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A Robust Fingerprint Indexing Scheme
Using Minutia Neighborhood Structure

and Low-Order Delaunay Triangles
Xuefeng Liang, Arijit Bishnu, and Tetsuo Asano

Abstract—Fingerprint indexing is a key technique in automatic
fingerprint identification systems (AFIS). However, handling
fingerprint distortion is still a problem. This paper concentrates
on a more accurate fingerprint indexing algorithm that efficiently
retrieves the top possible matching candidates from a huge
database. To this end, we design a novel feature based on minutia
neighborhood structure (we call this minutia detail and it contains
richer minutia information) and a more stable triangulation
algorithm (low-order Delaunay triangles, consisting of order 0
and 1 Delaunay triangles), which are both insensitive to finger-
print distortion. The indexing features include minutia detail and
attributes of low-order Delaunay triangle (its handedness, angles,
maximum edge, and related angles between orientation field and
edges). Experiments on databases FVC2002 and FVC2004 show
that the proposed algorithm considerably narrows down the
search space in fingerprint databases and is stable for various
fingerprints. We also compared it with other indexing approaches,
and the results show our algorithm has better performance,
especially on fingerprints with distortion.

Index Terms—Fingerprint distortion, fingerprint indexing, low-
order Delaunay triangle, minutia detail, order -Delaunay trian-
gulation, triplet.

I. INTRODUCTION

AFINGERPRINT recognition system is essentially a pat-
tern recognition system that recognizes a person by deter-

mining the authenticity of a fingerprint characteristic possessed
by that person. An important issue in designing a practical fin-
gerprint recognition system is to determine how an individual is
recognized. Depending on the application context, a fingerprint
recognition system may be called either a verification system or
an identification system [1].

• A verification system authenticates a person’s identity by
comparing the captured fingerprint characteristic with his
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or her own fingerprint template prestored in the system [2].
It conducts a one-to-one comparison to determine whether
the identity claimed by the individual is true. A verifica-
tion system either rejects or accepts the submitted claim
of identity, in other words, it answers the question: Am I
whom I claim I am?

• An identification system recognizes an individual by
searching the entire template database for a match. It con-
ducts one-to-many comparisons to establish the identity of
the individual [3]. In an identification system, the system
establishes a subject’s identity (or fails if the subject is
not enrolled in the system database) without the subject
having to claim an identity. It answers the question: Who
am I?

A naive identification system would just compare the given
fingerprint with all entries in the database. However, for modern
databases containing more than several million prints, penetra-
tion rate 1 and the false acceptance rate (FAR) are not ac-
cepted by an identification system using this approach. Since
all matches are performed, the required processing will have an
unacceptably long response time, and the identification perfor-
mance will be far too low.

To reduce these problems, fingerprint classification is em-
ployed [4]–[6]. All fingerprints in the database are classified into
five classes (right loop, left loop, whorl, arch, and tented arch)
and stored in a partial databases per class. The input fingerprint
is also classified, and is only matched to the fingerprints of the
corresponding class in the partial database. If fingerprints were
equally distributed into these five classes, the penetration rate
would be reduced to . Therefore, the processing time
and FAR would be greatly reduced. However, the number of
classes is small, and real fingerprints are unequally distributed
among them: more than 90% of the fingerprints belong to only
three classes (loops and whorl) [1]. Furthermore, classification
error and rejected fingerprints must be considered when classi-
fication is performed automatically. These lead to classification
approaches which do not narrow down the search space ade-
quately in the database for an efficient identification of a finger-
print.

Another approach, called indexing, is employed to overcome
this problem. In indexing, the crucial idea is to measure the local
similarity among input and template prints to report the top
most similar template prints. Since it is not necessary to consider
every model as in final matching, fingerprint indexing signifi-

1Penetration rate measures the expected number of comparisons to be made.
P = E[number of comparisons]=n:
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cantly reduces the number of candidates to be considered by the
verification step. Thus, fingerprint identification can be divided
into the following sequential steps: 1) fingerprint indexing and
2) fingerprint verification.

There have been several attempts at fingerprint indexing.
Cappelli et al. proposed an indexing approach with reasonable
performance and identification time [7]. Germain et al. used
the triplets of minutiae measuring local similarities in their
indexing procedure [8]. Boer et al. improved on these studies
by combining multiple features (orientation field, FingerCode,
and minutiae triplets) [9]. Bhanu and Tan improved the work on
minutiae triplets [10]. In their work, they replaced the features
by some novel ones (e.g., triangle angles, handedness, type,
and direction). Bebis et al. applied Delaunay triangulation
instead of exhausting all triplets of the minutiae set [11]. This
improvement saves computation cost and reduces the possi-
bility of mismatch. However, with massive experiments, we
find Delaunay triangulation may not be stable if even a tiny
distortion is applied on prints.

To make the indexing algorithm more robust, fingerprint dis-
tortion must be considered. In this paper, we follow the afore-
mentioned works, but design two novel features that are insen-
sitive to distortion.

1) Minutia detail. Minutia detail is an approximate structure
of minutia. Thus, it represents not only the type but also the
shape. Minutia detail decreases the possibility of finding
inaccurate correspondences during indexing.

2) Low-order Delaunay triangle (LoD triangle). It is known
that Delaunay triangulation of a minutiae set may change
under small shifts of minutiae caused by distortion. The
LoD triangle is designed to prevent indexing performance
degeneration due to such changes in Delaunay triangula-
tion. Thus, it has a higher ability to tolerate distortion.
Meanwhile, LoD triangles also inherit some of the proper-
ties of Delaunay triangles we need for fingerprint indexing.
They are:
1) uniqueness;
2) creating only triangles (This property reduces the

time and space complexities, and indirectly narrows
down the search space in database.);

3) describing the topological structure of the three closest
minutiae in a fingerprint.

This algorithm is more reliable against distortion than other
triangulation algorithms.

In the next section, we first describe the definition and algo-
rithm of minutia detail; second, we sketch the motivation and
definition of the LoD triangle; third, we design the indexing el-
ements and matching conditions. In Section III, the whole in-
dexing algorithm is given. Experimental results and analysis are
presented in Section IV. Section V is the conclusion.

II. FEATURES FOR INDEXING

Due to cross-correlating changes of minutiae under elastic
distortion, it is better to choose indexing features that are
more invariant to distortion. The features chosen greatly affect
the accuracy and response time of an identification system.
Therefore, a good feature, which significantly narrows down
the search space in a database, should be invariant for rigid and

Fig. 1. Minutia detail of bifurcation at p.

nonrigid transformation, offer lower computing cost, be avail-
able for most fingerprints, and so on. The following observation
about the property of finger tips will help us design our method.
Even in the presence of elastic distortion, every minutia keeps
its own shape and similar neighboring structure (it may not be
isomorphic). With the requirements just shown and observation,
minutia detail and the LoD triangle are designed to perform the
aforementioned tasks.

A. Minutia Detail

1) Definition: Let be a bifurcation minutia with three ridges
incident upon it, where is the ridge before bifurcation, , and

are the two ridges after bifurcation. For each , , and ,
consider a line segment, which has length and is tangent to
the corresponding ridge at . Let these three line segments be

, , and , corresponding to , , and , respectively
(see Fig. 1). Let be the angle made by be measured in the
counterclockwise direction with regard to the axis. We call the
group of the three line segments , , and , the bifurcation
detail for minutia .

The bifurcation detail can have different shapes, de-
pending on the mutual orientations of , , and . The
region around can be divided into four quadrants, which are
called (lower right region), (upper right region),
(upperleft region), and (lowerleft region), as shown in
Fig. 2. Each and can lie in any one of these four regions,
thereby making possibilities. Out of these 16
possibilities, however, there will be ten cases having distinct
positions of and in relation to each other, considering the
interchangeability of and . That is, for example, the case
of and , and the case of and

, which are two different cases in 16 possibilities, are
the same in the later ten cases. These ten cases are enumerated
in Table I. Cases 2, 6, and 9 can have two subcases each,
depending on the relative axis (or, axis) coordinates of

and , which will have differently shaped . Therefore,
we obtain different bifurcation details, which are
shown in Figs. 2 and 3.

For a valid bifurcation minutia , the angle should
be less than both and , which helps us to
distinguish from and . Keeping these points in consid-
eration, out of the aforementioned ten cases, cases 3, 4, and 7
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Fig. 2. Bifurcation detail (case 1).

TABLE I
DIFFERENT CASES FOR BIFURCATION DETAIL

cannot be possibly used as valid bifurcation minutiae. Hence,
we have only possible differently shaped bifurca-
tion details.

As there is only one ridge incident upon ridge ending , the
ridge ending detail has just one line segment corre-
sponding to , which is defined as the same as the bifurcation
detail. So, only the line segment contributes to ridge ending
detail and its shape is unique. Thus, we do not take it into ac-
count in the indexing procedure.

2) Algorithm: The theoretical definition of line segments
, , and states that they are tangent to the corresponding

ridges at minutia point , where , is the number
of minutiae in a fingerprint. But in the discrete domain, it is a
bit complicated to construct the line segment tangent to the ridge
in practice. As an alternative approach, we simply connect the
fifth skeleton point with the minutia point as the line segment on
each ridge. The algorithm of line segment generation is given as
follows:

Algorithm 1: Minutia detail generation.

Input: Skeletons of fingerprint ridges.

Output: Minutia detail of the minutia .

1) for each minutia point do.

2) for each branch of do.

3) while the current point is not the fifth one on the ridge
skeleton do.

4) go to the next point.

5) end while.

6) connect with the fifth skeleton point to generate the
corresponding line segment.

7) end for.

8) compute the mutual positions of and and report
minutia detail.

9) end for.

As minutiae details represent the microstructure of minutiae
in a fingerprint, they are unlikely to change under distortion.
Moreover, they can be obtained in the minutiae extraction step
and our indexing step does not require additional computing
time for them [12]. Hence, minutiae details match the require-
ments of a good index.

B. Order -Delaunay Triangle

To improve index selectivity, we need more invariants. The
approaches in [8] and [10] consider triangles of minutiae to de-
scribe mutual relations of minutiae, and add attributes of trian-
gles to the index. These approaches exhaust all possible trian-
gles of minutia set in an image to ensure the maximum possible
correspondences. As all possible triangles are considered, re-
dundant triangles also come into play. These strategies lead to
two negative side effects: 1) Some larger triangles may cover
almost the entire fingerprint region. Obviously, such triangles
are greatly changed under distortion and become useless for in-
dexing and 2) more redundant triangles lead to a higher possi-
bility of mismatch. On the contrary, Delaunay triangulation par-
titions a whole fingerprint region into many smaller pieces and
exactly describes the closest neighbor structures of minutiae. It
only creates triangles, which are much less than the
triangles used in [8] and [10] ( is the number of minutiae).

A Delaunay triangulation is a geometric structure defined for
a set of points on the plane with the property that the inte-
rior of the circumcircle of each triangle contains no points of
the set [13]. The empty circumcircles make Delaunay triangu-
lation well shaped and unique. With these particular qualities,
Delaunay triangulation has found use in several areas of finger-
print recognition [11], [14], [15].

Delaunay triangulation is defined by infinitely precise point
coordinates. However, finger tips are soft tissues. When we press
finger tips on the hard surface of a sensor, captured prints always
contain more or less distortion, because of various sorts of pres-
sures. Distortion changes the coordinates of neighboring minu-
tiae. Thus, a natural question arises: Is Delaunay triangulation
stable under distortion? After many experiments, our answer is
possibly not.

In Fig. 4, we select an instance to show this issue. The di-
agram shows a subset of minutiae in a print and its Delaunay
triangulation. We assume distortion is applied to it, causing the
point to move from the left side of the dashed line segment
to the right side. This tiny shift of changes the subgraph of De-
launay triangulation (represented by solid lines) completely. Re-
garding this issue, Abellanas et al. [16] and Khanban and Edalat
[17] discussed the tolerance of Delauany triangulation from dif-
ferent viewpoints, exploring the supremum of shifts of points so
that Delauany triangulation does not change. Here, we focus on
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Fig. 3. Bifurcation details (cases 2–10).

Fig. 4. Comparison of different Delauany triangulations on two pretty similar
minutiae sets.

a more robust triangulation algorithm that may restore the iso-
morphic subgraph [represented by the dotted lines in Fig. 4(II)]
even while the point shifts out of tolerance. This leads us to use
order -Delaunay triangulation [18]–[21].

1) Definition and Properties [18], [19]: Refer to Fig. 5(I)
for the following discussion. We first let denote the edge
between vertices and ; denotes the circle through
three vertices , , and ; and denotes the triangle defined
by , , and .

Definition 1: Given a finite set of points and an
integer . For any vertices , , :

• an edge is an order -Delaunay edge, if a circle exists
through and that contains, at most, points of ;

Fig. 5. Property of circles through order k-Delaunay edges.

• a triangle is an order -Delaunay triangle if
contains, at most, points of ;

• a triangulation of is an order -Delaunay triangulation if
every triangle in the triangulation is an order -Delaunay
triangle.

Obviously, an order 0-Delaunay edge (respectively, triangle
and triangulation) is a Delaunay edge (respectively, triangle and
triangulation).

Lemma 1: Any order -Delaunay triangle is also an order
-Delaunay triangle, if . This also holds for order

-Delaunay triangulation.
Proof: Proof is trivial. By Definition 1, the circle though

three vertices of an order -Delaunay triangle contains, at most,

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 22, 2008 at 03:27 from IEEE Xplore.  Restrictions apply.
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points of . Equivalently, the circle contains no more than
points of while . Thus, Lemma 1 holds.

Lemma 2: Every edge of an order -Delaunay triangle is
an order -Delaunay edge; analogously, every edge of an order

-Delaunay triangulation is an order -Delaunay edge.
Proof: Consider a circle through three vertices of the order

-Delaunay triangle. If we slightly move the center of the circle
toward two vertices by making these two vertices on the circle
and the third vertex just outside, the new circle still contains, at
most, points. This shows that the edge of those two vertices
is an order -Delaunay edge. By Definition 1 and Lemma 1,
the remaining part of Lemma 2 holds from the aforementioned
proof.

But, the reverse of Lemma 2 may not hold. Fig. 5(III) shows
that not every order 1-Delaunay triangle can be included in an
order 1-Delaunay triangulation. only contains , then

is an order 1-Delaunay triangle. However, with
containing and , it is an order 2-Delaunay triangle. There-
fore, the order 1-Delaunay triangle is included in an order
2-Delaunay triangulation.

There are particular properties of order -Delaunay edges.
See Fig. 5(I) for an illustration.

Observation 1: For an order -Delaunay edge and a De-
launay edge that intersects , the circle contains

, and contains .
From Observation 1, we have a direct lemma. Please refer to

Fig. 5(II).
Lemma 3: Given an order -Delaunay edge and a circle

through and , if the circle contains no vertex on one side of
, it contains all vertices, which are incident upon Delaunay

edges intersecting , on the opposite side of .
Proof: denotes the Delaunay edge intersecting

( , ); and are located on different
sides of , respectively. Assume a circle exists through

and , containing no vertex on the side, and also not
containing on the other side of . As in Observation 1,

contains . This shows that must cover
more area than on the side. From geometry theory, circle

through and that does not contains a vertex on the
side of must cover a larger area than circle on
the side, a contradiction.

2) Order 1-Delaunay Triangles in Fingerprint Image: When
a fingerprint image is scanned from the hard surface of a sensor,
various manners of scanning and types of pressures distort the
mutual position of minutiae. For instance, suppose there are
a template print and input print from the same finger
tip. Assume they have the same minutiae set . Consequently,

and have their own Delaunay triangulation
and of minutiae set , respectively. Distortion may
change the local structure of Delaunay triangulation of minu-
tiae. More specifically, those minutiae with changed positions
may produce new local Delaunay triangulation
which replaces the corresponding local one , leading
to and not being isomorphic, where ,

, and .
This issue significantly decreases the performance of De-

launay triangulation-based indexing algorithm in cases with
severe distortion. Our effort is engaged in constructing an

Fig. 6. Delaunay triangulations of the same points at different positions.

order -Delaunay triangulation of , and finding the order
-Delaunay triangles that do not exist in but might

exist in . With these additional order -Delaunay
triangles, the fingerprint indexing algorithm can be enhanced.

Fingerprint distortion cannot change the mutual positions of
closely located minutiae to a great extent. We capture this close-
ness using Delaunay triangulation. Therefore, distortion may
only change the local structure of the Delaunay triangulation
by moving the minutiae close to the boundary of the tolerance
region of the Delaunay triangles [16], [17]. Fig. 6 shows four
minutiae with different mutual positions generating different
Delaunay triangulations. Minutia in Fig. 6(I) lie in the middle
of the tolerance region (the gray region). Distortions are unlikely
to move it out of the tolerance region. Thus, Delaunay triangu-
lation rarely changes under distortion in this case. Minutia in
Fig. 6(II) lie close to the boundary of the tolerance region. If the
distortion moves by a small distance to and out of the tol-
erance region, Delaunay triangulation of minutiae changes [see
Fig. 6(III)].

in Fig. 6(II) is a Delaunay triangle. Its corresponding
order -Delaunay triangle in Fig. 6(III) can be obtained
by flipping the Delaunay edge [13]. By observation 1 and
Lemma 3, the circle must contain because of the
intersection of and . Moreover, distortion rarely moves
to so much that contains more minutiae than
(same in the case of and ). In practice, we there-
fore only accept an order 1-Delaunay triangle ,
whose edge is an order 1-Delaunay edge in our algorithm.
So we have the following definition of these additional trian-
gles (called low-order Delaunay triangles) that can enhance a
Delaunay triangulation-based fingerprint indexing algorithm.

Definition 2: Low-order Delaunay triangles (LoD trian-
gles) is a union of Delaunay triangles of and order
1-Delaunay triangles obtained by edge flipping in .
These additional order 1-Delaunay triangles may be isomorphic
to Delaunay triangles with the same vertices in .

For each convex quadrilateral in , it seems order
1-Delaunay triangles could be produced by simply flipping
the shared Delaunay edge of two Delaunay triangles [e.g., flip
the edge to in Fig. 5(III)]. Unfortunately, edge flipping
may produce high-order Delaunay triangles. The computation
of order 1-Delaunay triangles can be deduced by using the
following Lemma.

Lemma 4: Finding valid order 1-Delaunay triangles is equiv-
alent to finding any order 1-Delaunay edge that can be extended
to order 1-Delaunay triangulation.

Proof: As per Definition 1, any order 1-Delaunay trian-
gulation is composed of only Delaunay triangles and order
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1-Delaunay triangles. Again, an order 1-Delaunay triangle must
have at least one order 1-Delaunay edge. Thus, LoD triangles
will be obtained when an order 1-Delaunay edge is found in a
order 1-Delaunay triangulation.

We give the following algorithm to compute all order
1-Delaunay edges that are incident upon valid order 1-De-
launay triangles in a given Delaunay triangulation. Let
denote convex quadrilaterals in the Delauany triangulation,
and the shared Delaunay edge by two Delaunay triangles of

is . Refer to Fig. 6.

Algorithm 2: Order 1-Delaunay triangle generation.

Input: Delaunay triangulation of minutiae set .

Output: Valid order 1-Delaunay triangles.

1) for each in do.

2) flip to produce order -Delaunay triangles.

3) if both and only have and
inside, respectively then

4) report and as valid order 1-Delaunay
triangles.

5) end if.

6) end for.

Since the number of the convex quadrilaterals is linear in the
number of Delaunay triangles (which is linear [13]), this algo-
rithm takes linear time over and above the Delaunay triangula-
tion construction which is . Thus, the entire construc-
tion of the order 1-Delaunay triangles takes time.

We add obtained order 1-Delaunay triangles into the set of
Delaunay triangles of , and employ all of them as ele-
ments of an index table. Since our specific order 1-Delaunay
triangulation is an extension of Delaunay triangulation, it also
inherits some other advantages: 1) Insertion of a new point in an
order 1-Delaunay triangulation affects only the triangles whose
circum circles contain that point. As a result, noise affects the
order 1-Delaunay triangulation only locally. 2) Delaunay trian-
gles are not skinny, because Delaunay triangulation maximizes
the minimum angle [13] over all triangulations. This is also very
desirable in our application, since the computation of the geo-
metric transformations between fingerprints is based on corre-
sponding minutiae triangles. Using skinny triangles can lead to
instabilities and errors [22].

C. Indexing Elements

Minutia detail and the features derived from the LoD triangle
of minutiae form the index, and are ordered by significance

• is the minutia detail of each vertex of the triangle. If the
vertex is a bifurcation, it is identified as the corresponding

Fig. 7. Definition of triangle labels.

bifurcation detail case , where is the index of the ver-
tices of triangle and is the index of minutia detail case as
given in Table I. If it is a ridge ending, is marked.

• and are the minimum and median angles in the
triangle, respectively. According to the magnitude of the
angles, the vertices of angles , , and are
labeled as , , and , respectively (see Fig. 7).

• is the triangle handedness. Let be the
complex number corresponding to the location of
point . Define , , and

. Let triangle handedness
.

• is the length of the longest edge in the triangle.
• is the difference between angles of two edges of and

orientation field at . For instance, let be the angle
between edge and orientation field at ; similarly,

is the angle between edge and orientation field at
. is the difference between and in the clockwise

direction

where , , and
.

Here, , , , and have the same definitions as
in [10].

D. Conditions of Triangle Match

To find the correct corresponding LoD triangles among the
input fingerprint and fingerprints in the database, the following
conditions are given:

where , , and are the thresholds.

III. INDEXING SCORE AND ALGORITHM

Suppose is the input fingerprint and is the fingerprint
in the database, which have minutiae set and , respectively,
where and is the number of fingerprints
in the database. Suppose there are potential corresponding
minutiae in the pair of prints and ,
and . is the number of matched triangles, in
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Fig. 8. Number of triangles constructed by three algorithms (all triplets, Delaunay, and LoD).

which is incident, between and . We define the index
score of the image as

where is a constant for easier processing of . The indexing
algorithm is now as follows.

For each triangle in , compute ( , , , , ,
), and use these values to construct hash tables for fast in-

dexing in a database.

Algorithm 3: Fingerprint indexing algorithm.

Input: Minutiae set of input fingerprint .

Output: Top possible match print.

{%The following pseudocode does the indexing.%}

1) Apply Delaunay triangulation on , then get .

2) Apply Algorithm 2 on , then add order 1-Delaunay
triangles into the Delaunay triangle set.

3) For each triangle, do.

4) Compute ( , , , , , ) for the triangle.

5) Search index space by ( , , , , , )
under conditions given in Section II-D.

6) if the triangle satisfies the conditions, then

7) Take it as successful correspondence of the triangle in
the database.

8) end if.

9) end for.

{%The following pseudocode does the retrieval.%}

10) for each do.

11) count the number of corresponding triangles .

12) end for.

13) .

14) if then

15) reject the input fingerprint, where is a threshold.
And go to End.

16) Else.

17) Compute indexing score based on for .

18) end if.

19) sort in descending order, output top
possible match print.

IV. EXPERIMENTAL RESULTS

A. Databases and Parameters

We evaluated our method by testing it on two databases:
FVC2002(DB1) and FVC2004(DB1). Each of them consists of
880 fingerprints, eight prints each of 110 distinct fingers. All of
these images are captured by two different optical sensors with
the same resolution of 500 dpi, resulting in images of 388
374 pixels and 640 480 in 8-b gray scale, respectively. Fin-
gerprints in the FVC2004 database are markedly more difficult
to match than those in FVC2002, due to the perturbations de-
liberately introduced (such as low and high pressure against the
sensor surface, exaggerated skin distortion and rotation, dried
and moistened prints, etc.). We randomly choose three prints
from these eight prints of each finger to construct the database.
This database is now used for comparing three approaches,
viz., all triplets [10], Delaunay [11], and proposed LoD. The
remaining prints are used to test the indexing performance.
Thresholds are different for the two data sets: for database
FVC2002 , pixels, ; for database
FVC2004, , pixels, .
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Fig. 9. Number of genuine matched triangles by three algorithms (all triplets, Delaunay, and LoD).

Fig. 10. Number of mismatched triangles by three algorithms (all triplets, Delaunay, and LoD).

B. Evaluation Measures for Triangle Matching

We evaluated these three triangulation algorithms (all triplets,
Delaunay, and proposed LoD) on three measures:2

1) Number of constructed triangles (see Fig. 8).
2) Number of genuine matched triangles (Genuine matched

triangle means the vertices of matched triangle are genuine
minutiae, and they correspond to input and template prints,
see Fig. 9).

3) Number of mismatched triangles (mismatched triangle
means the vertices of the matched triangle may not be gen-
uine minutiae, and some or all of them do not correspond
to input and template prints, see Fig. 10).

In the following two subsections, we first discuss
Section IV-B-1 our indexing strategy in Section IV-B-1, based
on minutiae detail and LoD vis-a-vis the two other indexing

2In order to compare these three algorithms fairly, we obviously employ the
same minutiae extraction algorithm [23] to obtain the same set of testing minutia
for them.

methods based on triangles. Second, in Section IV-B-2, we
justify the usage of LoD over the Delaunay-based method by
placing them on the same pedestal by using the same minutiae
detail index.

1) Different Indices: In this comparison, matching condi-
tions of three algorithms are based on their own index elements.

Fig. 8 shows that all-triplets-based indexing algorithms
will construct an unacceptably large number of triangles if
a print contains more than 30 minutiae. So it consumes sig-
nificant memory space. On the contrary, Delaunay-based and
LoD-based algorithms construct considerably fewer triangles,
both related linearly to the number of minutiae (see [13] and
Algorithm 2). More important, an LoD-based algorithm con-
structs, at most, a constant number of triangles more than the
number of Delaunay triangles. This property guarantees that the
performance of the proposed indexing algorithm is improved
without greatly increasing computation cost.

We select the genuine matched triangles resulting from the
three algorithms and plot them against the number of minutiae
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Fig. 11. Ratios of genuine matched and mismatched triangles by three algorithms (all triplets, Delaunay, and LoD).

in Fig. 9. An all-triplets-based algorithm acquires the most gen-
uine matched triangles in both databases because of its large
number of constructed triangles. On FVC2002, an LoD-based
algorithm has more genuine matched triangles than Delaunay-
based algorithms. It implies that even the fingerprints scanned
under conditions of strict supervision still contain slight de-
formations that may change the Delaunay triangulation of the
minutiae set. Matching on FVC2004 is more difficult due to
deliberate distortions that change the Delaunay triangulation of
minutiae. It directly decreases the number of matched triangles
in the Delaunay-based algorithm. In comparison, remarkably
more genuine matched triangles are achieved by the LoD-based
algorithm because of matches of additional order 1-Delaunay
triangles.

We also enumerate the number of mismatched triangles and
plot them in Fig. 10. An all-triplets-based algorithm also ob-
tains the most mismatches due to the same reason as to why
it received the most genuinely matched triangles. The quanti-
ties of mismatched triangles generated by LoD-based and De-
launay-based algorithms are almost the same.

For a clearer comparison, we plot ratios of genuine matched
and mismatched triangles versus the total number of triangles in
Fig. 11. An all-triplets-based algorithm obtains both the lowest
ratios because of the huge triangles it generates. A comparison
of LoD-based and Delaunay-based algorithms is interesting. Al-
though the LoD triangle set is larger than the Delaunay tri-
angle set in both databases, additional order 1-Delauany tri-
angles efficiently increase the ratio of genuine matched trian-
gles of the proposed algorithm. Meanwhile, minutia details also
prevent mismatches, and allow the ratio of mismatched trian-
gles of an LoD-based algorithm to be always lower than the
Delaunay-based algorithm. Therefore, more experiments have
been conducted to evaluate the performance of minutia detail.

2) Same Index: Since an all-triplets-based algorithm is worse
than the other two, we only compare LoD-based and Delaunay-
based algorithms in this subsection. Also, genuine matched tri-
angles are the same as before. So we just compare the mis-
matches’ difference.

In this comparison, two algorithms first use the same index
elements without minutia detail. Then, they use the same index
elements with minutia detail. Please see Figs. 12 and 13 for
illustration.

These two figures indicate that the minutia detail also can pre-
vent a mismatch for the Delaunay-based algorithm. However, it
cannot increase the number of genuine matches definitely. The
proposed LoD-based algorithm obtains more mismatched tri-
angles than the Delaunay-based algorithm when minutia detail
is not employed, especially in database FVC2002. The explana-
tion is that LoD generates or aggregates more triangles which in-
crease the possibility of mismatch. Then, a discriminating index
(e.g., minutia detail) is necessary to prevent the overmismatch,
finally resulting in a better solution.

To sum up the aforementioned experimental results, we
see that although the all-triplets-based algorithm obtains the
largest quantity of genuine matched triangles, it also entails
huge computation cost and a corresponding large number
of mismatches. The Delaunay-based algorithm significantly
saves computation cost, but may not find adequate genuine
matched triangles, especially for distorted prints. The proposed
LoD-based algorithm not only has the performance of the
Delaunay-based algorithm, but desirably compensates for the
Delaunay triangulation changes caused by distortion without
greatly increasing computation cost.

C. Indexing Results

Two experiments have been carried out to evaluate indexing
performances when the Delaunay- and LoD-based techniques
use their own indices. Indexing performance curves plotting the
correct index against the penetration rate at various thresholds
are presented in Figs. 14 and 15 on the two databases. The cor-
rect index is defined as the percentage of correct fingerprints se-
lected. Two figures indicate the size of the part of the database
that has to be searched in order to achieve a fixed probability
that the corresponding fingerprint is found.

Since we randomly choose three prints from the eight prints
per fingerprint as templates, here we report the average results.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 22, 2008 at 03:27 from IEEE Xplore.  Restrictions apply.



730 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 2, NO. 4, DECEMBER 2007

Fig. 12. Number of mismatched triangles from Delaunay- and LoD-based algorithms using and not using minutiae detail.

Fig. 13. Ratios of mismatched triangles from Delaunay- and LoD-based algorithms using and not using minutiae detail.

The results in Figs. 14 and 15 show that our proposed algorithm
requires a smaller search space, and an all-triplets-based algo-
rithm requires the largest search space when the three algorithms
achievethesamecorrectindexrate.Thismightbeexplainedbythe
fact that an all-triplets-based algorithm creates triangles
compared to triangles in our proposed and Delaunay-based
algorithms. Although the all-triplets-based algorithm finds more
matched trianglesbetween twopossiblematchedfingerprints, the
side effect of triangles also leads to more mismatches.
Therefore, its search space in the database is larger than those of
the other two when using the same . Compared with the De-
launay-based algorithm, our proposed algorithm has better per-
formance on both databases, thanks to the additional order 1-De-
launay triangles, which increase the possibility of matching gen-
uine triangles. Meanwhile, minutia details prevent mismatches
of order 1-Delaunay triangles.

More interesting results are shown in Table II. The perfor-
mance of a Delaunay-based algorithm on FVC2004 becomes
worse than its performance on FVC2002. The gap is around

10%, while the correct index achieves 100%. Performances of
our proposed method and all-triplets-based algorithms, how-
ever, do not decrease so much. Their gaps are around 2.8% at
a 100% correct index. This result shows that distortion changes
the topology of Delaunay triangulation of the same minutiae set,
and certainly makes the Delaunay-based algorithm degenerate
and unstable. On the contrary, the LoD-based algorithm adds
order 1-Delaunay triangles into the triangle set. These additional
triangle-matches effectively compensate for distortion within a
certain range, meanwhile minutia details prevent mismatches.
Thus, the proposed algorithm has stable performance. Since an
all-triplets-based algorithm exhausts all of the triangles
of minutiae, distortion changes the corresponding shape of the
triangles only, but does not miss any of them. Therefore, it is also
stable on different fingerprints but takes more time and space.

D. Tolerance of Spurious and Missing Minutiae

In practical AFIS systems, it is unlikely that noise removal
and minutiae extraction can be performed with 100% accuracy.
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TABLE II
INDEXING PERFORMANCE: PENETRATION RATE AT VARIOUS CORRECT INDEX RATES

Fig. 14. Comparison of indexing performances on database FVC2002.

Fig. 15. Comparison of indexing performances on database FVC2004.

Therefore, AFIS systems require the ability of tolerating spu-
rious and missing minutiae. We conducted two experiments on
modified prints of database FVC2002 to evaluate the deterio-
ration of three algorithms. Our minutiae extraction algorithm
[23] was applied on all prints. We used the best one of the eight
prints, which were from the same fingertip, as a template. The
other seven prints were used for test.

1) Spurious Minutiae: We add , ,
, and spurious minutiae uniformly into the

fingerprint region of the print under test ( is the number of
minutiae in one print).

We select penetration rates of three approaches when their
correct indices achieve 100%, and plot them against the spurious
minutiae percentage of the number of minutiae automatically
detected by our system in Fig. 16(a).

This figure shows that the Delaunay-based algorithm can tol-
erate spurious minutiae within a small range ( 20%) because
the Delaunay triangulation can tolerate a lower amount of noise.
When noise percentage increases, the performance decreases
rapidly since it may lead to completely different triangulation.

Our proposed LoD-based algorithm can tolerate noise better
than the Delaunay-based approach because of more genuine
matched triangles. The geometric reasoning is as follows. Con-
sider a subset of minutiae . We add one spurious
minutia into them [please see Fig. 17(I) and (II) for illus-
tration]. Now, if we look into the Delaunay triangulations of
these two subsets, we can see there is no possible matching tri-
angle between them. After applying our proposed algorithm on
subset , additional triangles and
in Fig. 17(III) can be matched with the corresponding trian-
gles in Fig. 17(I). However, our experiments show that the pro-
posed LoD-based approach will degrade rapidly when the spu-
rious minutiae occupy more than 30% of the number of original
minutiae. The reason is the same as in the case of the traditional
Delaunay-based approach.

The all-triplets-based algorithm has the best ability to tolerate
spurious minutiae, because spurious minutiae only increase the
number of triangles, but do not decrease the number of genuine
matched triangles.

2) Missing minutiae: , , ,
minutiae of the fingerprint region of the print under test

are uniformly deleted. The comparison is plotted in Fig. 16(b).3

This figure shows that all three algorithms perform a little
worse in tolerating missing minutiae than spurious minutiae.
The reason is that the number of triangles decreases with the in-
crease of missing minutiae. It can be observed from the plotted
curves in Fig. 16 that our LoD-based approach outperforms
the Delaunay-based approach and can even compete with the
all-triplets-based method up to a certain percentage ( 40%) of
missing and spurious minutiae, but beyond that, it is inferior to
an all-triplets-based method. Fortunately, very high noise ranges
are rare as almost all AFIS systems have an image enhancement
algorithm.

To sum up the aforementioned experiments, our proposed al-
gorithm has the efficiency of the Delaunay triangle-based al-
gorithm, and the stability of the all-triplets-based algorithm on
various fingerprints.

V. CONCLUSION

In this paper, an indexing algorithm using minutia detail and
a low-order Delaunay triangle is proposed. It has been shown
that this algorithm is able to search a fingerprint database more

3The analysis is similar to that for spurious minutia. But the input minutiae
set is (a; b; c; d; e; f; g), and g plays a missing minutia in Fig. 17(I).
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Fig. 16. Deterioration of indexing performance with spurious and missing minutiae increasing. Penetration rates are plotted for a 100% correct index.

Fig. 17. Instance of tolerating spurious or missing minutia of the proposed
LoD-based algorithm.

efficiently and stably than previous triangle-based algorithms.
The reasons are as follows.

• Minutia detail provides more minutiae classes than minutia
types, and further reduces search space. Since they can be
obtained during the minutiae extraction step, the proposed
indexing algorithm does not require additional computing
time.

• LoD triangles include Delaunay and order 1-Delaunay tri-
angles. These small number of additional order 1-Delaunay
triangles increase the quantity of genuine matched trian-
gles, especially on distorted fingerprints. Thus, it is more
insensitive to elastic distortion. Since the proposed triangu-
lation algorithm creates triangles compared to
triangles for an all-triplets-based algorithm, many redun-
dant or incorrectly matched triangles are avoided. Simul-
taneously, the search space in a database is reduced when
using the same .

The experiments on database FVC2002 and FVC2004 also
prove that the proposed algorithm has better abilities to tolerate
distortion and reduce the number of possible matching prints
for the next step. A further improvement might be achieved by
combining other features of fingerprints, including other condi-
tional order -Delaunay triangles and class rank method.

This indexing algorithm has another significant advantage.
All of the correspondences found in indexing can work as con-

trol points for estimating the nonlinear mapping function be-
tween two fingerprints during distortion compensation.
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