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The equivalent diversity order of multiuser detector employing multiple receive antennas and minimum mean squared error
(MMSE) processing for frequency-selective channels is decreased if it aims at suppressing unknown cochannel interference
(UCCI) while detecting multiple users’ signals. This is an unavoidable consequence of linear processing at the receiver. In this
paper, we propose a new multiuser signal detection scheme with the aim to preserve the detector’s diversity order by taking into
account the structure of the UCCI. We use the fact that the structure of the UCCI appears in the probability density function
(PDF) of the UCCI plus noise, which can be characterized as multimodal Gaussian. A kernel smoothing PDF estimation-based
receiver is derived. The PDF estimation can be based on training symbols only (noniterative PDF estimation) or on training sym-
bols as well as feedback from the decoder (iterative PDF estimation). It is verified through simulations that the proposed receiver
significantly outperforms the conventional covariance estimation in channels with low frequency selectivity. The iterative PDF
estimation significantly outperforms the noniterative PDF estimation-based receiver with minor training overhead.

Keywords and phrases: turbo equalization, cochannel interference, PDF estimation.

1. INTRODUCTION

The scarcity of the frequency resources and the fact that the
frequency spectrum has to be shared by multiple users in fu-
ture wireless communication systems impose the need for
bandwidth-efficient transceiver schemes. A huge volume of
research has been done on the development of different tech-
niques for multiple access, the most important examples of
which are frequency-division multiple access (FDMA), time-
division multiple access (TDMA), and code-division multi-
ple access (CDMA).

The advances in the area of communications using mul-
tiple receive antennas have opened a completely new dimen-
sion for combating interference, called space-division multi-
ple access (SDMA) [1, 2]. The SDMA concept can be applied
to any of the existing multiple-access schemes to further im-
prove the system capacity both in terms of the number of

supported users and in terms of supported data rates. More-
over, SDMA can be seen as bandwidth efficient by analogy to
CDMA, where the orthogonality between users is maintained
by their unique spatial signatures instead of unique spread-
ing waveforms [3]. This, at least in terms of baseband signal
processing, offers new possibilities of using large preexisting
knowledge of CDMA.

An example of the area where a large experience is present
in the research community is multiuser detection for CDMA
[4]. It is well known that the maximum-likelihood sequence
estimation (MLSE) technique achieves the best performance
when detecting the multiple users’ transmitted signals. How-
ever, its computational complexity, which increases expo-
nentially with the number of users and memory length of
the channel, is prohibitive for a practical use. Therefore, a
significant amount of research has been conducted to de-
velop suboptimal multiuser receivers [4]. In coded systems,
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the complexity of the optimal receiver further increases due
to the fact that joint trellis diagram of all the users, their mul-
tipath channels, and their channel codes has to be taken into
account [5]. In [6], low-complexity receivers that separately
perform detection and decoding stages are proposed.

A breakthrough in the development of the suboptimal
low-complexity receiver schemes has been initiated by the
discovery of turbo codes [7]. The principle of turbo process-
ing [8] has been shown to be extremely powerful in solv-
ing the computational complexity problem of the optimal
receiver structures. It is based on the concept that differ-
ent parts of the receiver perform locally optimal signal pro-
cessing, conditioned on the processing results of the other
receiver blocks. By iteratively performing such a process-
ing, near-globally optimal performance can be obtained in
various cases. Examples are joint equalization and decod-
ing [9], joint multiuser detection and decoding in CDMA
[10, 11, 12], and joint MIMO multiuser detection, equaliza-
tion, channel estimation, and decoding [13]. The common
structure of these receivers consists of the maximum a poste-
riori (MAP) block for multiuser detection and equalization,
and a set of soft-input soft-output (SISO) channel decoders,
which are separated by interleavers [10, 11]. In [10] and [13],
a low-complexity implementation of the iterative receivers is
also proposed. It is based on soft interference cancellation
and linear minimum mean squared error (SC/MMSE) filter-
ing.

The SC/MMSE equalizer is robust against unknown
cochannel interference (UCCI) if the covariance matrix of
the UCCI is properly estimated and taken into account in the
MMSE filtering [1, 13]. Subspace estimation and projection
[14, 15] is another UCCI cancellation technique. However,
to suppress UCCI, the both methods unavoidably consume
the degrees of freedom (DOFs) provided by spatio-temporal
processing in the receiver. This is a consequence of linear sig-
nal processing at the receiver that does not take into account
the actual structure of the UCCI. This will result in a decrease
of the overall diversity order of the receiver [15, 16, 17]. The
loss of diversity will be more severe in channels with low fre-
quency selectivity due to the lack of multipath diversity.

If the signal constellation of the UCCI is known at the
receiver, the channel of UCCI can be estimated, and the di-
versity loss of the linear MMSE receiver can be completely re-
covered by means of joint maximum-likelihood (ML) detec-
tion of the desired users and UCCI [17]. This in turn would
require either blind channel estimation methods to estimate
the channels of UCCIs or blind source separation techniques
[18] to estimate jointly the channels and data sequences.
However, if the UCCI’s channels do not change significantly
over the frame, possible states of the interference can be es-
timated instead of estimating the channel gains themselves.
This fact has been used in Bayesian equalization in the pres-
ence of UCCI in [19]. In [20], maximum-likelihood se-
quence estimation (MLSE) equalization was performed in
combination with UCCI-plus-noise PDF estimation to com-
bat the impact of UCCI.

In [21], the authors have derived a new receiver that
can preserve the diversity gain by estimating the PDF of the

UCCI plus noise. The signal processing algorithm shown
in [22] is used in the first iteration and the kernel-based
PDF estimation [20, 23] is applied for the following itera-
tions. It is shown there that the proposed receiver signifi-
cantly outperforms the conventional detector of [22] in low
frequency-selective channels with relatively small number of
UCCIs. There, however, the receiver is restricted to nonit-
erative PDF estimation and it was derived only for binary-
phase-shift-keying (BPSK) modulation. In this paper, we
generalize the receiver derivation to the multilevel-phase-
shift-keying (MPSK) case. Furthermore, an iterative PDF es-
timation technique using soft feedback is proposed for sit-
uations where only short training sequences are available.
It is shown that the proposed joint iterative PDF estima-
tion and turbo signal detection technique can significantly
improve performance over the noniterative technique, when
only short training sequences are available. We restrict the
scope of the paper to the multilevel phase-shift-keying (PSK)
modulation, but it is straightforward to extend the concept
to quadrature amplitude modulation (QAM) cases. The rest
of the paper is organized as follows. Section 2 describes sys-
tem model. Sections 3 and 4 present the conventional and
the proposed receivers, respectively. Section 5 presents simu-
lation results, and Section 6 concludes the paper.

2. SYSTEM MODEL

Figure 1 illustrates the system model. Each of N + NI users
encodes information sequence cn(i), n = 1, . . . ,N + NI ,
i = 1, . . . ,n0RB, using convolutional encoder with R, B, and
2n0 being the code rate, frame length in binary symbols, and
the number of constellation points in modulation scheme,
respectively. The users indexed by n = 1, . . . ,N are the de-
sired users and those indexed by n = N + 1, . . . ,N + NI are

UCCI. The encoded binary sequences d(i)
n (k), k = 1, . . . ,B,

i = 1, . . . ,n0, are interleaved and 2n0 -PSK modulated, result-
ing in symbol sequences bn(k) = M{d(i)

n , i = 1, . . . ,n0} ∈ Q,
k = 1, . . . ,B, where M is bit-to-symbol mapping function.
Q = {α1, . . . ,α2n0 } denotes signal constellation set of the
2n0 -PSK modulation. They are preceded by the user-specific
training sequences of length T symbols. The frame struc-
ture is presented in Figure 2. The entire frame is transmitted
through frequency-selective channel with L paths.

After coherent demodulation in the receiver, the signals
from each of the M receive antennas are matched-filtered and
sampled at the symbol rate. The sampled received signal at
the antenna m is given by

rm(k) =
L−1∑
l=0

N∑
n=1

hm,n(l)bn(k − l)

+
L−1∑
l=0

N+NI∑
n=N+1

hm,n(l)bn(k − l) + vm(k),

(1)

where hm,n(l) is a baseband representation of the channel
gain between the nth user and mth antenna for the lth path,
and vm(k) is additive white Gaussian noise (AWGN) with
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Figure 1: Transmitter and iterative receiver block scheme.
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variance σ2. After collecting signals from all the antennas into
the space vector, we obtain

r(k) = [
r1(k) · · · rM(k)

]T = L−1∑
l=0

H(l)b(k − l)

+
L−1∑
l=0

HI(l)bI(k − l) + v(k),

(2)

where

H(l) =


h1,1(l) · · · h1,N (l)

...
. . .

...
hM,1(l) · · · hM,N (l)

 ,

HI(l) =


h1,N+1(l) · · · h1,N+NI (l)

...
. . .

...
hM,1(l) · · · hM,N+NI (l)

 ,

b(k) = [
b1(k) · · · bN (k)

]T
,

bI(k) = [bN+1(k) · · · bN+NI (k)]T ,

v(k) = [
v1(k) · · · vM(k)

]T
.

(3)

In order to capture the multipath components, the window
of received signal samples spanning the time frame of length
L at time instant k is collected into the space-time vector
y(k) ∈ CLM×1 given by [13]

y(k) = [
r(k + L− 1)T · · · r(k)T

]T
= Hu(k) + HIuI(k) + n(k),

(4)

where H ∈ CLM×N(2L−1) and HI ∈ CLM×NI (2L−1) are defined
as

H =


H(0) · · · H(L− 1) · · · 0

...
. . .

. . .
...

0 · · · H(0) · · · H(L− 1)

 ,

HI =


HI(0) · · · HI(L− 1) · · · 0

...
. . .

. . .
...

0 · · · HI(0) · · · HI(L− 1)

 ,

(5)

and u(k) ∈ CN(2L−1)×1, uI(k) ∈ CNI (2L−1)×1, and n(k) ∈
CLM×1 are given by

u(k) = [
b(k + L− 1)T · · ·b(k)T · · ·b(k − L + 1)T

]T
,

uI(k) = [
bI(k + L− 1)T · · ·bI(k)T · · ·bI(k − L + 1)T

]T
,

n(k) = [
v(k + L− 1)T · · · v(k)T

]T
,

(6)

with E{n(k)nH(k)} = σ2I.

3. CONVENTIONAL ITERATIVE RECEIVER

3.1. SC/MMSE multiuser detector

The conventional receiver for MIMO turbo equalization with
UCCI is proposed in [22]. We highlight the main points of
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the receiver for convenience. Assume without loss of gener-
ality that user 1 is the user of interest. Let

x(k) = HIuI(k) + n(k). (7)

First iteration

The sample vectors y(k), k = 1, . . . ,T , denoting training se-
quences, are first directed to the channel estimator to obtain
the estimate Ĥ of H, and then the samples

x̂(k) = y(k)− Ĥu(k), k = 1, . . . ,T , (8)

are used to estimate the covariance matrix of the UCCI plus
noise using sample average given by

Rxx = E{xxH}

≈
∑T

k=1 x̂(k)x̂H(k)
T

= R̂xx.
(9)

In order to suppress the known and unknown CCI compo-
nents as well as the ISI components of the desired signal, a
linear filter with weighting vector w1(k) is applied to the sig-
nal y(k), k = T + 1, . . . ,B + T , so as to satisfy the MMSE
criterion:

w1(k) = arg min
w(k)

∥∥wH(k)y(k)− b1(k)
∥∥2

, (10)

resulting in the optimal weighting vector

w1(k) = [
ĤĤH + R̂xx

]−1
h1, (11)

where

h1 = Ĥe1, (12)

and e1 ∈ RN(2L−1)×1 is defined as

e1 =
[

01×(L−1)N101×LN−1
]T
. (13)

By approximating the error at the MMSE filter output as
Gaussian [13], the extrinsic probabilities to be passed to the
decoder are calculated as

p1
(
b1(k) = αj

) = 1
πν2

1(k)
e−(z1(k)−µ1(k)αj )H (z1(k)−µ1(k)αj )/ν2

1(k),

j = 1, . . . , 2n0 ,
(14)

where z1(k) is the MMSE filter output,

z1(k) = wH
1 (k)y(k),

µ1(k) = wH
1 (k)h1,

ν2
1(k) = wH

1 (k)
[

ĤĤH + R̂xx
]

w1(k)− µ1(k)µ∗1 (k).

(15)

Subsequent iterations

Let ũ(k) denote the training sequence

ũ(k) = u(k), k = 1, . . . ,T , (16)

or the soft data sequence fed back from the channel decoder:

ũ(k) = [
b̃T(k + L− 1) · · · b̃T(k) · · · b̃T(k − L + 1)

]T
,

k = T + 1, . . . ,T + B,
(17)

where

b̃(k) = [
b̃1(k) · · · b̃N (k)

]T
, (18)

b̃n(k) =
∑
αj∈Q

αj p2
{
bn(k) = αj

}
. (19)

p2{bn(k) = αj} denotes the extrinsic probability obtained by
SISO channel decoding (see (34)).

Similarly define

u(k) = u(k), k = 1, . . . ,T , (20)

or

u(k) = [
b
T

(k + L− 1) · · ·b
T

(k) · · ·b
T

(k − L + 1)
]T

,

k = T + 1, . . . ,T + B,
(21)

where

b(k) = [
b1(k) · · · bN (k)

]T
, (22)

bn(k) =
∑
αj∈Q

αjP2{bn(k) = αj}. (23)

P2{bn(k) = αj} denotes the a posteriori probability obtained
by the SISO decoding (see (35)).

The samples u(k), k = 1, . . . ,T + B, are first fed to the
channel estimator to reestimate the channel H, and then the
samples

x̂(k) = y(k)− Ĥu(k), k = 1, . . . ,T + B, (24)

are used to update the estimate of the covariance matrix Rxx:

R̂xx =
∑T+B

k=1 x̂(k)x̂H(k)
T + B

. (25)

We now denote

û1(k) = ũ(k)− b̃1(k)e1. (26)

Soft cancellation of the known CCI components as well as the
ISI components of the desired signal is performed, yielding

ŷ1(k) = y(k)− Ĥû1(k), k = T + 1, . . . ,B + T. (27)
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After that, a linear filter with weighting vector w1(k) is ap-
plied to the signal ŷ1(k) so as to satisfy the MMSE criterion:

w1(k) = arg min
w(k)

∥∥wH(k)ŷ1(k)− b1(k)
∥∥2

, (28)

resulting in the optimal weighting vector

w1(k) = [
ĤΛ1(k)ĤH + R̂xx

]−1
h1, (29)

where

Λ1(k) = I− E
{

û1(k)ûH
1 (k)

}
. (30)

Note that (30) holds only for multilevel PSK. Note fur-
ther that the total number of DOF of the iterative linear
SC/MMSE receiver after convergence is determined by the
product LM. This number is decreased by a factor equal to
the rank of the matrix R̂xx while cancelling UCCI.

The extrinsic probabilities to be passed to the decoder are
calculated as in (14), where the MMSE filter output z1(k) is
now defined as

z1(k) = wH
1 (k)ŷ1(k),

µ1(k) = wH
1 (k)h1,

ν2
1(k) = wH

1 (k)
[

ĤΛ1(k)ĤH + R̂xx
]

w1(k)− µ1(k)µ∗1 (k).
(31)

3.2. Channel decoder

Each of the single-user channel decoders produces the max-
imum a posteriori (MAP) probability of each binary symbol

d(i)
1 (k):

P2
(
d(i)

1 (k) = ±1
)

= p
(
d(i)

1 (k) = ±1|z1(k), k = T + 1, . . . ,T + B
)

= p2
(
d(i)

1 (k) = ±1
)
p(π−1)

1

(
d(i)

1 (k) = ±1
)
,

(32)

where p(π−1)
1 (d(i)

1 (k) = ±1) is the deinterleaved a priori infor-

mation p1(d(i)
1 (k) = ±1) obtained from the MMSE detection

stage and p2(d(i)
1 (k) = ±1) is the decoder extrinsic probabil-

ity. To obtain p1(d(i)
1 (k) = ±1), a symbol-to-bit probability

conversion has to be made as follows:

p1
(
d(i)

1 (k) = +1
) = ∑

β∈B+1

p1
(
b1(k) = β

)
, (33)

where B+1 = {β ∈ Q|β = M{δp, p = 1, . . . ,n0; δp ∈ {+1,

−1}, p �= i, δi = +1}}, and similarly for p1(d(i)
1 (k) = −1).

The extrinsic probabilities p2(d1(k) = ±1) are used to
make the conversions from bit-to-symbol extrinsic probabil-
ities, yielding

p2
(
b1(k) = αj

) = n0∏
i=1

p2
(
d(i)

1 (k) = δi
)
,

αj =M
{
δi ∈ {+1,−1}, i = 1, . . . ,n0

}
,

(34)

which are delivered to the SC/MMSE receiver through (19).
Similarly, the symbol-level a posteriori probabilities are cal-
culated as

P2
(
b1(k) = αj

) = n0∏
i=1

P2
(
d(i)

1 (k) = δi
)
,

αj =M
{
δi ∈ {+1,−1}, i = 1, . . . ,n0

}
,

(35)

to be used in (23). After a sufficient number of iterations,
when the receiver has converged, the decision on the trans-
mitted binary information symbols cn(i) is made based on
the a posteriori log-likelihood ratios for cn(i), given as

λ
(
cn(i)

) = p
(
cn(i) = +1|z1(k), k = T + 1, . . . ,T + B

)
p
(
cn(i) = −1|z1(k), k = T + 1, . . . ,T + B

) ,

(36)

for decision making.
Iterative channel estimation from [24] is applied. The de-

tailed description is reviewed in Appendix B.

4. ITERATIVE RECEIVER WITH PDF ESTIMATION

4.1. Receiver derivation

Unlike the conventional receiver described in Section 3,
which uses MMSE detection after soft cancellation, the pro-
posed receiver uses maximum-likelihood (ML) processing,
by making use of the actual structure of the UCCI.

First iteration

We rewrite (4) as

y(k) = h1b1(k)︸ ︷︷ ︸
desired

+ HCISI,1uCISI,1(k)︸ ︷︷ ︸
CCI + ISI

+ HIuI(k)︸ ︷︷ ︸
UCCI

+ n(k)︸ ︷︷ ︸
noise

= h1b1(k) + x1(k),

(37)

where HCISI,1 = H − [0LM×(L−1)Nh10LM×LN−1], uCISI,1(k) =
u(k)−b1(k)e1, and x1(k) denotes the total sum of the desired
user’s intersymbol interference (ISI), known CCI, UCCI, and
noise. Since in the first iteration the soft feedback is not avail-
able, the ISI and CCI components cannot be cancelled. ML
processing requires the PDF of the signal x1(k), which is mul-
timodal Gaussian, given by

px1

(
x1(k)

) = 1
2Dtot

2Dtot∑
i=1

1(
πσ2

)LM e−(x1(k)−ti,1)H (x1(k)−ti,1)/σ2
,

(38)

where Dtot = n0[(2L − 1)(N + NI) − N], and ti,1 depends
on the entries of HI and HCISI,1 and the signal constellation
of the UCCI. The number of summation terms in (38) in-
creases exponentially with the number of users N which may
be large in a practical system. In that case, the samples x1(k)
will become less structured and their PDF will become more
Gaussian-like. To justify the Gaussian approximation, we cal-
culate the Kullback-Leibler (KL) distance (relative entropy)
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Table 1: KL distance between the true PDF of (38) and Gaussian
approximation of (39), L = 2.

N + NI 1 3 5
KL distance 60 25 22.5

[25] between the true PDF given by (38) and the correspond-
ing Gaussian approximation given by

pGapp,x1

(
x1(k)

) = 1
πLM det

(
Rx1x1

) e−x1(k)HR−1
x1x1

x1(k), (39)

with

Rx1x1 = E
{

x1(k)x1(k)H
} = HCISI,1HH

CISI,1 + Rxx, (40)

for several values of N + NI . It can be seen from Table 1
that the KL distance decreases as the N +NI increases, which
means that the true PDF approaches Gaussian. Therefore, by
adopting the Gaussian assumption for the x1(k), the extrin-
sic probability to be passed to the first user’s SISO decoder
can be calculated as

p
(
b1(k) = αj

)
= CMLe

−(y(k)−h1αj )
HR−1

x1x1
(y(k)−h1αj ), j = 1, . . . , 2n0 ,

(41)

where CML = 1/πLM det (Rx1x1 ). It can also be shown [26]
that the MMSE filter given by (11) can be transformed using
the matrix inversion lemma, resulting in

w1(k) = R−1
x1x1

h1

1 + hH
1 R−1

x1x1
h1

. (42)

Note that the estimates of H and Rxx are replaced by their
true values in (11) to show that (42) holds. In practice, the
estimate of Rx1x1 is obtained from (40) by using estimates Ĥ
and R̂xx, defined in Section 3. After incorporating (42) into
(15), the extrinsic probability at the output of MMSE filter,
given by (14), can be represented as

p
(
b1(k) = αj

)
= CMMSEe

−(y(k)−h1αj )
HR−1

x1x1
(y(k)−h1αj ), j = 1, . . . , 2n0 ,

(43)

where CMMSE = (1 + hH
1 R−1

x1x1
h1)2/πhH

1 R−1
x1x1

h1. This, how-
ever, is just the scaled extrinsic information of (41) obtained
by using the ML detector. Since the constants CML and CMMSE

do not have any impact on the receiver performance, in the
first iteration the proposed ML receiver is exactly the same as
the conventional MMSE receiver presented in Section 3.

Subsequent iterations

Starting from the second iteration, we make use of the soft
feedback. Assuming that the soft cancellation in (24) is al-
most perfect, the ISI components of the desired user and the

known CCI components can be cancelled, and the PDF of
the signal x̂(k), given in (24), can be given as

px̂
(

x̂(k)
) ≈ 1

2D

2D−1∑
i=0

1

(πσ2)LM
e−(x̂(k)−ti)H (x̂(k)−ti)/σ2

, (44)

where D = n0(2L − 1)NI , and ti depends on the matrices
HI and the signal constellation of the UCCI. Assuming that
the number NI of UCCIs is relatively small, the structure of
the UCCI can be exploited by estimating the PDF of UCCI
plus noise given by (44) and applying ML filtering. After the
estimate p̂x̂(x̂(k)) of px̂(x̂(k)) is obtained, the extrinsic prob-
ability to be passed to the first user’s SISO decoder can be
calculated as the output of the single-user ML detector as

p1
(
b1(k) = αj

) = p̂x̂
(

ŷ1(k)− αjh1
)
,

k = T + 1, . . . ,T + B,

j = 1, . . . , 2n0 .

(45)

The PDF estimation procedure is described in the se-
quel. First, the channel is reestimated based on u1(k), k =
1, . . . ,B + T , as in Section 3. Then, the samples x̂(k), k =
1, . . . ,T + B, are used to make the estimate of the UCCI-
plus-noise PDF. Note that by using the samples indexed by
k = 1, . . . ,B+T , we perform iterative PDF estimation. In the
noniterative PDF estimation, only first T samples, x̂(k), k =
1, . . . ,T , corresponding to the training sequence, would be
used. In order to perform the PDF estimation, either para-
metric [19] or nonparametric [23] approach can be used.
The former one estimates the parameters D and ti based on
the samples x̂(k). These estimates are then used in (44). On
the other hand, the nonparametric approach estimates PDF
directly, where each sample x̂(k) contributes to the total esti-
mate through a weighting function. For example, for an ar-
bitrary a = [a1, . . . , aLM]T ∈ CLM×1, the nonparametric mul-
tidimensional kernel-based PDF estimator [23] estimates the
px̂(a) as

p̂x̂(a) = 1
T + B

T+B∑
k=1

K1
(
(x̂(k)− a)/σ0

)
σ2LM

0
, (46)

where K1(a) = 1/(2π)LMe−aHa/2 is a Gaussian kernel weight-
ing function and σ0 is a smoothing parameter. Although
other kernel functions can be used [23], it will be shown that
this choice gives an asymptotically unbiased and consistent
PDF estimator. The estimation accuracy is controlled by the
smoothing parameter σ0. The larger value of σ0 results in the
smoother but less accurate PDF estimate, and vice versa. In
order to find the optimal value for σ0, one approach is to
minimize the mean integrated square error (MISE) [23] be-
tween the true PDF and its estimate, as defined by

MISE
(
p̂x̂
) = ∫

R2LM

{
px̂(a)− p̂x̂(a)

}2
da, (47)

where da = d�a1d�a1 · · ·d�aLMd�aLM . It is shown in
Appendix A that the optimal smoothing parameter σ0,opt can



878 EURASIP Journal on Applied Signal Processing

be lower bounded as follows:

σ0,opt ≥
(

2
(T + B)(LM + 1)

)1/(2LM+4)

, σ = γ(LM). (48)

A similar result was obtained in [20] for the univariate case.
It is a special case of (48) for LM = 1. Furthermore, the esti-
mate

σ̂0 = k0γ(LM) (49)

of σ0,opt satisfies the sufficient conditions for consistency
and asymptotic unbiasedness. These conditions are given as
lim(T+B)→∞ σ̂0 = 0 and lim(T+B)→∞(T + B)σ̂0 = ∞, and they
are satisfied if the parameter k0 ∈ R is chosen to be k0 ≥ 1
[20]. Thereby, the estimator dependence on D and ti re-
flects only through the constant k0 since γ(LM) is indepen-
dent of these parameters. The bit error rate (BER) perfor-
mance versus parameter k0 with different numbers of users
and different numbers of multipaths as parameters is shown
in Figure 3. Interestingly, the optimal value of k0 that mini-
mizes BER is shown to be rather insensitive to the change of
the other parameters. Moreover, it is shown in [20] that for
LM = 1, the optimal parameter k0 also does not depend on
the signal-to-noise ratio [21]. From Figure 3, it can be seen
that k0 ≈ 2 is a good choice for a wide range of situations.
This indicates that, in practice, the knowledge about the pa-
rameters NI , L, and, correspondingly, D is not needed. If these
parameters are known to the receiver, they could be used to
access a lookup table in which the optimal values of k0 for
different combinations of parameters can be stored a priori.
The same procedure is performed for the rest of desired users

to obtain the soft estimates b̃n(k) and bn(k) for the next iter-
ation.

4.2. Symmetrizing

If the UCCI signal constellation is known to the receiver, the
symmetry of the constellation set can be utilized to increase
the number of samples that can be used for PDF estima-
tion. In case of 2n0 -PSK modulation, a 2n0 -fold increase of
the number of samples can be achieved by using the fact that
p(a) = p(ae− j2πk/2n0 ), k = 1, . . . , 2n0 − 1.

4.3. Computational complexity

Since (45) contains the sums of exponentials, it can be ap-
proximated using the Jacobian algorithm [27]. The complex-
ity per symbol of the proposed method is roughly O{(T +
B)LM} or O{TLM}, depending on whether we use soft feed-
back for PDF estimation or not, respectively. The conven-
tional SC/MMSE receiver’s complexity is O{L3M3}.

5. NUMERICAL EXAMPLES

The performance of the proposed receiver was tested through
simulations. The training sequence lengths of T = 100, 20,
and 10, data sequence length of B = 900, and BPSK modula-
tion were used. The channel gains for each path of each user
were assumed to have equal average powers, with Rayleigh-
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Figure 3: BER versus k0 performance, noniterative PDF estimation
(N + NI = 3, M = 3, T = 100,B = 900, LS channel estimation, 4
iterations, Eb/N0 = 2 dB).

distributed amplitudes. They are constant over each trans-
mitted frame, and they change independently from a frame
to another frame. The rate R = 1/2 convolutional code with
the generator polynomials (5, 7)8 and the MAP decoder [10]
were used for all MIMO users. User-specific random inter-
leavers were assumed. A lower-complexity least-square (LS)
channel estimation (see [24]) was used, since it is shown in
[28] that the more complex MMSE channel estimation (see
Appendix B) does not offer significant performance benefits
unless the power ratio between UCCI and desired signals is
very strong.

In Figures 4 and 5, BER versus per-antenna Eb/N0 is pre-
sented for L = 1 and L = 2 cases, respectively. The nonit-
erative PDF estimation is used in these examples, since long
overhead (T = 100) was used. In both cases, the proposed re-
ceiver significantly outperforms the conventional one in the
case where one or two out of three users are UCCI. This is
the consequence of the linear processing of the conventional
receiver of [22] that does not take into account the actual
structure of the UCCI plus noise. Performance curve when
all the users are to be detected is shown for comparison (in-
dicated by “all known”).

The performance is closer to the “all known” case for
L = 1 (frequency flat fading) than for L = 2, and for NI = 1
than NI = 2. This is because the PDF of (44) becomes more
scattered in the LM-dimensional space with increased L and
NI . It means that fewer samples x̂ (out of T available) ef-
fectively contribute to the estimate p̂x̂(a) of px̂(a) in (46),
which decreases the PDF estimation accuracy. The increased
M with fixed T also reduces the estimation accuracy due to
the increased dimensionality of x̂ [23]. Its impact can, how-
ever, be compensated for in part by (48) with an appropriate
choice of optimal k0.
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Figure 4: BER versus Eb/N0 performance, frequency flat fading,
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k0 = 2).
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Figure 5: BER versus Eb/N0 performance, 2-path fading, nonitera-
tive PDF estimation (N + NI = 3, M = 3, T = 100, B = 900).

In Figure 6, BER performance of iterative and nonitera-
tive PDF estimation is presented. The abbreviations FB, no
FB, conv., and prop. stand for the iterative PDF estimation
(feedback), noniterative PDF estimation (no feedback), and
conventional and proposed receivers, respectively. It can be
found from Figure 6 that the iterative PDF estimation-based
receiver with a short (T = 10 and 20) training sequence can
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Figure 6: BER versus Eb/N0 performance, 2-path fading, iterative
versus noniterative PDF estimation (N = 1, NI = 2, M = 3, B =
900, LS channel estimation).

achieve almost the same performance as the noniterative re-
ceiver with long (T = 100) training sequence. It should be
emphasized that the reduction in overhead due to training
when using iterative PDF estimation is rather significant.

6. CONCLUSIONS

A kernel smoothing PDF estimation-based receiver was de-
rived to preserve the diversity order of iterative SC/MMSE
receivers for multiuser detection in frequency-selective chan-
nels in the presence of unknown cochannel interference. The
PDF estimation can be based on training symbols only (non-
iterative PDF estimation) or on training symbols as well as
feedback from the decoder (iterative PDF estimation). It was
verified through simulations that the proposed receiver sig-
nificantly outperforms the conventional covariance estima-
tion in channels with low frequency-selectivity, where the
degradation is more severe due to the lack of multipath di-
versity. In higher frequency-selectivity channels, the PDF es-
timation accuracy will decrease, since the UCCI-plus-noise
components will be more scattered in the multidimensional
data space. Fortunately, the need for diversity is less stringent
therein. The proposed receiver with iterative PDF estimation
can significantly outperform both the conventional and non-
iterative PDF estimation-based receiver with minor training
overhead. Moreover, its performance has been shown to be
very close to that of noniterative PDF estimation with a long
overhead. Thus, the proposed receiver provides significant
potential both for bandwidth-efficiency improvement and
for system capacity increase in multiuser communications
in flat and moderately frequency-selective channels. Poten-
tial application areas may be in cellular systems, where there
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are usually only a few dominant other-cell interferers or high
data-rate users, which can be suppressed by the method pre-
sented here. The receiver may also serve as a basis for a ran-
dom access scheme where short bursts are transmitted in an
asynchronous mode. Assuming that the collisions are not too
numerous, they could be handled by the proposed method.

APPENDICES

A. DERIVATION OF LOWER BOUND ON σ0,opt

A reasonable approximation of (47) can be done by using its
Taylor series expansion [23], with which

MISE
(
p̂x̂
) ≈ σ4

0α
2Γ
(
px̂
)

4
+

∫
R2LM K2

1 (a)da
Tσ2LM

0
, (A.1)

where α = ∫
R2LM (�a1)2K1(a)da = 1 and

Γ
(
px̂
) = ∫

R2LM

[LM∑
i=1

(
∂2px̂(a)

∂
(�ai

)2 +
∂2px̂(a)

∂
(�ai)2

)]2

da. (A.2)

From (A.1), the optimal smoothing parameter σ0,opt is found
to be

σ0,opt =
(

2LM
∫
R2LM K2

1 (a)da
(T + B)Γ

(
px̂
) )1/(2LM+4)

, (A.3)

with∫
R2LM

K2
1 (a)da = 1

(2π)LM

∫
R2LM

e−aHa/2 da = 1
(4π)LM

. (A.4)

In general, the function Γ(px̂) is dependent on D and ti,
i = 1, . . . ,D. However, it is shown in [20] for the univariate
case that the upper bound on Γ(px̂) obtained using Cauchy’s
inequality is dependent neither on ti nor on D. Adopting the
same approach in the sequel, we generalize the upper bound
derivation to the multivariate case. We denote

pG(a) = 1(
σ22π

)LM e−aHa/2σ2
. (A.5)

Equation (44) denoting the exact PDF of the UCCI plus noise
can be rewritten as

px̂
(

x(k)
) = 1

2D

2D−1∑
i=0

pG
(

x(k)− ti
)
. (A.6)

With (A.5) the expression for Γ(px̂) can be rewritten as

Γ
(
px̂
) = ∫

R2LM

[
1

2D

2D−1∑
k=0

Υk
(
pG

)]2

da, (A.7)

where

Υk
(
pG

) = LM∑
i=1

(
∂2pG

(
a− tk

)
∂
(�ai

)2 +
∂2pG

(
a− tk

)
∂
(�ai)2

)
. (A.8)

Applying Cauchy’s inequality

[∑
v1v2

]2 ≤
∑

v2
1

∑
v2

2 (A.9)

to (A.7) with v1 = 1 and v2 = Υk(pG), we obtain

Γ
(
px̂
) ≤ 1

2D

2D−1∑
k=0

Γk
(
pG

)
, (A.10)

where

Γk
(
pG

) = ∫
R2LM

[
Υk

(
pG

)]2
da. (A.11)

It can be shown that

Γk
(
pG

)
= 1
σ4

∫
R2LM

[ LM∑
i=1

[(�ai
)2

σ2
+

(�ai)2

σ2

]
−2LM

]2

p2
G(a)da,

(A.12)

which is independent on k. Furthermore, it can be shown that

Γ
(
pG

) = I1 + I2 + I3 + I4, (A.13)

where

I1 = 1
σ4

∫∞
−∞

LM∑
i=1

[(�ai
)4

σ2
+

(�ai)4

σ2

]
p2
G

(
a
)
da

= 3LM
4
√
πσ5

(
1

2σ
√
π

)2LM−1

,

I2 = 4(LM)2

σ4

∫∞
−∞

p2
G

(
a
)
da

= 4(LM)2

σ4

(
1

2σ
√
π

)2LM

,

I3 = −2LM
σ4

∫∞
−∞

LM∑
i=1

[(�ai
)2

σ2
+

(�ai)2

σ2

]
p2
G

(
a
)
da

= − (LM)2

σ5
√
π

(
1

2σ
√
π

)2LM−1

,

I4 = 1
σ4

∫∞
−∞

∑
qi,qj∈A

q2
i q

2
j

σ2
p2
G

(
a
)
da

= 2LM(2LM − 1)
16σ6

√
π

(
1

2σ
√
π

)2LM−2

,

A = {�ai,�aj ,�ai,�aj|i �= j; i, j = 1, . . . ,LM
}
.

(A.14)

From (A.13) and (A.14), it follows that

Γk
(
pG

) = LM(LM + 1)
(4π)LMσ2LM+4

. (A.15)

Finally, by replacing (A.15) in (A.10) and (A.10) in (A.3), the
lower bound of (48) directly follows.
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B. ITERATIVE CHANNEL ESTIMATION

For the purpose of channel estimation, we will introduce a
different system model notation than in the main body of the
paper, following [24] for convenience of notation. Starting
from (1), we collect the received signal samples at the mth
receive antenna into the vector qm ∈ C(T+∆+L−1)×1 given by

qm =
[
rm(1), . . . , rm(T + ∆ + L− 1)

]T
= Bgm + BIgm,I + νm,

B = [
B1, . . . , BN

]
,

BI =
[

BN+1, . . . , BN+NI

]
,

gm =
[

gT
m,1, . . . , gT

m,N

]T
,

gm,I =
[

gT
m,N+1, . . . , gT

m,N+NI

]T
.

(B.16)

In the first iteration ∆ = 0 (no soft feedback is available), in
the subsequent iterations ∆ = B, and

Bn =



sn 0 · · · 0
0 sn · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · sn

 ∈ C
(T+∆+L−1)×L,

sn=
[
bn(1), . . . , bn(T), bn(T+1), . . . , bn(T+∆)

]T ∈ C(T+∆)×1,
(B.17)

and gm,n ∈ CL×1 and νm ∈ C(T+∆+L−1)×1 are defined as

gm,n =
[
hm,n(0), . . . ,hm,n(L− 1)

]T
,

νm =
[
vm(1), . . . , vm(T + ∆ + L− 1)

]T
.

(B.18)

The channel estimate for the mth receive antenna is obtained
using the least-squares (LS) criterion, expressed by

ĝm = arg min
gm

∥∥qm − Bgm
∥∥2

, (B.19)

resulting in [29]

ĝm = (B
H

B)−1B
H

qm. (B.20)

If the knowledge about the second-order statistics of the

UCCI and noise B
H
I BI + σ2I is available, the MMSE channel

estimation would result in the following estimate [29]:

ĝm =
(

B
H

B + B
H
I BI + σ2I

)−1
B
H

qm. (B.21)

The elements of vectors ĝm are used to form the matrix Ĥ.
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