,
Synchronization—A Universal Concept in Nonlinear
Sciences (Cambridge University Press, Cambridge, 2001).

[31 Y. Kuramoto, Chemical Oscillations, Waves and
Turbulence (Springer, Berlin, 1984).

[4] 1.Z. Kiss, Y. M. Zhai, and J. L. Hudson, Science 296, 1676
(2002).

[5] R.F. Galan, G.B. Ermentrout, and N. N. Urban, Phys. Rev.
Lett. 94, 158101 (2005).

[6] P. Tass et al., Phys. Rev. Lett. 81, 3291 (1998).

[7] L. Angelini et al., Phys. Rev. Lett. 93, 038103 (2004).

[8] D. Battogtokh, K. Aihara, and J.J. Tyson, Phys. Rev. Lett.
96, 148102 (2006).

[9] S. Yamaguchi et al., Science 302, 1408 (2003).

[10] H. Kori and A.S. Mikhailov, Phys. Rev. Lett. 93, 254101
(2004).

[11] H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Prog.
Theor. Phys. 77, 1005 (1987).

[12] I.Z. Kiss, Y.M. Zhai, and J. L. Hudson, Phys. Rev. Lett.
94, 248301 (2005).

[13] J. Miyazaki and S. Kinoshita, Phys. Rev. Lett. 96, 194101
(2006).

[14] E. Baake et al., Phys. Rev. A 45, 5524 (1992).

[15] M. Stone, J. R. Stat. Soc. Ser. B. Methodol. 36, 111
(1974).

[16] W. Horbelt et al., Phys. Rev. E 64, 016222 (2001).

[17] 1. Tokuda, J. Kurths, and E. Rosa, Jr., Phys. Rev. Lett. 88,
014101 (2001).

[18] D. Watts and S. Strogatz, Nature (London) 393, 440
(1998).

[19] Y.M. Zhai et al., Physica (Amsterdam) 205D, 57 (2005).

[20] E.E. Verheijck et al., J. Gen. Physiol. 111, 95 (1998).

064101-4



