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Regular Paper

On-the-fly Model Checking of Security Protocols and

Its Implementation by Maude

Guoqiang Li† and Mizuhito Ogawa†

Trace analysis for a security protocol represents every possible run as a trace and analyzes
whether any insecure run is reachable. The number of traces will be infinite due to (1) infinitely
many sessions of a protocol, (2) infinitely many principals in the network, and (3) infinitely
many messages that intruders can generate. This paper presents an on-the-fly model checking
method by restricting/abstracting these infinite factors to a finite model. First, we restrict
a typed process calculus to avoid recursive operations, so that only finitely many sessions
are considered. Next, a bound variable is introduced as an index of a message to represent
its intended destination, so that an unbounded number of principals are finitely described.
Then, messages in which irrelevant parts are reduced in a protocol are unified to a parametric
message based on the type information. We implement the on-the-fly model checking method
using Maude, and automatically detect the flaws of several security protocols, such as the
NSPK protocol and the Woo-Lam protocol, etc..

1. Introduction

Trace analysis represents every possible run
of a protocol as a trace, and analyzes whether
any insecure state is reachable 1)∼3). When ap-
plying a model checking as its execution engine,
the main difficulty is that the number of traces
is infinite. The reasons are:
• Each principal can initiate or act in re-

sponse in an unlimited number of sessions,
which causes unbounded length of each
trace.

• Each principal may communicate with
an unlimited number of principals, which
causes infinitely many traces.

• Each intruder can produce, store, dupli-
cate, hide, or replace an unlimited num-
ber of messages based on the messages sent
in the network, following the Dolev-Yao
model 4). This also causes infinitely many
traces.

In this paper, a finite parametric model
is proposed by restricting/abstracting the in-
finite factors of security protocols. Secu-
rity properties, such as authentication and se-
crecy, are checked automatically by on-the-
fly model checking. This model checking is
sound and complete under the restriction of the
bounded number of sessions, and implemented
on Maude.

To describe security protocols, we set a typed

† School of Information Science, Japan Advanced In-
stitute of Science and Technology

process calculus based on a variant of Spi
calculus 5), in which new syntax, the binder
and the range are introduced. The calcu-
lus uses environment-based communication, in-
stead of the standard channel-based communi-
cation. Following the Dolev-Yao model, a de-
ductive system is used in the environment to
generate infinitely many messages 2).

To restrict ourselves to a bounded number of
sessions of a protocol, the calculus avoids re-
cursive operations, such as replication. To rep-
resent an unbounded number of principals, a
bound variable in a range is an index of a mes-
sage representing its intended destination. To
unify messages that cause the same behavior in
a protocol, they are abstracted to a parametric
message based on the type information, so that
only a finite number of parametric messages are
finally checked.

To represent an unbounded number of princi-
pals with which one may communicate, we as-
sume that a principal may send a message to
any of the principals. A binder is introduced
such that a bound variable in it is regarded as
an index of the possible destinations of the mes-
sage. The variable is ranged over a set of prin-
cipals’ names. The usual way to restrict this
kind of infinity is by bounding the number of
principals in the network, so that each princi-
pal is described as only explicitly communicat-
ing with finitely many principals, including an
intruder 1),3).

Based on the type information, each sub-
expression whose type is a type variable will be
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marked by a new kind of variable named a para-
metric variable. A parametric variable will not
be further instantiated, since substructures of
a message that are deeper than type variables
do not affect behaviors of a principal. Thus
the system is translated into a parametric sys-
tem, in which all possible messages generated
by each principal (including each intruder) can
be simulated by finitely many parametric mes-
sages. In comparison, Ref. 3) imposes an upper-
bound on the number of messages, restricting
the state space to be finite.

In a parametric system, not all parametric
traces have a corresponding trace, since a para-
metric trace may not have enough information
to decide an equality between two parametric
messages. Thus a refinement of the paramet-
ric trace procedure is proposed, in which if a
parametric trace can be deduced to a satisfiable
normal form, then it has a corresponding trace.
The deduction procedure is decided dynami-
cally. For this reason, we use on-the-fly model
checking and implement the parametric system
by Maude. The method successfully detects the
flaws of several security protocols, such as the
NSPK protocol and the Woo-Lam protocol, au-
tomatically. We use about 330 lines as the com-
mon part, and the protocol specific part for each
protocol is about fifty lines in Maude.

The rest of the paper is organized as fol-
lows. In Section 2, an overview is introduced
to illustrate how our system works. Section 3
presents the typed process calculus and its op-
erational semantics. In Section 4, we introduce
the parametric system, and prove its soundness
and completeness with respect to the original
system. In Section 5, we show how the security
properties, such as secrecy and authentication,
are represented and detected. Section 6 shows
how to implement the parametric system using
Maude. Section 7 presents related work, and in
Section 8, we conclude the paper.

2. Overview

Because of the complexity of the whole sys-
tem, we will illustrate how our system works
by analyzing the Needham-Schroeder public-
key protocol (referred to as NSPK protocol).
An informal description of the NSPK protocol
is given flow-by-flow as follows, in which NA

and NB are nonces generated by A and B, re-
spectively.

A −→ B : {A, NA}+KB
(1)

B −→ A : {NA, NB}+KA
(2)

A −→ B : {NB}+KB
(3)

Our calculus is based on the Spi calculus 5).
Unlike the standard Spi calculus, this uses
environment-based communication instead of
channel-based communication. Each process
sends messages to the environment and receives
messages from the environment. Thus a mes-
sage that a sender sends may be modified by in-
truders in the environment before the sender’s
intended receiver receives it.

In our calculus, the NSPK protocol is repre-
sented as follows:

A � (νxa : I)a1{A, NA}+k[xa].a2(ya).
case ya of {y′

a}−k[A] in
let (za, z′a) = y′

a in
[za = NA] a3{z′a}+k[xa].0

B � b1(xb).case xb of {x′
b}−k[B] in

let (yb, y
′
b) = x′

b in [yb = A]
b2{y′

b, NB[A, B]}+k[A].b3(zb).
case zb of {ub}−k[B] in
[ub = NB[A, B]]acc zb.0

SYSNSPK � A‖B
where
• (νxa : I) is a range. xa represents the

possible destinations to which A may send
messages. It is ranged over the infinite set
I of principals’ names.

• +k[xa] and −k[A] are key binders to rep-
resent any public key and A’s private key,
respectively.

• NB[A, B] is a nonce binder to represent the
confidential datum NB , which means that
B intends to send NB to A.

• acc zb represents that after a sequence of
checks, B asserts that the message accepted
by the b3 action comes from A.

A string of actions performed by principals,
named a trace, is used to describe any possible
run of protocols. In a trace, each variable in
an input action is instantiated by a message
that the environment generates. For example,
a trace that represents a run with only the first
two flows of the NSPK protocol, i.e., flow (1)
and (2) is:

a1{A, NA}+k[B].b1({A, NA}−k[B]).

b2{NA,NB[A,B]}+k[A].a2({NA,NB[A,B]}−k[A])

It is well-known that the original NSPK pro-
tocol does not satisfy both secrecy and authen-
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tication by a man-in-middle attack 3), which is
given as:

A −→ I : {A, NA}+KI
(A1)

I(A) −→ B : {A, NA}+KB
(B1)

B −→ I(A) : {NA, NB}+KA
(B2)

I −→ A : {NA, NB}+KA
(A2)

A −→ I : {NB}+KI
(A3)

I(A) −→ B : {NB}+KB
(B3)

The confidential datum NB is leaked during the
flow (A3), and thus the NSPK protocol violates
the secrecy property. In (B3), B “thinks” the
message comes from A, while it actually comes
from I, so this violates the authentication prop-
erty.

In order to define these properties, some new
expressions are defined: For the secrecy prop-
erty, a guardian, check(x), which means that
any message that instantiates x is observable,
is introduced. The guardian can be inserted at
any position in traces, to be instantiated by any
messages leaked in each trace. Secrecy of NB

is specified as ¬check(NB[A, B]). (The formal
definition can be found in Subsection 5.1.)

The property that A is authenticated to B is
specified as a3 x ←↩ acc x. The interpretation
is that (1) if acc occurs in a trace, then the
label a3 must occur in the same trace before
acc, and (2) both a3 and acc are attached to
the same message. (The formal definition can
also be found in Subsection 5.1.)

When one tries to detect such flaws, the main
difficulty is that the number of runs is infinite.
Such infinite nature is caused by: (1) an un-
limited number of sessions of protocols, (2) an
unlimited number of principals in the network,
and (3) infinitely many messages that intruders
may generate.

Our ideas are: (1) For an unlimited number
of sessions, recursive definitions are avoided in
our calculus, and thus only bounded number of
sessions are considered. (2) For an unlimited
number of principals, ranges and binders can
represent communication with infinitely many
principals, and later such communication is ab-
stracted by a finite action. In comparison,
Refs. 2), 3) impose an upper-bound on the num-
ber of principals. (3) For infinitely many mes-
sages, a parametric system is proposed to sim-
ulate the infinitely many traces with a finite
number of parametric traces, while existing ap-
proaches impose an upper-bound on the num-
ber of messages 3).

For an unlimited number of principals, a prin-

cipal communicating to infinitely many other
principals can be imitated by representing the
intended destination by a bound variable in a
range. The variable in the range later will not
be instantiated in the parametric system, thus
an unlimited number of principals can be ex-
tracted to a finite action. An alternative way to
describe the communication is by using infinite
process definition, such as replication, which is
difficult to abstract to a finite system.

We apply a type system to abstract some
unnecessary details of messages. Each sub-
expression whose type is a type variable will
be marked by a new kind of variable named
a parametric variable, which need not be fur-
ther instantiated. Because substructures of a
message that are deeper than type variables do
not affect behaviors of principals. The process
will not further decompose, decrypt or validate
these submessages. By this abstraction, the re-
sulting system is a parametric system (the for-
mal definition is in Subsection 4.1). The NSPK
protocol is translated into a parametric system
as follows.

Ap � (νx̂a : I)a1{A, NA}+k[x̂a].

a2({ẑa, ẑ′a}−k[x̂k]).
case {ẑa, ẑ′a}−k[x̂k] of {ẑa, ẑ′a}−k[A]

in let (ẑa, ẑ′a) = (ẑa, ẑ′a) in
[ẑa = NA]a3{ẑ′a}+k[x̂a].0

Bp � b1({x̂b, ŷb}−k[ŷk]).
case {x̂b, ŷb}−k[ŷk] of
{x̂b, ŷb}−k[B] in let (x̂b, ŷb) =
(x̂b, ŷb) in [x̂b = A]
b2{ŷb, NB[A, B]}+k[A].b3({ẑb}−k[ŷk]).
case {ẑb}−k[ŷk] of {ẑb}−k[B] in
[ẑb = NB[A, B]] acc {ẑb}−k[ŷk].0

SYSNSPK
p � Ap‖Bp

In a parametric system, the number of para-
metric traces is finite. As Theorem 2 in Sub-
section 4.2 states, each trace in the original sys-
tem has a corresponding parametric trace in its
parametric system. However, not all paramet-
ric traces in a parametric system have a corre-
sponding trace in the original system. To find
whether a parametric trace has a corresponding
trace, a refinement of parametric trace proce-
dure is proposed, in which if a parametric trace
can be deduced to a satisfiable normal form,
then it has a corresponding trace (described by
Theorem 3 in Subsection 4.3).
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The secrecy and the authentication proper-
ties defined in an original system can also be de-
fined equivalently in its corresponding paramet-
ric system and checked by performing a finite
search (Theorems 4 and 5 in Subsection 5.2).
For instance, in NSPK protocol, a counterex-
ample to the secrecy property

a1{A, NA}+k[x̂a].b1({A, NA}−k[B]).

b2{NA, NB[A, B]}+k[A].

a2({NA, NB[A, B]}−k[A]).
a3{NB[A, B]}+k[x̂a].check(NB[A, B]) (C1)

can be detected automatically. The counterex-
ample shows that in a3, A may send the mes-
sage he intends to send to B to other prin-
cipals (thus leaking the confidential message
NB[A, B]). If we substitute x̂a for an intruder
name I, the same attack we have introduced in
(A1–A3, B1–B3) is specified.

Similarly, we can detect a counterexample to
the authentication

a1{A, NA}+k[x̂a].b1({A, NA}−k[B]).

b2{NA, NB[A, B]}+k[A].

a2({NA, NB[A, B]}−k[A]).
a3{NB[A, B]}+k[x̂a].b3({NB[A, B]}−k[B]).
acc{NB[A, B]}−k[B] (C2)

which means that B thinks that he accepts the
message from A, while actually A can send the
message to any one of possible principals. Sim-
ilarly, if we substitute x̂a for I, the trace also
represents the same attack we have introduced
in (A1–A3, B1–B3).

The fixed NSPK protocol 3) revises flow (2)
to

B −→ A : {B, NA, NB}+KA
(2′)

and avoids such attacks. In the flow (2′), A will
check whether the principal whom he intends to
communicate with is identical to the principal
name he has received. In an original system and
in a parametric one, A is represented as follows:
(We omit the representation of B here):

A′ � (νxa : I)a1{A, NA}+k[xa].a2(ya).
case ya of {y′

a}−k[A] in
let (za, z′a) = y′

a in [za = xa]
let (wa, w′

a) = z′a in
[wa = NA] a3{w′

a}+k[za].0

A′
p � (νx̂a : I)a1{A, NA}+k[x̂a].

a2({x̂a, ŵa, ŵ′
a}−k[x̂k]).

case {x̂a, ŵa, ŵ′
a}−k[x̂k] of

{x̂a, ŵa, ŵ′
a}−k[A] in

let (x̂a, ŵa, ŵ′
a) = (x̂a, ŵa, ŵ′

a) in
[x̂a = x̂a] let (ŵa, ŵ′

a) = (ŵa, ŵ′
a)

in [ŵa = NA]a3{ẑ′a}+k[ŵ′
a].0

With the match operation [za = xa], when
we instantiate za while generating a parametric
trace, xa will be instantiated at the same time.
Thus both the label a3 and the label acc are
attached to the same message. So following the
same action order of the counterexample (C2),
the trace is not a counterexample any more.

a1{A, NA}+k[B].b1({A, NA}−k[B]).

b2{B, NA, NB[A, B]}+k[A].

a2({B, NA, NB[A, B]}−k[A]).
a3{NB[A, B]}+k[B].b3({NB[A, B]}−k[B]).
acc{NB[A, B]}−k[B]

This means that A will not send the message
labeled a3 to any possible principal, because A
has accepted the communicator’s name via za.

3. Process Calculus with Binders and
Types, and Its Trace

The syntax of our calculus is based on the
Spi calculus 5). We also introduce new syntax,
binder and range.

3.1 Process and Trace
Assume four countable disjoint sets: L for

labels, N for names, B for binder names and
V for variables. Let a, b, c, . . . indicate labels,
m, n, k, . . . indicate names, m, n, k, . . . indicate
binder names, and x, y, z, . . . indicate variables.

Messages M, N, L . . . in a set M are defined
as follows:

M, N, L ::= n | x | (M, N) | {M}L
| m[M1, . . . , Mn]

(M, N) represents a pair of which each ele-
ment is a message. {M}L is an encrypted mes-
sage where M is its plain message and L is its
encryption key. A binder m[M1, . . . , Mn] is re-
garded as a special name with some relation
to other messages. M1, . . . , Mn are parameters
of m. For simplicity, we usually use M̃ to rep-
resent a tuple of messages, and thus a binder
m[M1, . . . , Mn] can also be denoted as M[M̃ ].
One usage of binders is to represent encryption
keys. For instance, binder k[A, S] represents a
symmetric key shared with principals A and S;
+k[A] and −k[A] represent A’s public key and
private key, respectively. +k[x] represents any
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public key in the network. We say a message
M is in a message N , if M is a subterm of N ;
a message is ground, if it does not contain any
variable.

Let P be a countable set of processes which
is indicated by P, Q, R, . . .. The syntax of pro-
cesses is defined as follows:

P, Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N ] P match
(νx : A)P range
let (x, y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition

Intuitively understanding,
• 0 is Nil process that does nothing.
• aM.P sends message M to the environment

and then behaves like P .
• a(x).P awaits an input message M and be-

haves like P{M/x}.
• If M = N , [M = N ] P acts as P ; Otherwise

it will be stuck.
• (νx : A)P means that x in P ranges over A

(⊆ N ), and acts as P{m/x}, where m ∈ A.
• If M is a pair (N, L), let (x, y) = M in P is

reduced to P{N/x, L/y}; Otherwise it will
be stuck.

• Process case M of {x}L in P is reduced to
P{N/x} when M is an encrypted message
{N}L′ that L can decrypt; Otherwise it will
be stuck.

• P‖Q means that P and Q run concurrently.
Variables x and y are bound in a(x).P ,

(νx : A)P , let (x, y) = M in P , and
case M of {x}L in P . We denote the sets
of free variables and bound variables in P by
fv(P ) and bv(P ), respectively. A process P is
closed if fv(P ) = ∅.

A process is used to represent behaviors of
each principal in a security protocol. Here, we
take a naive example; a more complex example
can be found in Subsection 3.4.
Example 1. (Wide-mouthed frog protocol) A
principal A shares a shared-key k[A, S] with
a server S, and another principal B shares a
shared-key k[B, S] with S. The purpose of the
protocol is to establish a new secret key k[A, B]
between A and B, which A may use to send
a confidential datum M to B. The protocol
flows and its representation by above syntax
SYSWMF , are described below:

A −→ S : {KAB}KAS

S −→ B : {KAB}KBS

A −→ B : {M}KAB

A � a1{k[A, B]}k[A,S].a2{M}k[A,B].0

B � b1(x).case x of {y}k[B,S] in
b2(z).case z of {u}y in.0

S � s1(x).case x of {y}k[A,S] in
s2{y}k[B,S].0

SYSWMF � A‖S‖B
Messages that the environment can generate

are started from the current finite knowledge,
denoted by S (⊆M), and deduced by a deduc-
tive system. Here, we presuppose a countable
set E (⊆ M), for those environmental names
and ground binders such as public keys, intrud-
ers’ names and their keys, etc. For example,
I,−k[I ′], k[I, S], +k[A] . . . ∈ E . Let � be the
least binary relation generated by the deduc-
tive system in Fig. 1:

An action is a term of form aM or a(M),
in which M is a message. Act is defined as
an action set. An action is ground if its at-
tached message is ground. A string of ground
actions can represent a possible run of the pro-
tocol when each input message can be deduced
by messages in its prefix string. We named such
a kind of string concrete trace, or a trace. rep-
resented by s. The messages in a trace s, repre-
sented by msg(s), are those messages in output
actions of the trace s. We use s �M to repre-
sent msg(s) �M .
Definition 1. A concrete trace ☆ s is a ground
action string s ∈ Act∗ such that s = s′.a(M).s′′
implies s′ � M for each s′, s′′ and a(M). A
concrete configuration is a pair 〈s, P 〉, in which
s is a trace and P is a closed process.

3.2 Operational Semantics
The transition relation of configurations is de-

fined by the rules in Fig. 2, in which each rule
has the following form: 〈s, P 〉 −→ 〈s′, P ′〉 C,
meaning that if a condition C is satisfied,
〈s, P 〉 will transit to 〈s′, P ′〉. Note that in
rules LCOM and RCOM , no reaction is pro-
vided between two composed processes, and
both processes communicate with the environ-
ment. Furthermore, a function Opp is defined
for complementary key in decryption and en-
cryption. Thus we have Opp(+k[A]) = −k[A],

☆ Before Section 4, a concrete trace is identified with
a trace, for simplicity.
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S � n
n ∈ E Env

S �M
M ∈ S Ax

S �M S �N
S � (M, N)

Pair intro
S � (M, N)

S �M
Pair elim1

S � (M, N)
S �N

Pair elim2

S � {M}k[A,B] S � k[A, B]

S �M
Senc elim

S �M S � k[A, B]
S � {M}k[A,B]

Senc intro

S � {M}±k[A] S �∓k[A]

S �M
Penc elim

S �M S �±k[A]
S � {M}±k[A]

Penc intro

Fig. 1 Environmental deductive system.

(INPUT) 〈s, a(x).P 〉 −→ 〈s.a(M), P{M/x}〉 s �M
(OUTPUT) 〈s, aM.P 〉 −→ 〈s.aM, P 〉

(DEC ) 〈s, case {M}L of {x}L′ in P 〉 −→ 〈s, P{M/x}〉 L′ = Opp(L)
(PAIR) 〈s, let (x, y) = (M, N) in P 〉 −→ 〈s, P{M/x, N/y}〉

(RANGE) 〈s, (νx : A)P 〉 −→ 〈s, P{m/x}〉 m ∈ A
(MATCH ) 〈s, [M = M ]P 〉 −→ 〈s, P 〉

(LCOM )
〈s, P 〉 −→ 〈s′, P ′〉

〈s, P‖Q〉 −→ 〈s′, P ′‖Q〉

(RCOM )
〈s, Q〉 −→ 〈s′, Q′〉

〈s, P‖Q〉 −→ 〈s′, P‖Q′〉
Fig. 2 Transition rules.

Opp(−k[A]) = +k[A] and Opp(k[A, B]) =
k[A, B].

The rules INPUT and RANGE may lead to
an infinite system. For the former, let’s take a
process A � a1M.a2(x).0 for example. 〈ε, A〉
will transit to 〈a1M, a2(x).0〉 by the OUTPUT
rule, which can then transit to infinitely many
configurations. Since the trace a1M can deduce
infinitely many messages, and according to the
INPUT rule, each message can instantiate x.
Thus it generates infinitely many traces. For
the latter, let’s take another process B � (νx :
I)b1{M}+k[x] to illustrate the infinity, where I
is an infinite set of principals’ names. Accord-
ing to the RANGE rule, x will be instantiated
to any name in I, which thereafter leads to in-
finitely many traces by OUTPUT rules.

3.3 Type
The type information of an input variable can

be inferred through looking up the process. A
message whose type cannot unify the type of
an input variable will be stuck when a protocol
runs. Stuck messages cannot attack a protocol,
so we will exclude such messages from being
checked.

Let T be the set of types. Its syntax is in-
ductively defined as follows:

τ ::= α |b | τ ∗τ | σ[τ1, . . . , τn] | 
τ | 
+τ |

− τ | 
?τ | unit | τ + τ | τ → τ

• α ranges over a countable set of type vari-
ables.

• b ranges over the set of base types, which
consists of an identity type i for names of

principals, a nonce type n for nonces, and
other kinds of base types, for instance, int ,
char , etc.

• The pair type τ ∗ τ is given to a pair mes-
sage.

• The binder type σ[τ1, . . . , τn] is given to
a binder m[M1, . . . , Mn], where σ ranges
over the set of binder name types, and
τ1, . . . , τn are the types of the binder’s pa-
rameters M1, . . . , Mn, respectively. For ex-
ample k, k+, k−, . . . are binder name types
for binder names k, +k,−k respectively, so
the type of a binder k[A, B] is k[i, i]. Since
given a binder name type, its parameters’
types will be fixed, for simplicity, we usu-
ally use a binder name type to represent
a binder’s type. For instance, the type of
k[A, B] can be abbreviated to k.

• The shared-key encryption type, 
τ , is
given to an encrypted message encrypted
by a shared-key, and τ is the type for its
plain message. Similarly, 
+τ is for a
public-key encrypted message, and 
−τ is
for a private-key encrypted message, say, a
digital signature. 
?τ is for an encrypted
message whose key cannot be decided stat-
ically.

• The type unit is a nil type for the 0 process.
• The disjoint type τ1 + τ2 is given to a com-

position process, P‖Q.
• The arrow type τ → τ is given to an input

process, which is similar to the type of the
abstraction in λ-calculus.

We use an expression e where e ∈ M∪ P to



56 IPSJ Transactions on Programming June 2007

Γ � x : τ
(x, τ) ∈ Γ Msg Variable

Γ � n : b
b = TypeOf(n) Msg Name

Γ � M̃ : τ1 ∗ . . . ∗ τn

Γ � m[M̃ ] : σ[τ1, . . . , τn]
σ = TypeOf(m) Msg Term

Γ � M : τ1 Γ � N : τ2

Γ � (M, N) : τ1 ∗ τ2
Msg Pair

Γ � M : τ Γ � L : k∗
Γ � {M}L : 	∗τ 	∗ τ =




	τ k∗ = k
	+τ k∗ = k+

	−τ k∗ = k−
	?τ k∗ = α

Msg Enc

Γ � 0 : unit
Nil

Γ, {x : τ1} � P : τ2

Γ � (νx : A)P : τ2
τ1 = TypeOf(A) Range

Γ, {x : τ1} � P : τ2

Γ � a(x).P : τ1 → τ2
Input

Γ � P : τ1 Γ � M : τ2

Γ � aM.P : τ1
Output

Γ, {x : τ1, y : τ2} � P : τ3 Γ � M : τ1 ∗ τ2

Γ � let (x, y) = M in P : τ3
Pair

Γ, {x : τ1} � P : τ2 Γ � M : 	∗τ1 Γ � L : k∗
Γ � case M of {x}L in P : τ2 	∗ τ =




	τ k∗ = k
	+τ k∗ = k−
	−τ k∗ = k+

	?τ k∗ = α

Dec

Γ � M : τ1 Γ � N : τ1 Γ � P : τ2

Γ �[M = N ]P : τ2
Match

Γ � P : τ1 Γ � N : τ2

Γ � P‖Q : τ1 + τ2
Composition

Fig. 3 Typing rules.

describe a message or a process. Let Γ be a type
environment mapping from the set of variables
V , to the set of types T . The typing inference
system has the form Γ � e : τ , in which Γ is
a type environment, e is the expression whose
type will be inferred and τ is the type of e. If
the type environment is an empty set, the form
will be abbreviated to � e : τ . Furthermore, we
assume a function TypeOf : P(N )∪P(B)→ T
that assigns a type to a set of names or binder
names. Here TypeOf(n) is the abbreviation of
TypeOf({n}). The typing rules for the expres-
sions are given in Fig. 3.

Among the transition rules in Fig. 2, the
INPUT rule needs to be modified with a type
constraint, that is, a message M deduced by the
s in the configuration 〈s, a(x).P 〉, whose type
can be unified with the type of x, will be in-
stantiated to x.

(TINPUT ) 〈s, a(x).P : τ1 → τ2〉 −→
〈s.a(M), P{M/x}〉

s �M,�M : τ1

Even with the type constraint, the rule
TINPUT may also lead to an infinity of a sys-
tem, since a type variable can be unified to any
type, thus a variable whose type is a type vari-
able can be instantiated to any possible mes-
sage.

The typing system does not provide an easy
way to assign a type to an expression e. Thus a
type algorithm is provided and its correctness
is verified. In the algorithm, given a typing en-
vironment Γ and an expression e, a substitution
θ mapping from type variables to types and a

type τ can be calculated, which satisfy
Γθ � e : τ

Before defining the algorithm, we provide a
type unification algorithm, which can be used
both in the type inference algorithm and the
message type matching in TINPUT rule. An
occurrence check function FTV (τ, α) is pre-
supposed as usual, which satisfies that α does
not occur in τ if FTV (τ, α) = True. The
unification algorithm has the following form
Unify(τ, τ ′) = (θ, σ). That is, given two types
τ and τ ′, it either returns a substitution θ and
a type σ that satisfy τθ = τ ′θ = σ, or raises
failure.

The Unify and Infer algorithms are given in
Appendix A.1.

We will prove that every type calculated by
the algorithm Infer can be inferred by the typ-
ing rules in Fig. 3.
Lemma 1. Let e be an expression, τ be a type,
Γ be a type environment and θ be a substitution
mapping from type variables to types. If Γ � e :
τ , then Γθ � e : τθ.
Proof. Applying structural induction to the ex-
pression e, we only show the base cases and two
inductive steps here; the remaining cases are
quite similar.
( 1 ) Case e = x: Because Γ � x : τ , we have

(x, τ) ∈ Γ. Let Γ1 = Γ\{(x, τ)}, so Γθ =
Γ1θ ∪ {(x, τ)}θ = Γ1θ ∪ {(x, τθ)}, and
thus Γθ � x : τθ according to typing rule
Msg Variable.

( 2 ) Case e = n: Because Γ � n : τ , we have
τ = TypeOf(n), and τθ = τ for every sub-
stitution θ. By typing rule Msg Name,
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Γθ � n : TypeOf(n).
( 3 ) Case e = (M, N): By typing rules,

Γ � M : τ1 and Γ � N : τ2 are sat-
isfied. Given a substitution θ, we have
Γθ � M : τ1θ and Γθ � M : τ2θ
according to induction hypothesis. So
Γθ � (M, N) : (τ1 ∗ τ2)θ.

( 4 ) Case e = a(x).P : By induction hypothe-
sis, Γθ∪{x, τ1}θ = Γθ∪{x, τ1θ} � P : τ2θ
is satisfied. Thus Γθ � a(x)P : (τ1 →
τ2)θ.

Theorem 1 (Soundness of type inference).
Let e be an expression, Γ be a typing environ-
ment and θ be a substitution. If Infer(Γ, e) =
(θ, τ ), Γθ � e : τ can be inferred.
Proof. Applying structural induction to the ex-
pression e. one base step and three inductive
steps are proposed; the remaining cases are sim-
ple and similar. We use the same notations as
in the algorithm.
( 1 ) Case e = x: We have Infer(Γ, x) =

(Id, τ ), because ΓId = Γ and (x, τ) ∈ Γ,
Γ � x : τ is inferred by the typing rule
Msg Variable.

( 2 ) Case e = (M, N): by induction hypothe-
sis, we have two derivations:

Infer(Γ, M) = (θ1, τ1) →
Γθ1 �M : τ1 (1)

Infer(Γθ1, N) = (θ2, τ2) →
Γθ1θ2 � N : τ2 (2)

By applying Lemma 1 to (1), we have
Γθ1θ2 �M : τ1θ2 (3)

By applying typing rule Msg Pair to (2)
and (3), we have

Γθ1θ2 � (M, N) : τ1θ2 ∗ τ2

which is the expected result of
Infer(Γ, (M, N)) = (θ1θ2, (τ1θ2) ∗ τ2)

( 3 ) Case e = a(x).P : By induction hypothe-
sis, we get a derivation:

Infer(Γ ∪ {(x, α)}, P ) = (θ, τ ) →
Γθ ∪ {(x, α)}θ � P : τ (4)

By applying typing rule Input to (4), we
have

Γθ � a(x).P : αθ → τ
which is the result of Infer(Γ, a(x).P ) =
(θ, αθ → τ ).

( 4 ) Case e = case M of {x}L in P : By
the induction hypothesis, we have two
derivations and a unification:

Infer(Γ, M) = (θ1, τ1) →

Γθ1 �M : τ1 (5)
Infer(Γθ1, L) = (θ2, τ2) →

Γθ1θ2 � L : τ2 (6)
Unify(
∗α, τ1θ2) = (ϑ, 
) →

∗(αϑ) = τ1θ2ϑ = 
 (7)

Infer(Γθ1θ2ϑ ∪ {(x, α)}θ2ϑ, P ) =
(θ3, τ3) →
Γθ1θ2ϑθ3 ∪ {(x, α)ϑθ3} � P : τ3

(8)

By applying Lemma 1 to (5), we have
Γθ1θ2ϑθ3 �M : τ1θ2ϑθ3 (9)

Note that α does not occur in θ1 and θ2,
and thus {(x, α)}ϑθ3 = {(x, α)}θ1θ2ϑθ3.
So after unification, the type of x is αϑθ2,
and the type of {x}L is 
∗(αϑθ2). And
because of (7), we have

∗(αϑθ3) = τ1θ2ϑθ3

and thus
Γθ1θ2ϑθ3 �M : 
∗(αϑθ3)

Furthermore, because of (7),
Γθ1θ2ϑθ3 � L : τ2ϑ2θ3

So, using typing rule Dec, we have
Γθ1θ2ϑθ3 � case M of {x}L in P : τ3

which is the result of
Infer(Γ, case M of {x}L in P ) =

(θ1θ2ϑθ3, τ3)

3.4 Representation of Security Proto-
cols Using Binders

In this subsection, we will describe how to
represent a protocol with the purpose of model
checking some security properties. We assume
there are infinitely many principals in the net-
work, and consider two arbitrary principals A
and B who are willing to communicate with
each other, as well as with any other principals
by a protocol. The secrecy property means dur-
ing the communication, a confidential message
will not be leaked to other principals except
A and B. The authentication property means
that when B thinks it has received a message
from A, the message really comes from A.

According to these two properties, a princi-
pal who intends to send a message is supposed
to send the message to any one of the possible
principals in the network, if he cannot gain the
information about the principal to whom he in-
tends to send the message. An abstraction will
be employed by using a range and some binders
to finitely describe such an assumption. That
is, the principal may send the same message
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to different principals, and such a sending pro-
cedure is performed only once. An alternative
way to describe the communication is by using
infinite process definition, such as replication.
By this way, a principal with intention to com-
municate with infinitely many principals can be
described as the principal that communicates
with each principal in different sessions. It is
difficult to abstract to a finite system.

As a receiver, we will fix its potential sender
to the sender we represented in one session.
That is, a receiver will “think” he has received
the message from some principal he has known.
Such an assumption is necessary when defin-
ing authentication and secrecy properties, since
otherwise the sender and the receiver we rep-
resented may have no connections with each
other, and thus these properties between them
can not be defined. For example, if A sent a
message to C, and B received a message from
D, it is certain that the message B received is
different from the message A sent. In Subsec-
tion 5.3, when we define the security properties
in multiple sessions, we will loosen the restric-
tion, assuming that other than in one session,
the receiver can communicate with any princi-
pal. With these assumptions, we define secrecy
and authentication properties in multiple ses-
sions.

Let’s consider Abadi-Gordon protocol intro-
duced in Ref. 5) as an example. The informal
description of the protocol is given flow-by-flow
as follows:

A −→ S : A, {B, KAB}KAS

S −→ B : {A, KAB}KSB

A −→ B : A, {A, M}KAB

Intuitively interpreting, the principal A
wants to send a message M to B encrypted by
a new key KAB that he generates. Firstly, he
sends the KAB and B’s name to a trusted third
party(TTP) server S. After the TTP sends the
new key to B, A sends a message encrypted
by the key KAB to B. We will represent the
protocol as follows:

A � (νx : I)a1(A, {x, k[A, x]}k[A,S]).
a2(A, {A, M}k[A,x]).0

B � b1(x).case x of {x′}k[B,S] in
let (y, z) = x′ in [y = A] b2(w).
let (w′, w′′) = w in [w′ = A]
case w′′ of {u}z in
let (u′, u′′) = u in [u′ = A] F (u′′)

S � s1(x).let (y, z) = x in
case z of {u}k[y,S] in
let (u′, u′′) = u in s2{y, u′′}k[u′,S].0

SYSAG � A‖S‖B
A range and a binder are used when a prin-

cipal sends a message that contains the infor-
mation of its intended receiver, and the prin-
cipal cannot gain such information by previous
communications. For example, during the com-
munication of the Abadi-Gordon protocol, the
principal A cannot obtain any information of its
corresponding receiver. Thus a binder k[A, x] is
used to describe that A can communicate with
any one of principals in the network. Further-
more, a range (νx : I) is used to bind the vari-
able x to an infinite set I, which contains the
names of all principals in the network.

F (u′′) in (5) means that B runs a process F
with the message that it “thinks” came from
A. Usually, we define the process F as a decla-
ration of accepting a specific message from the
intended principal. For instance, in this proto-
col, we define F (u′′) = accw.0, meaning prin-
cipal B thinks itself successfully accepting the
message through w from A.

4. Parametric System

The typed system has reduced the number of
traces by excluding messages whose type cannot
unify the type of an input variable. However,
the typed system may still be infinite, since a
variable (or a sub-expression) whose type is a
type variable can be instantiated to any possi-
ble message. For example, a process P is de-
fined as follows:

P � a1(x).a2x.0

After inferring the type of P , the type of x is
a type variable α, which means a configuration
〈s, P 〉 can transit to 〈s.a1(M), a2M.0〉 for any
message that satisfies s � M . However, these
messages have the same effect on the follow-
ing actions of the process, since the receiver
process will not further decompose, decrypt or
validate the message that was received, before
it sends the message through a2. To reduce
the system, a special variable named a para-
metric variable x̂ is proposed to mark a sub-
expression with a type variable as its type. A
parametric variable will not be further instan-
tiated. In the above example, the trace will be-
come s.a1(x̂).a2x̂ when P transits to 0, which
is finite. According to the above approach, a
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∆ �p x : α ⇒ {x̂/x} x̂ = NewParVar(∆) Type variable

∆ �p x : b ⇒ {x̂b/x} x̂b = NewParVar(∆) Base type

∆ �p x′ : τ1 ∗ . . . ∗ τn ⇒ θ
∆ �p x : σ[τ1, . . . , τn] ⇒ {m[θ(x′)]/x} m = Binder(σ), x′ = NewParVar(∆) Binder type

∆ �p x′ : τ1 ⇒ θ1 ∆ �p x′′ : τ2 ⇒ θ2

∆ �p x : τ1 ∗ τ2 ⇒ {(θ1(x′), θ2(x′′))/x} x′, x′′ = NewParVar(∆)Pair type

∆ �p x′ : τ ⇒ θ
∆ �p x : 	τ ⇒ {{θ(x′)}k[x̂a,x̂b]/x} x̂a, x̂b, x′ = NewParVar(∆) Sencryption type

∆ �p x′ : τ ⇒ θ
∆ �p x : 	+τ ⇒ {{θ(x′)}+k[x̂a]/x} x̂a, x′ = NewParVar(∆) Pencryption type

∆ �p x′ : τ ⇒ θ
∆ �p x : 	−τ ⇒ {{θ(x′)}−k[x̂a]/x} x̂a, x′ = NewParVar(∆) Signature type

∆ �p x′ : τ ⇒ θ
∆ �p x : 	?τ ⇒ {{θ(x′)}x̂a/x} x̂a, x′ = NewParVar(∆) Gencryption type

∆ �p 0 : unit ⇒ {} Nil
∆ �p x : τ1 ⇒ θ1 ∆, θ1 �p P : τ2 ⇒ θ2

∆ �p a(x).P : τ1 → τ2 ⇒ θ1 ∪ θ2
Input

∆ �p P : τ ⇒ θ
∆ �p aM.P : τ ⇒ θ

Output
∆ �p P : τ ⇒ θ

∆ �p (νx : A) P : τ ⇒ θ ∪ {x̂/x} x̂ = NewParVar(∆) Range

∆, {M̂1/x, M̂2/y} �p P : τ ⇒ θ

∆ �p let (x, y) = M in P : τ ⇒ θ ∪ {M̂1/x, M̂2/y} (∆(M) = (M̂1, M̂2))Pair

∆, {M̂/x} �p P : τ ⇒ θ

∆ �p case M of{x}L in P : τ ⇒ θ ∪ {M̂/x} (∆(M) = {M̂}L̂)Dec

∆ �p P : τ ⇒ θ
∆ �p [M = N ]P : τ ⇒ θ

Match
∆ �p P : τ1 ⇒ θ1 ∆ �p Q : τ2 ⇒ θ2

∆ �p P‖Q : τ1 + τ2 ⇒ θ1 ∪ θ2
Composition

Fig. 4 Inference rules for parametric process.

new system named a parametric system is in-
troduced to simulate the previous system.

4.1 Parametric Process and Paramet-
ric Trace

We use a new set V̂ for parametric variables
and assume V̂ ∩V = ∅. As convention, elements
in V̂ are denoted by x̂, ŷ, . . .. Parametric mes-
sages in a set M̂ and parametric processes in a
set P̂ can be defined as follows:

M̂ ::= x̂ | n | (M̂, N̂) | {M̂}L̂
| m[M̂1, M̂2, . . . M̂1]

P̂ ::= 0 | a(M̂).P̂ | aM̂.P̂ | [M̂ = N̂ ]P̂
| (νx̂ : A)P̂ | let (M̂, N̂) = L̂ in P̂

| case M̂ of {N̂}L̂ in P̂ | P̂‖Q̂
Given a closed process P , we try to mark

each sub-expression whose type is a type vari-
able with a parametric variable. Thus P can be
translated into a parametric process P̂ . For this
purpose, given a closed process P and its type
τ , an inference system is proposed, which infers
a substitution θ mapping from V to M̂. The
inference system has the form ∆ �p P : τ ⇒ θ,
in which ∆ is a context environment mapping
from V to M̂, P is a closed process and τ is its
type. The corresponding parametric process P̂
is obtained by applying the substitution θ to
the process P . We name P̂ the abstraction of
P , and P the concretization of P̂ . Note that

there do not exist any variables in a parametric
process, since each variable is substituted to a
parametric message.

In the inference system, some functions are
predefined. NewParVar : ∆ → V̂ generates a
new parametric variable that does not occur in
Dom(∆). Binder : T → I obtains the corre-
sponding binder name from a binder type. The
inference system is given in Fig. 4.

By the inference system, the formal definition
of Abadi-Gordon protocol described in Subsec-
tion 3.4 will be translated into the following
parametric processes:

Ap � (νx̂1 : I)a1(A, {x̂1, k[A, x̂1]}k[A,S]).
a2(A, {A, M}k[A,x̂1]).0

Bp � b1({ŷ1,ẑ1}k[x̂k,ŷk]). case {ŷ1,ẑ1}k[x̂k,ŷk]

of {ŷ1, ẑ1}k[B,S] in let (ŷ1, ẑ1) =
(ŷ1,ẑ1) in [ŷ1 = A] b2(ŵ1,{ŵ′

1,ŵ
′′
1}t̂1).

let (ŵ1, (ŵ1, {ŵ′
1, ŵ

′′
1}t̂1)) =

(ŵ1, (ŵ1, {ŵ′
1, ŵ

′′
1}t̂1)) in

[ŵ1 =A] case {ŵ′
1,ŵ

′′
1}t̂1 of {ŵ′

1,ŵ
′′
1}ẑ1

in let (ŵ′
1, ŵ

′′
1 ) = (ŵ′

1, ŵ
′′
1 ) in [ŵ′

1 =A]
acc (ŵ1, {ŵ′

1, ŵ
′′
1}t̂1)

Sp � s1(x̂, {ŷ, ẑ}k[x̂k,S]).let (x̂, {ŷ, ẑ}k[x̂k,S])
=(x̂,{ŷ,ẑ}k[x̂k,S]) in case {ŷ,ẑ}k[x̂k,S]
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(PINPUT ) 〈ŝ, a(M̂).P̂ 〉 −→p 〈ŝ.a(M̂), P̂ 〉
(POUTPUT ) 〈ŝ, aM̂.P̂ 〉 −→p 〈ŝ.aM̂, P̂ 〉

(PDEC) 〈ŝ, case {M̂}L̂ of {M̂}L̂′ in P̂ 〉 −→p 〈ŝθ̂, P̂ θ̂〉 θ̂ = Uni(L̂, Opp(L̂′))
(PPAIR) 〈ŝ, let (M̂, N̂) = (M̂, N̂) in P̂ 〉 −→p 〈ŝ, P̂ 〉

(PRANGLE) 〈ŝ, (νx̂ : A)P̂ 〉 −→p 〈ŝ, P̂ 〉
(PMATCH) 〈ŝ, [M̂ = M̂ ′]P̂ 〉 −→p 〈ŝθ̂, P̂ θ̂〉 θ̂ = Uni(M̂, M̂ ′)

(PLCOM)

〈ŝ, P̂ 〉 −→p 〈ŝ′, P̂ ′〉
〈ŝ, P̂‖Q̂〉 −→p 〈ŝ′, P̂ ′‖Q̂′〉 Q̂′ = Q̂θ if ŝ′ = ŝθ else Q̂′ = Q̂

(PRCOM)

〈ŝ, Q̂〉 −→p 〈ŝ′, Q̂′〉
〈ŝ, P̂‖Q̂〉 −→p 〈ŝ′, P̂ ′‖Q̂′〉 P̂ ′ = P̂ θ if ŝ′ = ŝθ else P̂ ′ = P̂

Fig. 5 Parametric transition rules.

of {ŷ, ẑ}k[x̂,S] in let (ŷ, ẑ) = (ŷ, ẑ) in
s2{x̂, ẑ}k[ŷ,S].0

SYSAG
p � Ap‖Sp‖Bp

Similar to a concrete system, a parametric ac-
tion is a term of form aM̂ or a(M̂), in which
M̂ is a parametric message. A parametric trace
is a string of parametric actions. Note that in
a concrete trace, any message in an input ac-
tion should be deduced by the prefix trace of
the input action. However, a parametric trace
may not have enough information to decide an
equality between two parametric messages, and
thus whether a parametric message is deducible
is unknown. Thus we loosen this restriction and
define a parametric trace as follows. Such a
loosening may lead to a divergence between a
trace and a parametric trace, which will be dis-
cussed later.
Definition 2. A parametric trace ŝ is a string
of parametric actions. A pair 〈ŝ, P̂ 〉 is a para-
metric configuration if ŝ is a parametric trace
and P̂ is a parametric process.

Since parametric variables are not instan-
tiated during model transitions, the equality
check (in MATCH and DEC ) of two messages
cannot be judged explicitly. Instead, a para-
metric message unification function Uni, whose
parameters enjoy the same type, is applied to
them. The transitions of a parametric system
are given in Fig. 5.

Given a parametric trace ŝ, if there exists
a substitution ϑ that assigns each paramet-
ric variable to a ground message, and satisfies
s = ŝϑ, where s is a concrete trace, we say that
s is a concretization of ŝ and ŝ is an abstraction
of s. ϑ is named concretized ground substitu-
tion.

4.2 Sound and Complete Simulation
We hope that each concrete trace in a con-

crete system has an abstraction in its corre-
sponding parametric system, and that each

parametric trace in the parametric system has
at least one concretization, so a bisimulation
relation can be defined between them. How-
ever, although each concrete trace does have
an abstraction, some parametric traces may
have no concretizations. Let’s take a simple
example, suppose a process P is defined as
P � a1(x).[x = b] a2 x.0, in the concrete sys-
tem 〈ε, P 〉, a2 will never occur in traces during
transitions since any process will be stuck when
[x = b] is considered, since the trace cannot de-
duce the name b. However, a parametric trace
a1(b).a2(b) is in its corresponding parametric
system.

However, a parametric system can still cover
its concrete one. That is, if a parametric trace
has a concretization, then the concretization is
a trace in its counterpart concrete system. Oth-
erwise the parametric trace cannot be instanti-
ated to any concrete trace. As shown in the
above example, parametric trace a1(b).a2(b)
cannot be instantiated to any concrete trace
since ε �� b. Here we explain the soundness
and completeness theorem.
Theorem 2. (Soundness and completeness)
Let 〈ε, P 〉 be a configuration, s′ be a trace, and
P̂ be the abstraction of P , then 〈ε, P 〉 −→∗
〈s′, P ′〉 for some P ′, if and only if there exists
ŝ′, such that 〈ε, P̂ 〉 −→∗

p 〈ŝ′, P̂ ′〉 for some P̂ ′,
and s′ is a concretization of ŝ′.
Proof. “⇒”: By an induction on the number of
transitions −→ and −→p, the proof is trivial in
the zero-step. We assume in the n-th step the
property holds. That is, for each trace s gained
in the n-th −→ step, there exists an ŝ obtained
by the n-th −→p step, and ŝϑ = s holds for
some substitution ϑ from parametric variables
to ground messages. Now, we perform a case
analysis on the n + 1 step:
( 1 ) Case 〈s, 0〉: Obviously.
( 2 ) Case 〈s, a(x).P 〉: If 〈s, a(x).P 〉 −→

〈s.a(M), P{M/x}〉, then the type of the
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ground message M can be unified with
the type τ of x. So after applying the in-
ference system in Fig. 4 to the process, x
in the corresponding parametric process
will be substituted to a parametric mes-
sage M̂ that can be unified by M . Let
ϑ′ = Uni(M, M̂), and P̂ be the abstrac-
tion of P , then we have 〈ŝ, a(M̂).P̂ 〉 −→p

〈ŝ.a(M̂), P̂ 〉 and s.a(M) = ŝ.a(M̂)(ϑ ∪
ϑ′).

( 3 ) Case 〈s, aM.P 〉: Compared with the
transition 〈s, aM.P 〉 −→ 〈s.aM, P 〉, the
parametric configuration has the tran-
sition 〈ŝ, aM̂ .P̂ 〉 −→ 〈ŝ.aM̂ , P̂ 〉. Since
each parametric variable in M̂ is already
in the domain of ϑ, we have M = M̂ϑ
and s.aM = (ŝ.aM̂)ϑ.

( 4 ) Case 〈s, let (x, y) = (M, N) in P 〉: Ob-
viously.

( 5 ) Case 〈s, case {M}L of {x}L′ in P 〉: If
〈s, case {M}L of {x}L′ in P 〉 can tran-
sit to 〈s, P 〉 where L′ = Opp(L), and
its counterpart parametric configuration
is 〈ŝ, case {M̂}L̂ of {M̂}L̂′ in P̂ 〉, then
the parametric variables in L̂ and L̂′ are
in the domain of ϑ. Thus L = L̂ϑ
and L′ = L̂′ϑ. So sϑ = (ŝθ̂)ϑ where
θ̂ = Uni(L̂, Opp(L̂′)).

( 6 ) Case 〈s, [M = M ]P 〉: If 〈s, [M =
M ]P 〉 −→ 〈s, P 〉 and its counterpart con-
figuration is 〈ŝ, [M̂ = M̂ ′]P̂ 〉, then the
parametric variables in M̂ and M̂ ′ are in
the domain of ϑ, and M̂ϑ = M̂ ′ϑ = M .
Thus if θ̂ = Uni(M̂, M̂ ′), then θ̂ ⊆ ϑ
since the θ̂ is the most general unifier of
M̂ and M̂ ′ and ϑ is a unifier of them. So
we have sϑ = (ŝθ̂)ϑ.

( 7 ) 〈s, (νx : A)P 〉: Then we have 〈s, (νx :
A)P 〉 −→ 〈s, P{m/x}〉 for each m ∈ A.
Its counterpart configuration is 〈ŝ, (νx̂ :
A)P̂ 〉 and s = ŝ(ϑ ∪ {m/x̂}).

( 8 ) Case 〈s, P‖Q〉: Obviously.
“⇐”: By an induction on the number of tran-

sitions −→p and −→, the proof is trivial in the
zero-step. We assume in the n-th step the prop-
erty holds, that is, for each parametric trace ŝ
gained by the n-th −→p step, if there exists
a substitution ϑ from parametric variables to
ground messages, and a trace s that satisfies
s = ŝϑ, then s can be obtained by the n-th step
of −→. Now, we perform a case analysis on the
n + 1-th step:
( 1 ) Case 〈ŝ, 0〉: obviously.

( 2 ) Case 〈ŝ, a(M̂).P̂ 〉: If there exists a step
in which 〈ŝ, a(M̂).P̂ 〉 −→p 〈ŝ.a(M̂), P̂ 〉,
and a ground substitution ϑ where ŝϑ
is a trace, then M̂ϑ is a ground mes-
sage which can be deduced by sϑ, and its
type can be unified by the type of x be-
cause of the inference system in Fig. 4. So
〈s, a(x).P 〉 −→ 〈s.a(M̂ϑ), P{M̂ϑ/x}〉.

( 3 ) Case 〈ŝ, aM̂ .P̂ 〉: We have 〈ŝ, aM̂ .P̂ 〉−→p

〈ŝ.aM̂ , P̂ 〉. Note that there exists a
ground substitution ϑ, and there do
not exist any fresh parametric variables
in M̂ due to Output rule in the in-
ference system in Fig. 4, so we have
〈ŝϑ, aM̂ϑ.P 〉 −→ 〈(ŝ.aM̂)ϑ, P 〉.

( 4 ) Case 〈ŝ, let (M̂, N̂) = (M̂, N̂) in P̂ 〉: Ob-
viously.

( 5 ) Case 〈ŝ, case {M̂}L̂ of {M̂}L̂′ in P̂ 〉: We
have 〈ŝ, case {M̂}L̂ of {M̂}L̂′ in P̂ 〉 −→p

〈ŝθ̂, P̂ θ̂〉, where θ̂ = Uni(L̂, Opp(L̂′)), and
there exists a substitution ϑ. So in ŝθ̂,
L̂θ̂ = Opp(L̂′θ̂). Furthermore, in the in-
ference system in Fig. 4, Dec rule does
not introduce any new parametric vari-
ables in L̂ and L̂′, then L̂θ̂ϑ = Opp(L̂′θ̂ϑ)
and thus the counterpart transition can
be performed.

( 6 ) Case 〈ŝ, [M̂ = M̂ ′]P̂ 〉: cf. the former
case analysis, after applying the substi-
tution θ̂ = Uni(M̂, M̂ ′) to both the para-
metric trace and process, M̂ θ̂ = M̂ ′θ̂
will be the same, and there do not ex-
ist any new parametric variables in them.
By applying the ground substitution ϑ,
M̂ θ̂ϑ = M̂ ′θ̂ϑ. Thus the counterpart
transition will be performed successfully.

( 7 ) The last two cases, New and Composi-
tion, are obvious.

4.3 Satisfiable Normal Form
Theorem 2 shows that each trace in a con-

crete system has an abstraction in its paramet-
ric system. However, a parametric trace may
not have concretizations. Let’s take a simple
example to show the reason for the divergence.
Example 2. Consider a naive protocol:

A −→ B : {A, M}KAB

In its parametric system, there exists a para-
metric trace b1({A, x̂}k[A,B]), while in its con-
crete system, since k[A, B] was not leaked in
the environment, before A sends the message
{A, M}k[A,B], B cannot accept any message en-
crypted by k[A, B]. Thus, the parametric trace
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b1({A, x̂}k[A,B]) has no concretizations.
We name a message like {A, x̂}k[A,B] a rigid

message. Intuitively interpreting, a rigid mes-
sage is the pattern of a requirement in an input
action. The requirement can only be satisfied
by the messages generated by a proper prin-
cipal, not by intruders. These messages are
contained in an output action of a paramet-
ric trace. If there are no appropriate messages
to satisfy the requirement, then the parametric
trace has no concretizations. The definition of
a rigid message is as follows:
Definition 3 (Rigid message). Given a
parametric trace ŝ = ŝ′.a(M̂).ŝ′′, {N̂}L̂ ∈ M̂
is a rigid message if the following conditions
are satisfied:
• L̂ is a ground binder, and there exists a

name, a binder or a rigid message in N̂ ;
• If L̂ is a shared key, then ŝ′ �� L̂ and ŝ′ ��
{N̂}L̂;

• If L̂ is a private key, then there exists some
rigid message, or at least one name or
binder in N̂ cannot be deduced by the ŝ′,
and ŝ′ �� {N̂}Opp(L̂);

• If L̂ is a public key, then ŝ′ �� Opp(L̂) and
ŝ′ �� {N̂}Opp(L̂).

Some researchers also regard an encrypted
message where a variable is encrypted by
shared key as a rigid message 2), for ex-
ample, to represent a protocol through
which A sends to B an encrypted message,
{M}k[A,B]. One of the parametric traces will
be a1{M}k[A,B].b1({x̂}k[A,B]). It seems x̂ can
only be substituted by M , and thus {x̂}k[A,B]

is a rigid message. However, the communicated
messages are nothing but bit streams in the net-
work. In such a case, any bit stream with the
same length as {M}k[A,B] can fake the message,
since without comparing some plain message to
other messages already known, B cannot distin-
guish whether the plain message will be mean-
ingful after decrypting the message he receives.
So in our definition, {x̂}k[A,B] is not a rigid mes-
sage.

A parametric trace with a rigid message needs
to be further substituted by trying to unify the
rigid message to the messages in output actions
of its prefix parametric traces. Such unification
procedures will terminate because each rigid
message can only be unified by the irreducible
messages in some output actions of its prefix
parametric trace, and the number of these mes-
sages is finite. We name these messages ele-

mentary messages , and use el(ŝ) to represent
the set of elementary messages in ŝ. Here is the
definition of el(ŝ).
Definition 4 (Elementary messages). Let
Û be a set of parametric messages, dec(Û) is a
minimal set that satisfies
• Û ⊆ dec(Û);
• If (M̂, N̂) ∈ dec(Û), then M̂, N̂ ∈ dec(Û);
• If {M̂}L̂ ∈ dec(Û), L̂ is ground, and

Opp(L̂) ∈ dec(Û), then M̂, L̂ ∈ dec(Û);
• If {M̂}L̂ ∈ dec(Û), and L̂ is not ground,

then M̂ ∈ dec(Û).
Given a parametric trace ŝ, let out(ŝ) be the set
of all parametric messages in output actions of
ŝ, then el(ŝ) is the set of minimal terms with
respect to the subterm relation in dec(out(ŝ)).

Given a parametric trace ŝ and a parametric
message N̂ , we say N̂ is ρ̂-unifiable in ŝ, if there
exists N̂ ′ ∈ el(ŝ) such that ρ̂ = Uni(N̂ , N̂ ′).
A parametric trace deductive relation between
two parametric traces, ŝ � ŝ′ is defined as fol-
lows:
Definition 5 (Deductive relation). Let �
be the least binary relation of two parametric
traces and ŝ be a parametric trace such that ŝ =
ŝ1.a(M̂).ŝ2. If there exists a rigid message N̂
in M̂ such that N̂ �∈ el(ŝ1), and N̂ is ρ̂-unifiable
in ŝ1, then ŝ� ŝρ̂.

For two parametric traces ŝ and ŝ′, if ŝ�∗ ŝ′
and there is no ŝ′′ that satisfies ŝ′ � ŝ′′, we
name ŝ′ the normal form of ŝ. The set of normal
forms of ŝ is denoted by nf�(ŝ).
Remark 1. Given a parametric trace ŝ,
nf�(ŝ) is finite.
Example 3. One of the parametric traces gen-
erated by the Abadi-Gordon protocol described
in Subsection 3.4 is as follows. By the deduc-
tive relation, it has deduced to a normal form.

a1(A, {x̂1, k[A, x̂1]}k[A,S]).
a2(A, {A, M}k[A,x̂1]).
s1(x̂, {ŷ, ẑ}k[x̂,S]).

s2{x̂, ẑ}k[ŷ,S].b1({A, t̂1}k[B,S]).
b2(A, {A, ŵ′′

1}t̂1).acc (A, {A, ŵ′′
1}t̂1)

�
a1(A, {x̂1, k[A, x̂1]}k[A,S]).
a2(A, {A, M}k[A,x̂1]).
s1(A, {B, ẑ}k[A,S]).
s2{A, ẑ}k[B,S].b1({A, ẑ}k[B,S]).
b2(A, {A, ŵ′′

1}ẑ).acc (A, {A, ŵ′′
1}ẑ)

�
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a1(A, {B, k[A, B]}k[A,S]).
a2(A, {A, M}k[A,B]).
s1(A, {B, k[A, B]}k[A,S]).
s2{A, k[A, B]}k[B,S].

b1({A, k[A, B]}k[B,S]).b2(A, {A, ŵ′′
1}k[A,B]).

acc (A, {A, ŵ′′
1}k[A,B])

�
a1(A, {B, k[A, B]}k[A,S]).
a2(A, {A, M}k[A,B]).
s1(A, {B, k[A, B]}k[A,S]).
s2{A, k[A, B]}k[B,S].

b1({A, k[A, B]}k[B,S]).b2(A, {A, M}k[A,B]).
acc (A, {A, M}k[A,B])

By the following lemma, we can see that a
concretization of a parametric trace ŝ is still
the concretization of ŝ′ if ŝ � ŝ′. Thus, to de-
cide whether a parametric trace has concretiza-
tions just requires checking whether there ex-
ists some parametric trace in its nf�(ŝ) that
has concretizations.
Lemma 2. If ŝ is a parametric trace, and s is
a concretization satisfying s = ŝϑ where ϑ is a
concretized ground substitution, then ŝ is either
a normal form, or there exists an ŝ′ such that
ŝ� ŝ′ with ŝϑ = ŝ′ϑ.
Proof. Let ŝ = ŝ′.a(M̂).ŝ′′. If ŝ is not a normal
form, there exists some rigid message {N̂}L̂ in
M̂ , such that {N̂}L̂ �∈ el(ŝ′). Since s = ŝϑ

and s is a trace, and thus ŝ′ϑ � M̂ϑ, then
{N̂}L̂ϑ ∈ el(ŝ′ϑ). By the definition of a rigid
message, L̂ �∈ el(ŝ′), and thus L̂ϑ �∈ el(ŝ′)ϑ.
Since {N̂}L̂ϑ ∈ el(ŝ′ϑ) = el(ŝ′)ϑ, there exists
{N̂ ′}L̂ ∈ el(ŝ′) such that {N̂}L̂ϑ = {N̂ ′}L̂ϑ.
Thus {N̂}L̂ and {N̂ ′}L̂ are unifiable. Let
ρ̂ = Uni({N̂}L̂, {N̂ ′}L̂), then ŝ � ŝρ̂. Since
{N̂}L̂ϑ = {N̂ ′}L̂ϑ, each corresponding para-
metric variable in two messages will be as-
signed to the same ground message. Thus,
ŝϑ = ŝρ̂ϑ.
Lemma 3. Let ŝ be a parametric trace, and
ŝ′ be a normal form in nf�(ŝ). ŝ′ has a con-
cretization, if and only if, for each decomposi-
tion ŝ′ = ŝ′1.a(M̂).ŝ′2,
• each rigid message N̂ in M̂ satisfies N̂ ∈

el(ŝ′1), and
• each name n, and ground binder m[Ñ ] in M̂

in P̂a satisfies n, m[Ñ ] ∈ el(ŝ′1), where P̂a is
the process containing label a.

Proof. “⇒”: Prove by contradiction. Assume
a normal form ŝ′ has concretizations s such that

s = ŝ′ϑ. If ŝ′ does not satisfy the first re-
quirement, there exists at least one rigid mes-
sage {N̂}L in ŝ′ that is not ρ̂-unifiable in its
prefix ŝ′1. Thus {N̂}Lϑ �∈ el(ŝ′1)ϑ. By def-
inition of a rigid message, ŝ′1ϑ �� L, then
ŝ′1ϑ �� {N̂}Lϑ. This contradicts the definition
of a trace. If ŝ′ does not satisfy the second re-
quirement, that is, there exists either a name
n, or a ground binder m[Ñ ] in M̂ that is local in
P̂a and n, m[Ñ ] ∈ el(ŝ′1). Then ŝ′1ϑ �� n, m[Ñ ],
and thus ŝ′1ϑ �� M̂ϑ. This again contradicts the
definition of a trace.

“⇐”: Since the first occurrence of a para-
metric variable is in an input action, let ϑ be
an arbitrary concretized ground substitution
that assigns each parametric variable in ŝ′ to
a name in EN , then for each decomposition
ŝ′ϑ = ŝ′1ϑ.a(M̂ϑ).ŝ′2ϑ, ŝ′1ϑ � M̂ϑ is satisfiable.
Thus ŝ′ϑ is a trace, and also a concretization of
ŝ′

We name a normal form of ŝ that satisfies
the requirements in Lemma 3 a satisfiable nor-
mal form, and use snf�(ŝ) to denote the set of
satisfiable normal forms of ŝ. Since snf�(ŝ) ⊆
nf�(ŝ), the set is finite.
Remark 2. Given a parametric trace ŝ,
snf�(ŝ) is finite.

The following theorem shows that a paramet-
ric trace has a concretization if snf�(ŝ) �= ∅.
Lemma 4. Let ŝ be a parametric trace, and
s be a trace. s is a concretization of ŝ if and
only if s is a concretization of some ŝ′ with ŝ′ ∈
snf�(ŝ).
Proof. “⇒” If s is a concretization of ŝ, then
there exists a concretized ground substitution ϑ
with s = ŝϑ. By Lemma 2 we can get either ŝ
is a normal form or ŝ can be deduce to a para-
metric trace ŝ′ by � such that s = ŝ′ϑ. If ŝ is
a normal form and it has a concretization s, so
ŝ is also a satisfiable normal form according to
Lemma 3 . If ŝ is not a normal form, the num-
ber of rigid messages in ŝ is finite, so ŝϑ = ŝ′ϑ,
where ŝ′ is a normal form, by repeatedly apply-
ing lemma 2. Since ŝ′ has the concretization s,
ŝ′ ∈ snf�(ŝ).

“⇐” If s is a concretization of the satisfiable
normal form ŝ′ such that ŝ′ ∈ snf�(ŝ), we have
s = ŝ′ϑ for some concretized ground substitu-
tion ϑ. ŝ′ is a normal form of ŝ, so ŝ′ = ŝρ̂ for
some ρ̂, in which s = ŝ′ϑ = ŝρ̂ϑ. Thus s is a
concretization of ŝ.
Theorem 3. A parametric trace ŝ has a con-
cretization if and only if snf�(ŝ) �= ∅.
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The theorem is a corollary of Lemma 4.

5. Representing and Checking Secu-
rity Properties

The security properties, such as secrecy and
authentication, can be defined in a concrete sys-
tem, and be detected equivalently in the corre-
sponding parametric system. In Subsection 5.1,
we propose two definitions in the concrete sys-
tem for secrecy and authentication properties,
then characterize how to define secrecy and
authentication for NSPK protocol (described
in Section 2) and Abadi-Gordon protocol (de-
scribed in Subsection 3.4), respectively. In Sub-
section 5.2, we interpret how to detect these
properties in the parametric system, and prove
the methods are equivalent to those defined in
the corresponding concrete system.

5.1 Representing the Security Proper-
ties

5.1.1 Secrecy
The secrecy property intuitively means that

the environment should never learn a confiden-
tial data the principals communicate. For ex-
ample, in the Abadi-Gordon protocol described
in Subsection 3.4, a confidential datum is M ,
which should be guaranteed never to occur in
the environment without any protection. A
usual way to define the secrecy property is by
proposing a guardian to the system, checking
at any time whether a confidential datum is
leaked, as shown in Ref. 1).

In our system, the secrecy property cannot
be defined so easily, since a sender may send
a message to any possible principal, if he can-
not gain the information about his destination
from previous messages. Thus we cannot con-
firm whether the message is sent to the spe-
cific receiver we represented. In order to de-
fine the secrecy property, we will use a binder
instead of a name to represent a confidential
datum M in the Abadi-Gordon protocol, that
is, M[A, B], which means that the datum is
only shared by A and B. With this modifi-
cation, the message labeled a2 should be modi-
fied to a2(A, {A, M[A, x]}k[A,x]) in the represen-
tation of Abadi-Gordon protocol (in Subsec-
tion 3.4). The modified system is defined as
SY SAG′

. Thus we define the system with a
guardian as follows:

SYSAG
s � SYSAG′

‖check(x).0
To define the secrecy property of protocols,

we have the following definition:

Definition 6. Let α be an action and s be a
trace. We define s |= ¬α if for each ground sub-
stitution ρ from a variable to a ground message,
αρ does not occur in s. We say that a configu-
ration satisfies ¬α, denoted by 〈s, P 〉 |= ¬α, if
s′ |= ¬α for each concrete trace s′ that satisfies
〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′.

With the above definition, the secrecy prop-
erty of the Abadi-Gordon protocol can be char-
acterized as follows. Similarly, we can also
formally characterize the secrecy property of
NSPK protocol introduced in Section 2 here.
Characterization 1. [Secrecy in AG protocol ]
Given the formal description of Abadi-Gordon
protocol, it satisfies secrecy property, if
〈ε,SYSAG

s 〉 |= ¬check(M[A, B])
Characterization 2. [Secrecy in NSPK proto-
col ] Given the formal description of NSPK pro-
tocol, it satisfies secrecy property, if
〈ε,SYSNSPK

s 〉 |= ¬check(NB[A, B])
5.1.2 Authentication
The authentication property is another im-

portant security property that has been stud-
ied in security protocol analysis. We exploit an
already existing and widely used way to spec-
ify authentication properties, called correspon-
dence assertion, which was first introduced by
Woo and Lam in Ref. 6). The following method
to define authentication property comes origi-
nally from Ref. 2).
Definition 7. Let α and β be actions, with
fv(α) ⊆ fv(β), and let s be a trace. We use
s |= α ←↩ β to represent that for each ground
substitution ρ from a variable to a ground mes-
sage, if βρ occurs in s, then αρ occurs in s
before βρ. We say that a configuration satis-
fies α ←↩ β, denoted by 〈s, P 〉 |= α ←↩ β, if
s′ |= α ←↩ β for each trace s′ that satisfies
〈s, P 〉 −→∗ 〈s′, P ′〉 for some P ′.

So the authentication property of Abadi-
Gordon protocol is characterized formally as
follows. Similarly, authentication in NSPK pro-
tocol introduced in Section 2 is also character-
ized formally.
Characterization 3. [Authentication in AG
protocol ] Given the formal description of Abadi-
Gordon protocol, the sender is correctly authen-
ticated to the receiver, if
〈ε,SYSAG〉 |= a2x←↩ acc x

Characterization 4. [Authentication in NSPK
protocol ] Given the formal description of NSPK
protocol, the sender is correctly authenticated to
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the receiver, if
〈ε,SYSNSPK 〉 |= a3 x←↩ acc x

5.2 Checking the Security Properties
In order to check security properties in a

parametric system, Definition 8 and Defini-
tion 9 simulate the specifications defined in Def-
inition 6 and Definition 7. Theorem 4 and The-
orem 5 guarantee that checking these two spec-
ifications is decidable in a parametric system.

To define the secrecy property in a parametric
system, a specification that simulates the one
defined in Definition 6 is given as follows:
Definition 8. Let α be an action, and ŝ be
a parametric trace which has concretizations.
ŝ |= ¬α, if for each concretization s of ŝ,
s |= ¬α. We say that a parametric configu-
ration satisfies ¬α, denoted by 〈ŝ, P̂ 〉 |= ¬α, if
ŝ′ |= ¬α for each parametric trace ŝ′ that satis-
fies 〈ŝ, P̂ 〉 −→∗ 〈ŝ′, P̂ ′〉 for some P̂ ′.

A parametric action α is ρ̂-unifiable in a para-
metric trace ŝ if the parametric message in α
can be unified to the parametric message at-
tached to the same label as α in ŝ, and ρ̂ is the
result of the unification.
Lemma 5. ŝ is a parametric trace and ŝ |=
¬α, if and only if snf�(ŝρ̂) = ∅ when α is ρ̂-
unifiable in ŝ.
Proof. “⇒”: Prove by contradictions: If α is
ρ̂-unifiable in ŝ, and snf�(ŝρ̂) �= ∅, by Theo-
rem 3, ŝρ̂ has concretizations. We choose an ar-
bitrary concretization s that satisfies s = ŝρ̂ϑ,
and then αρ̂ϑ occurs in s and thus ŝ �|= ¬α,
which contradicts the assumption.

“⇐”: If α is ρ̂-unifiable in ŝ with snf�(ŝρ̂) =
∅, by Theorem 3, ŝρ̂ has no concretization.
Since a concretization of ŝ in which α is ρ̂-
unifiable is also a concretization of ŝρ̂, then
for each concretization s of ŝ, s |= ¬α. Thus
ŝ |= ¬α.
Theorem 4. Given a concrete configuration
〈ε, P 〉 and an action α, let P̂ be the abstraction
of P , 〈ε, P 〉 |= ¬α if and only if 〈ε, P̂ 〉 |= ¬α.

This theorem is a corollary of Theorem 2 and
Lemma 5.

By Theorem 4, the definition of the secrecy
property for a protocol (for instance, charac-
terized in Characterizations 1 and 2) can be
equivalently defined in its corresponding para-
metric system, and detected by finitely search-
ing on the satisfiable normal form set of each
parametric trace in the parametric system.

To define the authentication property in a
parametric system, a specification that simu-

lates the one defined in Definition 7 is given as
follows:
Definition 9. Let α and β be actions, with
fv(α) ⊆ fv(β), and let ŝ be a parametric trace
that has concretizations. ŝ |= α ←↩ β, if
s |= α ←↩ β for each concretization s of ŝ.
We say that a parametric configuration satis-
fies α ←↩ β, denoted by 〈ŝ, P̂ 〉 |= α ←↩ β, if
ŝ′ |= α ←↩ β for each trace ŝ′ that satisfies
〈ŝ, P̂ 〉 −→∗ 〈ŝ′, P̂ ′〉 for some P̂ ′.
Lemma 6. Given a parametric trace ŝ, ŝ |=
α ←↩ β if and only if, α is ρ̂-unifiable in ŝ,
and for each satisfiable normal form in snf�(ŝ)
satisfying ŝρ̂′, αρ̂′ρ̂ occurs before βρ̂′ρ̂ in ŝρ̂′.
Proof. “⇒”: Prove by contradictions: If α is
not ρ̂-unifiable in ŝ, then ŝ �|= α ←↩ β, which
contradicts to our assumption. Otherwise, as-
sume a satisfiable normal form ŝρ̂′ in snf�(ŝ),
and αρ̂′ρ̂ does not occur before βρ̂′ρ̂ in ŝρ̂′. Let
s′ be a concretization of ŝρ̂′ satisfying s′ = ŝρ̂′ϑ.
Thus αρ̂′ρ̂ϑ does not occur before βρ̂′ρ̂ϑ in s′,
that is, s′ �|= α ←↩ β. s′ is also the concretiza-
tion of ŝ. Thus ŝ �|= α ←↩ β, which contradicts
the assumption.

“⇐” If α is ρ̂-unifiable in ŝ, and for each sat-
isfiable normal form in snf�(ŝ) satisfying ŝρ̂′,
αρ̂′ρ̂ occurs before βρ̂′ρ̂ in ŝρ̂′, then for each
concretization satisfying ŝρ̂′ϑ, ŝρ̂′ϑ |= α ←↩ β.
By Lemma 4, the concretization is also a con-
cretization of ŝ, so ŝ |= α←↩ β.
Theorem 5. Given a concrete configuration
〈ε, P 〉 and two actions α and β with fv(α) ⊆
fv(β), let P̂ be the abstraction of P , 〈ε, P 〉 |=
α←↩ β if and only if 〈ε, P̂ 〉 |= α←↩ β.

This theorem is a corollary of Lemma 6.
By Theorem 5, the definition of the authen-

tication property for a protocol (for instance,
characterized in Characterizations 3 and 4)
can be equivalently defined in its correspond-
ing parametric system, and detected by finitely
searching on the satisfiable normal form set of
each parametric trace in the parametric system.

To distinguish a parametric trace generated
by a configuration and the one that is further
substituted during the deduction procedure to
a normal form, we name the former parametric
trace a most general parametric trace.

5.3 An Example of Attacks in Multi-
ple Sessions

In model checking the NSPK protocol, a
sender and a receiver just perform sending or
receiving actions once each, and an intruder
simultaneously communicates with the sender
and the receiver by imitating to be the sender.
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Such an attack is called a man-in-middle at-
tack . It can be detected during a session of
a protocol. However, some intruders can use
a message leaked from a previous session of a
protocol, and attack the protocol during a later
session. This kind of attack is called a replay
attack . Such an attack needs to be detected
in two sessions of the protocol. In this section,
a version of Woo-Lam protocol 7) will be ana-
lyzed as an example of how to detect such an
attack by our method. The Woo-Lam protocol
is defined flow-by-flow as follows:

A −→ B : A (1)
B −→ A : NB (2)
A −→ B : {NB}KAS

(3)
B −→ S : B, {A, {NB}KAS

}KBS
(4)

S −→ B : {NB}KBS
(5)

We will perform model checking on two sessions
of the Woo-Lam protocol. A(2) is composed
of two sessions of A, and assigns each session
a unique set of labels in order to distinguish
them. For B(2), without loss of generality, we
assume that in the second session, B is will-
ing to communicate with any principal, rather
than the specific A. S(2) is just composed of
two sessions of S. So the two-session Woo-lam
protocol is described as follows:

A(2) � a1 A.a2(xa).a3 {xa}k[A,S].0‖
a′1 A.a′2(x′

a).a′3 {x′
a}k[A,S].0

B(2) � b1(xb).[xb = A] b2NB .b3(yb).
b4 (B, {xb, yb}k[B,S]).b5(zb).case zb

of {ub}k[B,S] in [ub = NB ] acc yb.0‖
b′1(x′

b).b′2 N ′
B .b3(y′

b).
b4 (B, {x′

b, y
′
b}k[B,S]).b5(z′b).case z′b

of {u′
b}k[B,S] in [u′

b = N ′
B ]0

S � s1(xs).let (x′
s, x

′′
s ) = xs in case x′′

s

of {ys}k[x′
s,S] in let (zs, ws) = ys in

case ws of {us}k[zs,S] in
s2 {us}k[x′

s,S].0

S(2) � S‖S
SYS (2) � A(2)‖S(2)‖B(2)

We define the authentication property as fol-
lows: if the label acc occurs in a trace attached
to a message, then at least one label in a3 and
a′3 attached to the same message occurs in the
same trace before acc.
Characterization 5. [Authentication in two-
session Woo-Lam protocol ] Given the formal

description of two-session Woo-Lam protocol,
the sender is correctly authenticated to the re-
ceiver, if
〈ε,SYS (2)〉 |= (a3x ∨ a′3x)←↩ acc x

The model and the specification can be trans-
lated into a parametric system, and counterex-
amples can be detected automatically in its
parametric system. One of them is shown as
follows:

b1(A).b′1(x̂′
b).b2NB .b′2 N ′

B .b3(ŷb).
b′3({NB}k[x̂′

b
,S]).

b′4(B, {x̂′
b, {NB}k[x̂′

b
,S]}k[B,S]).

b4 (B, {A, ŷb}k[B,S]).
s1(x̂s, {ŷs, {ẑs}k[ŷs,S]}k[x̂s,S]).
s1(B, {x̂′

b, {NB}k[x̂′
b
,S]}k[B,S]).

s2 {ẑs}k[x̂s,S].s2 {NB}k[B,S].

b5({NB}k[B,S]).acc ŷb

In this counterexample, there is no action la-
beled ax, which means that an intruder can
completely imitate A. It is a bit difficult to
understand the counterexample, which actually
represents the following attack.

I(A) −→ B : A (a1)
B −→ I(A) : NB (a2)

I −→ B : I (b1)
B −→ I : N ′

B (b2)
I(A) −→ B : ŷb (a3)

B −→ S : B, {A, ŷb}KBS
(a4)

I −→ B : {NB}KIS
(b3)

B −→ S : B, {I, {NB}KIS
}KBS

(b4)
S −→ B : {NB}KBS

(a5(b5))
The reason that the attack occurs is that B

cannot distinguish which session the last mes-
sage belongs to. To refine the protocol, one
possible solution is for the server S to append
the information of B’s communication principal
in the encrypted message in the last flow 15):

S −→ B : {A, NB}KBS
(5′)

However, the modified protocol has a replay at-
tack even in a single session! A counterexample
is detected as follows:

b1(A).b2NB.b3(NB).b4 (B, {A, NB}k[B,S]).
b5({A, NB}k[B,S]).accNB

which can be interpreted as follows:
A −→ B : A (1′′)
B −→ A : NB (2′′)

I(A) −→ B : NB (3′′)
B −→ S : B, {A, NB}KBS

(4′′)
I(S) −→ B : {A, NB}KBS

(5′′)
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One of the correct modifications of Woo-Lam
protocol is in Message (3), A sends an en-
crypted message whose plain message is not
only NB but also A’s and B’s names. Such
a modification can prevent both replay attacks
we introduce above.

A −→ B : A
B −→ A : NB

A −→ B : {A, B, NB}KAS

B −→ S : B, {A, {A, B, NB}KAS
}KBS

S −→ B : {A, B, NB}KBS

6. Implementation by Maude

According to Theorems 4 and 5, we can de-
tect the specifications for security properties by
generating the satisfiable normal form set of
each parametric trace that a parametric sys-
tem for a protocol produces, then performing
model checking on each satisfiable normal form.
A satisfiable normal form is deduced on-the-
fly by applying deductive rules in Definition 5.
Thus we propose an on-the-fly model checking
method, and Maude is chosen to implement it.

Maude 8) is a language and system supporting
both equational and rewriting logic computa-
tion for a wide range of applications. The basic
units of Maude specifications are modules. In
Core Maude, there are two kinds of modules:
functional modules and system modules. Func-
tional modules define data types and operations
on them by means of equational theories whose
equations are assumed to be confluent and ter-
minating. System modules specify a model by
a rewrite theory, and the model is a transition
system with an initial term. For a finite sys-
tem, Maude search command explores all pos-
sible execution paths from the initial term for
reachable states satisfying some property.

A basic functional module mainly has four
parts: sorts, operations, variables and equa-
tions. Maude can define a sort or several sorts
each time, with the key words sort and sorts
respectively. Variables are declared with the
key words var or vars. The key word of oper-
ation is op. There are two uses of operations:
as a constructor of a sort, and as a declara-
tion of a function. [ctor] is a key attribute
of a constructor. A function can be imple-
mented by a set of equations, by key words eq
and ceq(conditional equation). The use of vari-
ables in equations does not carry actual values.
Rather, they stand for any instance of a certain
sort. Anything defined in a function module

can be defined in a system module in the same
way. Also, a system module can define a transi-
tion system by a set of rewrite laws, whose key
words are rl and crl(conditional rewrite law).

We implement each elementary definition and
function in the parametric system by functional
modules, and implement a trace generating sys-
tem by using a system module. Then we use
search command to find whether the negations
of the specifications are reachable.

There are slight differences between imple-
menting a shared-key protocol model and a
public-key protocol model, since according to
Definition 3, a shared-key rigid message is
“context-free”, while a public-key one, which
is decided in a context of parametric messages,
is “context-sensitive”. In Maude, the functions
that judge whether a message is a rigid message
are declared as follows:
op isSharedRigid : Message -> Bool .
op isPublicRigid : Message Messagelist

-> Bool .
In this section, we introduce our implemen-

tation based mainly on a shared-key protocol
system. The implementation can be naturally
encoded in a public-key system, which we have
also implemented. In the following subsections,
we first introduce some basic types, definitions
and functions used for trace system generating
and on-the-fly model checking. They are de-
fined in some functional modules. Then we
introduce a trace generating system used for
model checking, which is defined in a system
module.

6.1 Types, Definitions, and Key Func-
tions in Functional Modules

In a parametric system, types and construc-
tors of the parametric message, the paramet-
ric action (which is a 3-tuple consisting of a
label, an input/output signal, and a paramet-
ric message) and the parametric trace (which is
a list of actions) are defined in their function
modules, named MESSAGE, ACTION, and TRACE
respectively, as follows. These definitions coin-
cide with the definitions in Subsection 4.1.
sort Message .

op name : Nat -> Message [ctor] .
op px : Nat -> Message [ctor] .
op (_,_) : Message Message ->

Message [ctor] .
op {_}_ : Message Message ->

Message [ctor prec 20] .
op k[_,_] : Message Message ->

Message [ctor prec 15] .
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sort Action .
op <_,_,_> : Label IO Message ->

Action [ctor prec 23 ] .

sort Trace .
subsort Action < Trace .
op Nil : -> Trace [ctor] .
op _._ : Trace Trace ->
Trace [ctor assoc id: Nil prec 25] .

The following are some key functions used in
our system.

Decompose
According to Definition 4, an elementary

message set can be obtained by decompos-
ing each pair message and encrypted message
whose key is also in the set. We implement
a decompose function as follows. It accepts
two message lists (the latter is used for an
environment), and returns a message list. A
function elementary is defined by applying the
decompose function.
op decompose : Messagelist Messagelist

-> Messagelist .
eq decompose(nil, ML2 ) = nil .
eq decompose((MES1,MES2) # ML1,ML2)=

decompose(MES1 # MES2 #
ML1, MES1 # MES2 # ML2) .

ceq decompose({MES1}k[name(N1),
name(N2)] # ML1, ML2) =

{MES1}k[name(N1), name(N2)] #
decompose (ML1, ML2)

if not in(k[name(N1),
name(N2)], ML2) .

ceq decompose({MES1}k[name(N1),
name(N2)] # ML1, ML2) =

decompose(MES1 # ML1,
MES1 # ML2)

if in(k[name(N1), name(N2)], ML2) .
eq decompose({MES1}k[MES2, MES3] #

ML1,ML2) =
{MES1}k[MES2, MES3] #

decompose (MES1 # ML1,
MES1 # ML2)[owise] .

eq decompose(MES1 # ML1 , ML2) =
MES1 # decompose
(ML1, ML2)[owise] .

op elementary : Messagelist ->
Messagelist .

eq elementary (ML1) =
decompose (ML1, ML1) .

Unification
A unification function, unifying, is used for

unifying a rigid message and each message in

an elementary message set (defined as a list
in the implementation). A unification function
accepts two messages and returns a boolean
and a substitution. Maude does not allow the
definition of product type, so we need to de-
fine a Result type, which is a pair type of
Substitutions and Bool. For simplicity, here
we only illustrate the unification function by
proposing its base cases and some inductive
cases. Before defining the unification function,
we need an occurrence check function, oCheck,
which checks whether a parametric variable oc-
curs in a parametric message.
sort Result .
op (_,_) : Substitutions Bool ->

Result [ctor] .
op getSubstitution : Result ->

Substitutions .
op getBool : Result -> Bool .

op oCheck : Message Message -> Bool .
eq oCheck (px(X), px(X)) = true .
eq oCheck (px(X), (M1,M2)) =

oCheck(px(X), M1) or
oCheck(px(X), M2) .

eq oCheck (px(X), {M1}M2) =
oCheck(px(X), M1) or

oCheck(px(X), M2) .
eq oCheck (px(X), k[M1,M2]) =

oCheck(px(X), M1) or
oCheck(px(X), M2) .

eq oCheck (M1, M2) = false [owise] .

op unifying : Message Message ->
Result [ comm ] .

eq unifying(px(X),px(Y)) =
(X |-> px(Y), true) .

eq unifying(px(X),name(Y)) =
(X |-> name(Y), true) .

eq unifying(name(X),name(X))=
(nil, true) .

ceq unifying(px(X),(M1,M2)) =
(X |-> (M1,M2), true)

if not oCheck(px(X), (M1,M2)) .
... ...
eq unifying((M1,M2),(M3,M4))=
((getSubstitution(unifying(M1,M3)),
getSubstitution( unifying
(substitutions(M2,getSubstitution
(unifying(M1,M3))),substitutions
(M4, getSubstitution
(unifying(M1,M3)))))),
( getBool(unifying(M1,M3)) and

getBool(unifying(substitutions
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(M2, getSubstitution
(unifying(M1,M3))),

substitutions(M4,getSubstitution
(unifying(M1,M3))))))) .

... ...
eq unifying(M1,M2) =

(nil, false) [owise] .
Trace analyzing
A trace analyzing function, analyzingTrace,

is a core function of our system. It accepts a
trace and a message list as an environment of
the trace, and returns the trace’s first rigid mes-
sage, a boolean (true if there exists some rigid
message in the trace), and a message list (as an
elementary message list ready for unifying the
rigid message). The basic strategy is, the func-
tion will return the first rigid message and its
elementary message list. For the same reason
as defined in the function unifying, we need to
define a 3-tuple type as the return type.
sort Anares .
op [_,_,_] : Message Bool Messagelist

-> Anares .
op getMessage : Anares -> Message .
op getBool : Anares -> Bool .
op getMessagelist : Anares ->

Messagelist .

op analyzingTrace : Trace Messagelist
-> Anares .

eq analyzingTrace(Nil, ML1) =
[name(100), false, nil ] .

ceq analyzingTrace (< LA1 , i ,
MES1 > . TR1 , ML1 ) =

[getMesRes(getSharedRigid(MES1)),
true , ML1 ]

if getBoolRes(getSharedRigid(MES1)) .
ceq analyzingTrace(< LA1, i , MES1 >

. TR1 , ML1 ) =
analyzingTrace (TR1, ML1)

if not getBoolRes
(getSharedRigid(MES1)) .

eq analyzingTrace(< LA1, o , MES1 >
. TR1 , ML1 )=

analyzingTrace (TR1, MES1 # ML1) .
Here we do not show how to define the func-
tion getSharedRigid, which accepts a message
and returns its first rigid message and a boolean
(true if the message contains a rigid message).

6.2 Trace Generating System in a Sys-
tem Module

A trace generating system is embedded in a
system module. In the trace generating sys-
tem, there are two kinds of trace generating

rules. The first kind of rules comes from the
parametric transition relation (in Fig. 5). These
rules are specific rules for a protocol that de-
scribe behaviors of each principal in the proto-
col. We name a parametric trace generated by
these rules an original trace, which are the most
general parametric traces, that are not further
instantiated. We will illustrate these rules by
an example, as one fragment of the protocol-
specific part in the next subsection.

The second kind of rules is a common part
of each protocol, which comes from the para-
metric trace deductive relation, � (defined in
Definition 5). These rules deduce a parametric
trace to a new one by applying a substitution,
which is the result of unifying a rigid message
and an elementary message in the old paramet-
ric trace. We name a parametric trace that is
generated by these rules, and that needs to be
further substituted, a pending trace. Further-
more, we name a parametric trace which is a
satisfiable normal form of some original trace a
satisfiable trace.

We define the state of the trace generating
system as a 3-tuple, 〈tr, S, k〉, where
• tr is a parametric trace.
• S is a list of substitutions.
• k is a type of tr, where k ∈ {ot, st, pt}.

ot denotes an original trace, st denotes a
satisfiable trace and pt represents a pending
trace.

In Maude, the state is defined as follows:
sort Tracestate Tracetype State .

ops ot st pt : -> Tracetype [ctor] .
op [_] : Trace ->

Tracestate [frozen] .
op <_,_,_> : Tracestate
Substitutionlist Tracetype -> State .
Let’s specify how the parametric deductive

relation is represented in our trace generating
system. If a parametric trace is labeled pt, and
its substitution list is not empty, it will be de-
duced to a new parametric trace by applying
the first substitution in its substitution list. At
the same time, a new substitution list of the
new trace will be calculated on-the-fly by ap-
plying analyzingTrace to the new trace. Fur-
thermore, given a state, we also shrink its sub-
stitution list by removing the first substitution
so that other substitutions can be applied.
crl [sub_per_pt] : < [ TR1 ] , SUBS @

SUBLIST, pt >
=> <[substitutingTrace (TR1, SUBS)],

getSubstitutionlist(getMessage
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(analyzingTrace(substitutingTrace
(TR1, SUBS), nil)),
elementary(getMessagelist

(analyzingTrace(substitutingTrace
(TR1, SUBS), nil))), NIL), pt >

if not isSatisfiableNF
(substitutingTrace (TR1, SUBS)) .

rl [sub_dis] : < [ TR1 ] , SUBS @
SUBLIST, pt >

=> < [ TR1 ] , SUBLIST, ht > .
Furthermore, an original trace can naturally

transfer to a pending trace if it is not a sat-
isfiable normal form, and the pending trace’s
substitution list is obtained on-the-fly. An
original trace can also transfer to a satisfiable
trace if it is a satisfiable normal form (checked
by isSatisfiableNF). A pending trace can
transfer to a satisfiable trace if all rigid mes-
sages are unified, which is also checked by
isSatisfiableNF, and thus it is a satisfiable
normal form of some original trace.
crl [ot_to_pt] : < [ TR1 ],SUBLIST,ot >

=> < [ TR1 ], getSubstitutionlist
(getMessage(analyzingTrace(TR1,nil)),
elementary(getMessagelist
(analyzingTrace(TR1,nil)), NIL), pt >

if not isSatisfiableNF (TR1) .
crl [ot_to_st] : < [ TR1 ],SUBLIST,ot >

=> < [ TR1 ],NIL ,st >
if isSatisfiableNF(TR1) .

crl [pt_to_st] : < [ TR1 ] , SUBS @
SUBLIST, pt >

=>< [ substitutingTrace(TR1,SUBS) ],
NIL, st >

if isSatisfiableNF
SubstitutingTrace(TR1, SUBS)) .

The system starts with an initial state:
eq init = < [ Nil ] , NIL , ot > .
6.3 Protocol-specific Description
By our implementation, the protocol-specific

part is surprisingly short, and only contains
about fifty lines for each protocol. This part
mainly has two fragments. One is used to de-
scribe the parametric transition relation, which
is a kind of rules in the trace generating system
we introduced in Section 6.2. The other frag-
ment is used to describe the specifications, that
is, security properties of each protocol.

As defined in the parametric transition re-
lation (in Fig. 5), each action in a parametric
process can be added to the tail of its paramet-
ric trace only once. Since each label occurs only
once in one process, we will check whether an
action has been added to its parametric trace

by searching its label in the parametric trace.
For example, in the Woo-Lam protocol given in
Section 5, the first flow will be implemented as
follows:
crl [A_1] : < [ TR1 ], SUBLIST, ot >

=> < [ (TR1 . < a(1), o,
name(0) >) ], SUBLIST, ot >

if not labelinTrace (TR1, a(1)) .
crl [B_1] : < [ TR1 ], SUBLIST, ot >

=> < [ (TR1 . < b(1), i,
name(0) >) ], SUBLIST, ot >

if not labelinTrace (TR1, b(1)) .
In the trace generating system, each satisfi-

able trace represents a successful run of the pro-
tocol. So we will search whether the negation of
a specification is reachable in a satisfiable trace.
For example, the negation of the authentica-
tion property for Woo-Lam protocol defined in
Characterization 5 is represented as follows:
search [1] in WOOLAMPROTOCOL : init =>*

< [ TR1 ], NIL, st > such that not
( labelinTrace(TR1, acc)

implies (
( labelinTrace(TR1, a(3)) and
labelbefore(TR1, a(3), acc) and

equal((getLabelMessage(TR1,acc)),
(getLabelMessage(TR1,a(3))))

)
or
( labelinTrace(TR1, a’(3)) and
labelbefore (TR1,a’(3),acc) and
equal((getLabelMessage(TR1,acc)),

(getLabelMessage(TR1,a’(3))))
)
) ) .

The total protocol-specific part of the two-
session Woo-Lam protocol is about 40 lines. We
will illustrate the whole protocol-specific part
of the Yahalom protocol in Appendix A.2 as
another example.

6.4 Experimental Result
We have focused on the authentication prop-

erty, and performed several tests for some secu-
rity protocols described in the security proto-
cols repository ☆. The results are summarized
in Table 1. In the table, “Woo-lam protocol”
is what we introduced in Subsection 5.3, (1)-
(5), and “Woo-lam protocol*” is a variation de-
scribed in Subsection 5.3, (1)-(4), (5′). Further-
more, the number in the column “sessions” is

☆ The descriptions of these protocols come from the
following security protocols repository,
http://www.lsv.ens-cachan.fr/spore/table.html.
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Table 1 Experimental results.

protocols session protocol spec. states times (ms) flaws

NSPK protocol 1 20 46 130 detected
Woo-Lam protocol* 1 25 168 160 detected
fixed NSPK protocol 1 20 164 637 undetected
fixed NSPK protocol ‡ 2 29 16,468 243,460 undetected
Abadi-Gordon protocol 1 20 238 713 undetected
Abadi-Gordon protocol † 2 30 4,802 30,499 undetected
Yahalom protocol 1 26 279 2,111 undetected
Yahalom protocol ‡ 2 36 536 1,039 detected
Otway-Ree protocol 1 25 461 8,185 undetected
Otway-Ree protocol ‡ 2 34 2,164 22,316 detected
Woo-lam protocol 1 25 552 2460 undetected
Woo-lam protocol † 2 51 105,423 476,507 detected

the number of sessions we have modeled when
checking the properties. In the column “pro-
tocol spec.”, the number means the line num-
ber for a protocol specific part. Besides that,
each Maude file also contains about 330 lines
for a common part. The number in the column
“states” means the states generated by the sys-
tem, and the column “times” shows how many
milliseconds that checking the protocol takes;
In the column “flaws”, “detected” means we
detected an attack, while“undetected” means
in the number of sessions, we did not detect
any attacks.

There are two possibilities when represent-
ing a two-session protocol. One possibility is
that, each principal acts in the same role (i.e., a
sender or a receiver). This case actually means
that a principal initiates two sessions by com-
municating with an unlimited number of prin-
cipals, because of the usage of binders. The
second possibility is that, each principal acts
in two different roles in the two sessions. This
case represents that each of two different princi-
pals initiates a session by communicating with
an unlimited number of principals, respectively.
In both cases, one principal should intend to re-
ceive messages from the other in one of two ses-
sions. Otherwise the two principals may have
no communications with each other, and thus
we could not define any security properties be-
tween them. In Table 1, a two-session protocol
in which each principal acts in the same role is
labeled by †, and in different roles is labeled by
‡.

The tests were performed on a Pentium
1.4GHz, 1.5 G memory PC, under Windows
XP. By the experimental results, we could find
that a protocol that is secure in one session is
not necessarily really secure. For instance, we
could not detect any flaws in one-session Ya-
halom protocol, Otway-Ree protocol, and Woo-

Lam protocol, while in the two-session of these
protocols, flaws do exist. Furthermore, the
checking is quite time-consuming when number
of sessions increases. By our experience, check-
ing a protocol with more than three sessions
often takes several hours.

7. Related Work

Trace analysis is one of the formal approaches
in analyzing security protocols, both in the
model checking and in theorem proving.

Gavin Lowe first used trace analysis on pro-
cess calculus CSP, and implemented a model-
checker FDR to discover numerous attacks 3),9).
In his work, the intruder is represented as a re-
cursive process. He restricts the state space to
be finite by imposing upper-bounds upon mes-
sages the intruder generates, and also upon the
principals in the network.

Many of our ideas are inspired by Michele
Boreale’s symbolic approach 2). In his research,
he restricted the number of principals and in-
truders, and represented that each principal ex-
plicitly communicates with an intruder. Our
model finitely represents an unlimited number
of principals and intruders in the network. This
is more powerful than his.

Trace analysis is also used in theorem prov-
ing. Paulson, et al. first defined the traces and
the security properties inductively, and proved
whether a security protocol satisfies a property
by Isabelle/HOL 10),11). The approach need not
restrict the number of traces to be finite, how-
ever it cannot be fully automated.

Several other research papers also used pro-
cess calculi: M. Abadi and A. Gordon devel-
oped the Spi calculus with primitives repre-
senting the cryptographic operations of encryp-
tion and decryption. They used some equiv-
alences 5),12) to define the security properties.
Unfortunately, these equivalences are usually
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undecidable. Another approach based on pro-
cess calculi was a static analysis based on type
system 13)∼15). The limitation of this method
is that the intruder’s model is weaker than the
Dolev-Yao model, assuming that the intruder is
partially trusted.

Basin, et al. proposed an On-the-fly model
checking method (OFMC) 16). They used a
high-level language, HLPSL, to represent a pro-
tocol, which then translates automatically to a
low-level language, IF. An intruder’s messages
are instantiated when necessary, which is simi-
lar to the occasion when a rigid message occurs
in our model. In their work, an intruder’s role is
explicitly assigned, for instance, as an initiator.
This is flexible and efficient, but the process
needs to be performed several times to insure
that in no role can an intruder attack the pro-
tocol. In our work, we do not explicitly define
an intruder, and we have to check all situations
in which intruders act in different roles at one
time.

The strand space formalism 17),18) is a frame-
work for studying security protocol analysis.
There are some similarities between our para-
metric trace and the strand. The difference is
that in Strand Space, intruder abilities are ex-
plicitly represented as some strands.

It has been shown by Heather, et al. in
Ref. 19) that a tag system can prevent type
flaw attacks. Their tag definition is similar to
our type system. Their work infers that the
depth of ground messages can be bounded in
the search for an attack, which yields decidabil-
ity by exhaustive search. Our conclusion is the
same as theirs.

Recently, a more general and efficient verifi-
cation approach based on Horn clauses and res-
olution has been proposed by Blanchet, et al. in
Refs. 20) and 21). It verifies the properties in
infinite sessions of a protocol with infinite prin-
cipals by some approximations on both sessions
and principals. The method sometimes does
not terminate, as the author noted. In Ref. 21),
a tag system that assigns each encrypted mes-
sage a unique tag is added to the system to
make each run terminate. Then the authors
proved that security of a tagged protocol does
not imply the security of an untagged version.
Our model avoids recursive executions of pro-
tocols by restricting replication, and thus the
model terminates.

The research of Comon-Lundh and Cortier 22)

is also based on the Horn clauses. They proved

that it is sufficient to consider only a bounded
number of principals when verifying some secu-
rity properties. They distinguish intruders as
compromised principals and eavesdroppers, re-
ducing a system with infinite principals to one
with finite principals.

8. Conclusion

In this paper, a finite parametric model is
proposed by restricting/abstracting the infinite
factors of security protocols. Security prop-
erties are checked automatically by on-the-
fly model checking. This model checking is
sound and complete under the restriction of the
bounded number of sessions, and implemented
on Maude. To describe security protocols, we
set a typed process calculus is in which new syn-
tax, the binder and the range are introduced. A
deductive environment is used to represent in-
truders based on Dolev-Yao model 4). The cal-
culus avoids recursive operations, so that only
bounded sessions of a protocol are considered.

The idea of ranges and binders is, that a
principal is assumed to communicate with any
possible principal with the same message if he
does not know his intended destination. For
instance, a principal A sending a message M
encrypted by a shared key is represented as
A � (νx : I)a1 {M}k[A,x], where (νx : I) is
a range that binds x within the infinite set I,
and k[A, x] is a binder to represent arbitrary
shared keys A has. An approximation that A
sends the same message M randomly to differ-
ent principals is used.

The idea of parametric messages is, that each
sub-expression whose type is a type variable will
be marked with a parametric variable that will
not need to be further instantiated. For ex-
ample, consider a principal A such that A �
a1(x). let (y, z) = x in [z = m] 0, and any mes-
sage can be instantiated to y because of its type
α, which results in infinite branches. Now y is
marked as a parametric variable ŷ that will not
be instantiated, thus the number of branches
becomes finite. With the inference rules given
in Fig. 4, an original process is translated into
a parametric process based on its type. Traces
then were reduced to be finitely many paramet-
ric traces.

In a parametric system, if a parametric trace
can deduce to a satisfiable normal form, then
it has a corresponding trace, and the deduction
procedure is decided on-the-fly. For this rea-
son, we used on-the-fly model checking and im-
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plemented the parametric system using Maude.
The method successfully detected the flaws of
several security protocols automatically.

Our future work will be: First, to develop
a translator from an original protocol descrip-
tion in the process calculus to the Maude de-
scription. Second, to perform model check-
ing on other security properties, such as non-
repudiation, fairness, anonymity. Third, to ex-
tend with pushdown model checking to cover
an extension of the calculus with the recursive
process.
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Appendix

A.1 Type Inference Algorithm
Unify(τ, τ ′) = (θ, σ)

( 1 ) Unify(α, τ ′)=({τ ′/α}, τ ′), if FTV (τ ′, α).
( 2 ) Unify(τ, τ ) = (Id, τ ).
( 3 ) let Unify(τ1, τ

′
1) = (θ1, σ1),

Unify(τ2θ1, τ
′
2θ1) = (θ2, σ2)

in
Unify(τ1 ∗ τ2, τ

′
1 ∗ τ ′

2) = (θ1θ2, σ1θ2 ∗ σ2).
( 4 ) let Unify(τ1, τ

′
1) = (θ, σ1), σ = 
∗σ1

in
Unify(
∗τ1,
∗τ ′

1) = (θ, σ) (
∗ ∈
{
+,
−,
,
?}).

( 5 ) let Unify(τ1, τ
′
1) = (θ1, σ1),

Unify(τ2θ1, τ
′
2θ1) = (θ2, σ2)

in
Unify(τ1+τ2, τ

′
1+τ ′

2) = (θ1θ2, σ1θ2+σ2).
( 6 ) let Unify(τ1, τ

′
1) = (θ1, σ1),

Unify(τ2θ1, τ
′
2θ1) = (θ2, σ2)

in
Unify(τ1 → τ2, τ

′
1 → τ ′

2) = (θ1θ2, σ1θ2 →
σ2).

( 7 ) raise error.
Infer(Γ, e) = (θ, τ )

( 1 ) Infer(Γ, x) = (Id, τ ) where (x, τ) ∈ Γ.
( 2 ) Infer(Γ, n) = (Id, b) where b =

TypeOf(n).
( 3 ) Let Infer(Γ, M̃) = (θ1, τ1 ∗ . . . ∗ τn)

in Infer(Γ, m[M̃ ]) = (θ1, σ[τ1, . . . , τn])
where σ = TypeOf(m)

( 4 ) Let Infer(Γ, M) = (θ1, τ1),
Infer(Γθ1, N) = (θ2, τ2)
in Infer(Γ, (M, N)) = (θ1θ2, (τ1θ2) ∗ τ2).

( 5 ) Let Infer(Γ, M) = (θ1, τ1),
Infer(Γθ1, L) = (θ2, τ2), Unify(τ2, k

∗)=
(ϑ, k∗)
in Infer(Γ, {M}L) = (θ1θ2ϑ,
∗(τ1θ2))

where 
∗(τ1θ2) =





(τ1θ2) k∗ = k

+(τ1θ2) k∗ = k+


−(τ1θ2) k∗ = k−

?(τ1θ2) k∗ = α

.

( 6 ) Infer(Γ,0) = (Id, unit).

( 7 ) Let Infer(Γ ∪ {(x, τ1)}, P ) = (θ, τ2) in
Infer(Γ, (νx : A)P ) = (θ2, τ2) where
τ1 = TypeOf(A).

( 8 ) Let Infer(Γ ∪ {(x, α)}, P ) = (θ, τ ), in
Infer(Γ, a(x).P ) = (θ, αθ → τ ), where
∀τ.(x′, τ ) ∈ Γ, FTV (τ, α) = True.

( 9 ) Let Infer(Γ, P ) = (θ, τ )
in Infer(Γ, aM.P ) = (θ, τ ).

( 10 ) Let Infer(Γ, M) = (θ1, τ1), Unify(α ∗
β, τ1) = (ϑ, 
),
Infer(Γθ1ϑ ∪ {(x, α), (y, β)}ϑ, P ) =
(θ2, τ2)
in Infer(Γ, let (x, y) = M in P ) =
(θ1ϑθ2, τ2) where ∀τ.(x′, τ ) ∈ Γ,
FTV (τ, α) = FTV (τ, β) = True.

( 11 ) Let Infer(Γ, M) = (θ1, τ1),
Infer(Γθ1, L) = (θ2, τ2), Unify(
∗α,
τ1θ2) = (ϑ, 
), Infer(Γθ1θ2ϑ∪{(x, α)}ϑ,
P ) = (θ3, τ3) in Infer(Γ, case M of {x}L
in P ) = (θ1θ2ϑθ3, τ3) where ∀τ.(x′, τ ) ∈
Γ, FTV (τ, α) = True, and


∗α =





(τ1θ2) τ2 = k

+(τ1θ2) τ2 = k−

−(τ1θ2) τ2 = k+


?(τ1θ2) τ2 = β

.

( 12 ) Let Infer(Γ, M) = (θ1, τ1),
Infer(Γθ1, N) = (θ2, τ2),
Unify(τ1θ2, τ2) = (ϑ, 
)
Infer(Γθ1θ2
, P ) = (θ3, τ3)
in Infer(Γ, [M = N ]P ) = (θ1θ2ϑθ3, τ3).

( 13 ) Let Infer(Γ, P ) = (θ1, τ1),
Infer(Γθ1, Q) = (θ2, τ2)
in Infer(Γ, P‖Q) = (θ1θ2, τ1θ2 + τ2).

A.2 The Protocol-specific Part of the
Yahalom Protocol

The protocol-specific part of the Yahalom
protocol in the source code mainly has two code
fragments. One is to describe behaviors of each
principal in Yahalom protocol, which is repre-
sented as follows:

crl [A_1] : < [ TR1 ], SUBLIST, ot >
=>

< [ (TR1 . < a(1), o, (name(0),
name(10) ) >) ], SUBLIST, ot >

if not labelinTrace (TR1, a(1)) .
crl [A_2] : < [ TR1 ], SUBLIST, ot >

=>
< [ TR1 . < a(2), i, ((px(0),

{(name(1), px(1)), name(10)}
k[name(1),name(0)]), px(2)) > .

< a(3),o,(px(2), {px(0)}px(1)) > ],
SUBLIST, ot >

if labelinTrace(TR1, a(1)) and
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not labelinTrace(TR1,a(2)) .
crl [A’_1] : < [ TR1 ],SUBLIST,ot >

=>
< [ (TR1 . < a’(1), o, (name(30),

name(39) ) >) ], SUBLIST, ot >
if not labelinTrace(TR1,a’(1)) .

crl [A’_2] :< [ TR1 ],SUBLIST, ot >
=>

< [ TR1 . < a’(2), i, ((px(30),
{(name(31), px(31)), name(39)}
k[name(31),name(30)]),px(32)) > .
< a’(3), o, (px(32),
{px(30)}px(31)) > ],SUBLIST,ot >
if labelinTrace(TR1, a’(1)) and

not labelinTrace(TR1,a’(2)) .
crl [B_1] :< [ TR1 ],SUBLIST,ot >

=>
< [ (TR1 . < b(1), i,

(name(0), px(10)) > .
< b(2), o, ((name(1),name(11)),

{name(0),px(10)}k[name(1),name(2)])
> )], SUBLIST, ot >

if not labelinTrace (TR1,b(1)) .
crl [B_3] : < [ TR1 ],SUBLIST,ot >

=>
< [ (TR1 . < b(3), i,
({(name(0), px(11)), name(11)}

k[name(1),name(2)],
{name(11)}px(11) ) > .

< acc, o, ({(name(0), px(11)),
name(11)}k[name(1),name(2)],

{name(11)}px(11) ) >) ],SUBLIST,ot >
if labelinTrace(TR1, b(1)) and

labelinTrace(TR1, b(2)) and
not labelinTrace (TR1, b(3)) .

crl [B’_1]: < [ TR1 ],SUBLIST,ot >
=>

< [ (TR1 . < b’(1), i,
(px(27), px(20)) > .

< b’(2), o, ((name(1),name(21)),
{px(27), px(20)}k[name(1),name(2)])

> )], SUBLIST, ot >
if not labelinTrace (TR1, b’(1)) .
crl [B’_3] : < [ TR1 ],SUBLIST,ot >

=>
< [ (TR1 . < b’(3), i,

({(px(27), px(21)), name(21)}
k[name(1),name(2)],{name(21)}px(21))

> ) ], SUBLIST, ot >
if labelinTrace (TR1, b’(1)) and

labelinTrace (TR1, b’(2)) and
not labelinTrace (TR1, b’(3)) .

crl [S_1] : < [ TR1 ],SUBLIST,ot >=>
< [ (TR1 . < s(1),i,((px(20),px(21)),
{px(22),px(23)}k[px(20),name(2)]) > .

< s(2), o,((px(21),{(px(20),
k[name(0),name(1)]),px(23)}
k[px(22),name(2)]),{(px(22),

k[name(0),name(1)]),px(21)}
k[px(20),name(2)]) >) ],SUBLIST, ot >

if not labelinTrace (TR1, s(1)) .
The other fragment is to describe the au-

thentication specification for Yahalom protocol,
which is represented as follows:
search [1] in YAHALOMPROTOCOL :init=>*

< [ TR1 ], NIL, st > such that not
( labelinTrace(TR1, acc) implies
(
( (labelinTrace(TR1, a(3)) and

labelbefore (TR1, a(3),acc))
and

equal((getLabelMessage(TR1,acc)),
(getLabelMessage(TR1,a(3)))))

)
) .
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