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Abstract

DNA molecules are wrapped around histone octamers to
form nucleosome structures whose occupancy and histone
modification states profoundly influence the gene expres-
sion. Depending on the DNA segment that a nuleosome in-
corporated, its histone proteins exihibit paticular modifica-
tions by added some functional chemical groups to specific
amino acids. The key approach up to now to determining the
DNA locations ofhistone occupancy as well as histone mod-
ifications is an experimental technique called ChiP-Chip, or
Chromatin Immunoprecipitation on Microarray Chip. This
experimental technique has some disadvantages such as it
is tedious, wastes time and money, produces noise, and can-
not provide results at an arbitrarily high resolution, espe-
cially with large genomes like human's. We have developed
a computational method to determine qualitatively histone-
occupied as well as acetylation and methylation locations
in DNA sequences. The method is based on support vector
machines (SVMs) to learn models from training data sets
that discriminate between areas with high and low levels of
histone occupancy, acetylation or methylation. Our com-
putational method can give quickly the prediction at any
position in a DNA sequence based on the content and con-
text ofthe subsequence around that position. The prediction
results on the yeast genome by three-fold cross-validation
showed high accuracy and were consistent with the ones
from experimental methods. Moreover, SVM-classification
models in our method can present genetic preferences of
DNA areas that have high modification levels.
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1 INTRODUCTION

Eukaryotic genomes are packaged into nucleosomes that
consist of 145-147 base pairs of DNA wrapped around a
histone octamer (two each of histones H2A, H2B, H3 and
H4) [13]. Histone octamers are identical for all nucleo-
somes in all DNA sequences of a species, but the charac-
teristics (for example, acetylation and methylation) of an
individual nucleosome depend on the actual DNA sequence
area incorporated. The majority of acetylation and methy-
lation sites in histones occur at specific highly conserved
residues: acetylation sites include at least nine lysines in hi-
stone H3 and H4 (H3K9, H3K14, H3K18, H3K23, H3K27,
H4K5, H4K8, H4K12, and H4K16) and less conserved sites
in histone H2A and H2B; methylation sites include H3K4,
H3K9, H3K27, H3K36, H3K79, H3R17, H4K20, H4K59,
and H4R3 [16]. When a nucleosome appears in a specific
DNA sequence area, these potential sites can have a certain
acetylation or methylation level [10, 19].

The histone components of nucleosomes and their modi-
fication states (of which acetylation and methylation are the
most important ones) can profoundly influence many ge-
netic activities, including transcription [1, 9, 10, 19], DNA
repair, and DNA remodeling [15, 12]. There is recently an
explosion of studies on the histone modifications in nucle-
osomes as well as on the relationship between them and
gene expression [4, 8, 10, 12, 19]. The key approach to de-
termining the DNA locations of histone occupancy as well
as histone modifications in these studies is an experimental
technique called ChiP-Chip, or Chromatin Immunoprecipi-
tation on Microarray Chip [3]. This experimental technique
has some disadvantages such as it is tedious, wastes time
and money, produces noise, and cannot provide results at
an arbitrary high resolution especially with large genomes
like human.
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In this paper, we have developed a computational method
to locate qualitatively histone-occupied as well as acety-
lation and methylation positions in DNA sequences. The
method is based on support vector machines (SVMs) to
learn models from training data sets that discriminate be-
tween areas with high and low levels of histone occupancy,
acetylation or methylation. The prediction results on the
yeast genome by three-fold cross-validation showed high
accuracy and were consistent with experimental methods.
Moreover, SVM-classification models in our methods can
present genetic preferences of areas with high or low modi-
fication levels.

2 METHODS

2.1 Vectorization of sequences

The histone occupancy and modification states at each
position in a DNA sequence are, in our work, assumed to be
influenced by two factors: (1) the subsequence of a length L
equally expanding both sides from the position; and (2) ge-
netic elements such as promoters, the begin and the end of
genes, etc, around it. These two kinds of information should
be represented by a numerical vector of features.

Each L subsequence can be represented by a set of k-
gram features (called content-based features). We use a k-
sliding window along a DNA subsequence to compute the
number of occurrences of each k-gram. Each subsequence
is thus represented by a 4k-dimensional vector of the num-
ber of occurrences of all possible k-grams.

Another kind of information that influences the histone
occupancy and their modifications is genetic elements in
DNAs. To capture this kind of information around the pre-
dicted position, we use four context-based features which
measure how far it is from the begin and end of the nearest
SGD-annotated genes [5]. These four features are defined
explicitly as follows:

I
I

0 if the distance (dbp) between the
position and the begin of the nearest
gene in the prime DNA strand > 500

500-dbP if dbp < 500
500

0 if the distance (db,) between the
position and the begin of the nearest
gene in the complementary DNA
strand > 500

500-db_ if db, < 500
500

fep (position)

fec (pOSition)

I
I

0 if the distance (dep) between the
position and the end of the nearest
gene in the prime DNA strand > 500

500-d,P if dep < 500
500 lue

0 if the distance (d,C) between the
position and the end of the nearest
gene in the complementary DNA
strand > 500

500-d-- if de < 500

2.2 Binary support vector machines

The support vector machine (SVM) is a learning tech-
nique based on statistical learning theory. The basic idea of
applying SVM to binary pattern classification can be briefly
stated as follows. First, to map the input vector xi to a vec-
tor O(xi) in a richer feature space, either linearly or non-
linearly, which is relevant to the selection of the kernel func-
tion. Second, to obtain an optimized linear division within
the feature space from the first step, that is, to construct a
hyperplane wTO(X1) + b that separates the two classes.

The implementation of SVM is as follows. Let
(Xi, Yi), i = 1, ... , be a training dataset, where xi is a
vector and yi = +1 is a class attribute. SVM training solves
the following primal problem:

wT f
w w

Imini + c)~7~w,b,4 2 i

Yi(WT(X) + b) >I - (i,i

t,~(> 0, i=l,... If

1, ...I.

Its dual is a quadratic optimization problem:

I acTQav eTr agT ~ct a

1 <ai<C, i=l,...

yT a = O

where e is the vector of all ones, C > 0 is an error
penalty parameter, y={Y= }=1. Qij = yjK(xi, xj),
K(xi,xj) = O(X)TO(Xj) is a kernel function, and O(xi)
maps xi into a higher (maybe infinite) dimensional space.
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So K(xi, xj) is a symmetric positive definite function that
reflects the similarity between examples xi and xj. In
our research, we employed a linear function K(xi, xj) =

xi.xj and a radial basis function (RBF) K(xi, x) =

exp(_-y(X _Xj)2) as kernel functions. The SVMs clas-
sification function, once trained, has the following form:

f(x) aiyiK(x, xi) + b (1)

where a {cv}1 1.. is the solution of the above dual
problem and b is in the solution of the primal problem.
Based on Karush-Kuhn-Tucker theory [11], the solutions of
the primal and dual problems satisfy the following equation:

Caiv{yi(wTd(Xi) + b) - 1+} .=O.

Therefore, if ai 7y 0 for some i, then yi(WT 4(X1) + b)-
1 + (i = 0. In this case, xi is called a support vector.
SVMs has a solid theoretical background, a good perfor-

mance in practice, and a guaranteed global optimum. It can
also handle large datasets and is easier to implement and
train than a neural network. A more detailed description of
SVMs can be found in [6, 20].

2.3 SVMs with confidence

Since the SVMs prediction of a vector x is based only on
the information that which of two "semi-spaces" formed by
the SVM hyperplane f the vector belongs to (i.e. whether
the value of function f is greater than 0 or not). The pre-
diction does not care the distance (or margin) between the
vector and the SVM classification hyperplane, which is an
important factor to infer the confidence of the prediction.
The larger the margin the more confident the prediction is.
So, we improve the support vector classification by adding
some confidence to the prediction of SVM. The predictive
confidence of a vector x is calculated as follows:

r0 if f (x) < Ti

conf (x) f T1 if T1 < f(X) < T2 (2)T2 -TI

I liff(X) > T2

where Ti and T2 are thresholds to decide the least and the
most of confidences. In our work, Ti and T2 are deter-
mined from examples XI, . x,Xn in the training set as fol-
lows: calculate all absolute values of If (xi) 1, i = 1, ... n;
sort them in ascending order; let Ti = If (x[ 2n] ) and
T2 f(X(n )n or in other words, there are 5% of ex-
amples will have a confidence of 0 and 5% will have a con-
fidence of 1.

2.4 SVM method for feature selection

Ranking informative (discriminant) features is of fun-
damental and practical interest in data mining and knowl-
edge discovery. SVM has been successfully applied to this
task [2, 7, 17]. When SVMs uses a linear kernel, it finds an
optimal hyperplane that separates the positive from the neg-
ative class in the original space (not mapping into a higher
dimensional space). This optimal hyperplane has then the
following form (replacing K(x, y) = x.y in Eq. 1):

m

f(X =(fl,f2,...,fm)) =Zwifi+b.
i=l

(3)

We can change the sign of the weights wi, i = 1, ...I.,
and b in the above function such that if f(X) > 0 then X
would be classified as a positive example and otherwise, as
a negative example. It can be clearly seen that if wi is posi-
tive, then feature i would support the positive class. Other-
wise, this feature would support the negative class (or pre-
vent the positive class), and the larger the absolute value of
wi, the stronger feature i supports (or prevents) the respec-
tive class. From this remark, we define the weight wi as the
support of feature i.

2.5 Datasets

From the genome-wide map of histone occupancy, acety-
lation and methylation locations reported in [19] by the
ChiP-Chip method, we selected 10 datasets and used them
to illustrate the performance of our method. These datasets
are described in detail in Table 1. Among them, two datasets
H3 and H4 are relative occupancy data of histone H3 and
H4, respectively. Two datasets H3K9ac, H3K14ac are rel-
ative histone acetylation data of specific lysines K9 and
K4 of histone H3; and dataset H4ac presents relative gen-
eral acetylation of histone H4. Three (mono-, di-, and tri-)
methylation states of lysine K4 of histone H3 are contained
in three datasets H3K4mel, H3K4me2, and H3K4me3. Fi-
nally, two other tri-methylation datasets are measured at dif-
ferent lysines of H3: K36 and K79.

Each example in the datasets corresponds to a point in
DNAs that has the experimental data published in [19].
Since the data of nucleosome occupancy and histone mod-
ifications is relative measures, so we assign locations with
the relative data greater than 1.0 into the positive class; oth-
erwise, the negative class. We assume that the relative oc-
cupancy of nucleosomes as well as their modifications are
influenced by two factors: (1) the subsequence (segment)
with a fixed length L, called L-subsequence; and (2) around
genetic elements. These two kinds of information will be
converted into vectors as described in 2.1.
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Table 1. Datasets

Dataset
H3
H4
H3K9ac
H3Kl4ac
H4ac
H3K4mel
H3K4me2
H3K4me3
H3K36me3
H3K79me3

Full name
H3.YPD
H4.YPD
H3K9acvsH3.YPD
H3Kl4acvsH3.YPD
H4acvsH3.YPD
H3K4melvsH3.YPD
H3K4me2vsH3.YPD
H3K4me3vsH3.YPD
H3K36me3vsH3.YPD
H3K79me3vsH3.YPD

POS
25,137
25,924
18,726
21,535
20,402
20,344
21,440
20,686
20,826
22,574

NEG
16,069
15,299
22,241
19,639
20,839
20,401
19,493
20,508
20,296
18,536

Datasets of histone occupancy, acetylation, and
methylation by ChiP-Chip protocol in vivo [19]. POS and
NEG are the number of positive and negative examples,

respectively.

3 RESULTS

3.1 Prediction results

We developed a machine learning method based on sup-
port vector machines to qualitatively predict locations of hi-
stone occupancy and modification states given a DNA se-
quence. The prediction for each point is based on two kinds
of features: (1) k-gram features of the subsequence of the
length L equally expanding to both sides of the DNA se-
quence, and (2) the information of genetic elements around
that point. Both are converted into vectors (see Section 2.1)
before inputting to support vector machines. We improved
support vector machines by introducing the confidence of
the prediction based on the distance between the predicted
vector and the SVM classification hyperplane (Section 2.3).
The prediction with a higher confidence would be more ac-
curate.
We illustrated the performance of our method with 10

datasets (see Section 2.5) collected from experimental data
at many locations in the yeast genome by the work of
Pokholok et al. [19]. We follow the three-fold cross-
validation procedure on each of 10 datasets and use two
performance criteria of accuracy (acc) and correlation co-
efficient (cc) to report the prediction results'.

TP+ TN
acc =

TP +FP +TN +FN

'the dataset is partitioned into 3 subsamples. Of the 3 subsamples, a
single subsample is retained as the validation data for testing the SVM
model that was trained on the remaining 2 subsamples. The cross-
validation procedure is repeated 3 times (the folds), with each of the 3
subsamples used exactly once as the validation data. The 3 results (i.e.
acc and cc) from the folds then is then averaged to produce a single esti-
mation

TP X TN -FP X FN

I (TP + FP) X (TP + FN) X (TN + FP) X (TN + FN)

where TP, TN, FP, FN are the number of true positive,
true negative, false positive, and false negative examples,
respectively.

There are two kinds of parameters of the SVM-based
model in our problem that we should estimate from train-
ing datasets such that the model would predict best on test-
ing datasets. The first is SVM parameters, i.e. the kernel
type, kernel width, the penalty C for an error classifica-
tion. The second is parameters k (in k-grams) and L (in
L-subsequences) that are used to represent a DNA location
to numerical vectors (see Section 2.1). First we fixed some
values of k and L parameters and did various experiments
with different values of SVM parameters. We found that
SVM models reached the best prediction results with RBF
kernel, kernel width 0.01 and C=1. These best SVM param-
eters were then fixed and we tried to find out how sensitive
the parameters k and L are on prediction results (see Tables
2 and 3).

The best prediction accuracies of both H3 and H4 his-
tones occupancy are 74.60 and 77.12, respectively, when us-
ing features of short k-grams (k=5 or 6, see Table 2) and de-
pends on a subsequence of a short length (L=500, Table 3)
around the predicted point. This reveals that nucleosomes
formation (of which H3 and H4 are the main components)
is not influenced by long-ranged DNA elements. However,
their modifications (acetylation and methylation states) are
depended on subsequences with the longer length (L=1000,
see Table 3). Of which, acetylation and tri-methylation
states are often easier to predict. The prediction accura-
cies for those states can be greater than 80% except H3K9
acetylation state (Table 3).

Moreover, our method can introduce the confidence of
the prediction which are very accurate on subsequences
where the confidence is greater than a certain threshold
(min_conf). Table 4 showed prediction accuracies with
different thresholds min_conf: 0.0 (corresponding to nor-
mal SVMs), 0.25, 0.50, and 0.75. As can be seen, the av-
erage prediction accuracy on 10 datasets increases dramati-
cally from 78.73% at min conf = 0.0 (with the predicting
coverage is 100%) up to 93.19% at min_conf = 0.75 (but
the predicting coverage is droped to 24.7%). Clearly, the
prediction with more confidence is more accurate, but the
predicting coverage of the prediction is of course smaller.

3.2 Informative features

We used SVMs with a linear kernel to rank features
based on their support for histone occupancy, acytelation,
and methylation (see Section 2.4). Tables 5 and 6 show
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Table 2. Prediction results depending on features of k-grams

Dataset k 4 k 5 k 6 k = 7 k = 8 k 9 k = 10
acc cc acc cc acc cc acc cc acc cc acc cc acc cc

H3 74.06 0.44 74.60 0.45 74.29 0.45 74.35 0.45 73.78 0.43 71.90 0.39 68.68 0.32
H4 76.42 0.48 77.05 0.49 77.12 0.50 76.86 0.49 75.54 0.46 73.55 0.41 70.33 0.33
H3K9ac 68.00 0.35 69.95 0.39 71.65 0.43 73.13 0.46 74.26 0.48 74.28 0.49 71.61 0.44
H3K14ac 66.82 0.33 68.91 0.38 71.54 0.43 73.89 0.48 76.47 0.53 78.93 0.58 80.34 0.61
H4ac 66.83 0.34 68.67 0.37 71.07 0.42 73.90 0.48 75.90 0.52 78.25 0.56 79.19 0.59
H3K4mel 64.65 0.29 66.54 0.33 68.16 0.36 69.73 0.39 71.02 0.42 72.61 0.45 73.55 0.47
H3K4me2 62.19 0.24 64.22 0.28 66.33 0.32 67.65 0.35 69.45 0.39 70.96 0.42 70.87 0.42
H3K4me3 63.11 0.26 66.21 0.32 69.21 0.38 72.64 0.45 75.57 0.51 78.24 0.57 79.95 0.60
H3K36me3 70.37 0.41 71.83 0.44 74.16 0.48 75.61 0.51 76.91 0.54 77.85 0.56 78.59 0.58
H3K79me3 73.87 0.47 75.30 0.50 76.13 0.52 76.87 0.53 76.54 0.53 75.25 0.50 73.17 0.47

Results of acetylation and methylation prediction acc(cc) from a set of k-gram features (L 500). Both the accuracy (acc) and the correlation coefficient
(cc) are shown.

Table 3. Prediction results depending on different L

Dataset L = 300 L = 500 L = 1000 k
acc cc acc cc acc cc

H3 71.18 0.37 74.60 0.45 74.17 0.44 5
H4 74.27 0.43 77.12 0.50 74.18 0.43 6
H3K9ac 61.5 0.24 74.28 0.49 75.52 0.51 9
H3Kl4ac 60.91 0.21 80.34 0.61 82.90 0.66 10
H4ac 60.79 0.22 78.25 0.56 82.24 0.64 9
H3K4mel 61.18 0.23 72.61 0.45 74.65 0.50 9
H3K4me2 59.54 0.18 70.96 0.42 74.65 0.49 9
H3K4me3 59.58 0.19 79.95 0.60 82.96 0.66 10
H3K36me3 64.60 0.29 78.59 0.58 82.27 0.65 10
H3K79m3 67.88 0.35 76.54 0.53 80.29 0.60 8

Results of acetylation and methylation prediction acc(cc) with different values of L's. The parameter k (in k-grams) is fixed, corresponding to the best
cases in Table 2. Both the accuracy (acc) and the correlation coefficient (cc) are shown.

Table 4. The prediction accuracy (acc) and coverage (cover) at different confidence levels (conf)

Dataset conf > 0.00 min > 0.25 conf > 0.50 conf > 0.75 Params
acc cover acc cover acc cover acc cover L k

H3 74.60 100 82.06 68.55 87.65 41.62 92.50 18.00 500 5
H4 77.12 100 83.80 70.89 87.92 44.59 90.54 19.87 500 6
H3K9ac 75.52 100 82.63 67.78 86.84 41.07 89.85 18.90 1000 9
H3Kl4ac 82.90 100 90.38 74.82 94.59 52.87 96.95 28.12 1000 10
H4ac 82.24 100 89.44 74.87 93.39 53.69 95.55 28.60 1000 9
H3K4mel 74.75 100 82.28 69.78 87.48 46.14 90.86 23.75 1000 9
H3K4me2 74.65 100 81.43 71.09 86.22 48.13 88.61 25.17 1000 9
H3K4me3 82.96 100 90.70 74.57 94.84 52.80 96.99 28.21 1000 10
H3K36me3 82.27 100 89.45 74.78 93.48 52.67 95.51 27.96 1000 10
H3K79me3 80.29 100 87.44 74.90 91.90 53.75 94.57 28.45 1000 8
Average 78.73 100 85.96 72.20 90.43 48.73 93.19 24.70
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the most informative positive and negative features, respec-
tively, from a set of 4-gram and context-based features, to-
gether with their support for histone occupancy, acetylation,
and methylation.

Context-based features bp, bc, ep, and ec (see Sec-
tion 2.1) are often among the most informative fea-
tures to discriminate two classes of low and high occu-
pancy/acetylation/methylation subsequences (Tables 5 and
6). Areas near to starting sites of genes were often acety-
lated since the features bp and bc strongly support all H4,
H3K9 and H3K14 acetylation (Table 5). The end of genes
were, vice versa, often non-acetylated since the features ep
and ec were consistently the most negative ones for all H4,
H3K9, and H3K14 acetylation (Table 6).

Different from consistent acetylation pattern which is al-
ways related to the begin and the end of genes, each methy-
lation pattern depends on both different state (mono, di, tri-)
of methylation and amino acid position in histone proteins.
While H3K4 is often mono-methylated around the end of
genes and non-mono-methylated at the promoter of genes,
its di- and tri-methylation are conversely often occurred at
the promoter of genes (Tables 5 and 6) and not occurred at
the end of genes. The tri-methylation of H3K4, K36 and
K79 are also different.

The most informative feature to recognize non-histone-
occupied (both H3 and H4) areas is CGCG (Table 6). This
suggests that the CpG-rich areas are often nucleosome-low.

4 DISCUSSTION

4.1 Prediction of histone occupancy,
acetylation and methylation

Up to now, an experimental technique called ChiP-Chip
(Chromatin Immunoprecipitation on Microarray Chip) [3]
is still the most favourable technique to determine the DNA
locations of histone occupancy as well as histone modi-
fications in these studies [10, 12, 19]. This experimen-
tal technique has some disadvantages such as it is tedious,
wastes time and money, produces noise, and cannot pro-
vide results at an arbitrary high resolution especially with
large genomes like human. With this work, we offered a
computational approach to indicate DNA locations where
are nucleosome-occupied and contain modification states.
Though our method could not determine quantitatively like
the experimental method, it can show very accurately some
areas of DNAs that have or have not nucleosomes as well
as their modifications. For example, the average prediction
accuracy on 10 datasets of Histones occupancy and modifi-
cations is up to 93.19% for 24.7% locations of DNAs where
the prediction confidence are greater than 0.75 (see Table
4). The qualitative prediction of histone occupancy, acety-
lation and methylation from our method would be useful for

experimental studies as guidances to focus or ignore some
areas in DNA sequences.

The work in this paper is the continuing one of our con-
ference paper [18]. There are three basic improvements
here: (1) we used additional context-based features which
capture the information of genetic elements around the pre-
dicted location in the DNA sequence (see Section 2.1);
(2) we did investigate more deeply so that the best parame-
ters of k-gram features have been found (Tables 2, 3, and 4);
and (3) we improved the SVMs method to introduce some
confidence for SVM prediction (Section 2.3), the prediction
with higher confidence is often with higher accurate (Table
2). Therefore prediction results at this time are much better
than previously-published ones.

The performance of our computational method is eval-
uated on the experimental data (microarray data), which is
often noisy due to the present technology problems. Hence
the prediction accuracies reported in this paper might be
under-estimated since we have computed the accuracies by
comparison between the predicted results and noisy experi-
mental ones.

4.2 Genetic preferences of histone occu-
pancy, acetylation, and methylation

Informative content-based and context-based features to
discriminate two classes of high and low histone occu-
pancy/acetylation/methylation areas are useful to uncover
genetic preferences of these areas. For example, we found
that both H3 and H4-occupancies in CpG-rich areas are low
(Table 6). This agrees with previous studies: CpG islands
are often nucleosome-free [1, 14].

The context-based features have been often found in the
most informative features of positive or negative acetyla-
tion and methylation subsequences. This confirms that there
exists a relationship between acetylation/methylation and
gene expression. The information of the distance of a lo-
cation and the nearest genes in both prime and comple-
mentary DNA strands (bp, bc, ep, and ec) are often most
important to know acetylation and methylation of that lo-
cation. We found that locations near to gene starting sites
are often acetylated (Table 5) and those near to the end of
genes are non-acetylated (Table 6), which consist with pre-
vious results (see [14] and references therein). We also re-
ported that the begin area of genes (with features bp or bc)
are H3K4-di- and tri-methylated (but not mono-methylated)
as well as H3K9, H3K14 and H4 acetylated (Tables 5 and
6). This agrees with the evidence in the work of Metthew
et al. (2004) that there is a relation between H3K4 di&tri-
methylation and acetylation of H3K9, H3K14.
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Table 5. Most informative features for positive class from 4-gram and context-based features

Feature Weight Feature Weight Feature Weight Feature Weight Feature Weight
H3 bc 0.27 TCGC 0.25 GCTC 0.24 CAGG 0.22 bp 0.21

GTAC 0.21 CCTC 0.21 CCGC 0.19 TAGG 0.19 TCGG 0.18
H4 CAAA 0.16 TGAC 0.13 CCTC 0.12 TGAT 0.12 CTGG 0.12

GCTC 0.12 AGCC 0.11 ACTC 0.10 GTGG 0.10 TGAA 0.10
H3K9ac bc 0.45 bp 0.34 TCCG 0.33 TCCC 0.31 ACCG 0.30

TCCT 0.29 GTAC 0.27 TCGA 0.26 CGTG 0.26 GCGA 0.25
H3K14ac bc 0.81 bp 0.75 CCGG 0.29 ACGG 0.29 GCGG 0.28

TCGG 0.24 ACCG 0.23 CTAC 0.21 AAGA 0.21 AGGA 0.19
H4ac bc 0.84 bp 0.59 ACCG 0.36 ACCC 0.30 CGTG 0.28

TCCG 0.27 GTAC 0.27 CTAC 0.24 TCCC 0.23 ACGG 0.22
H3K4mel ec 0.50 ep 0.42 CCCA 0.31 GCCG 0.27 CCCG 0.26

GCCA 0.24 CCCT 0.23 GCCT 0.19 GATG 0.19 ACGC 0.18
H3K4me2 CCCA 0.32 CCCG 0.30 GGCG 0.26 bp 0.25 TCGG 0.23

CAGC 0.23 ACGG 0.23 bc 0.22 GTGT 0.22 ACCA 0.22
H3K4me3 bc 1.01 bp 0.81 ACCG 0.30 CCCG 0.28 CGCC 0.24

GTAC 0.22 CACA 0.21 CTCA 0.21 GTGG 0.19 CACG 0.19
H3K36me3 ec 0.42 ep 0.40 TACC 0.21 ACAC 0.18 GCCT 0.18

CTTC 0.17 TTGA 0.17 ACCT 0.16 GAAA 0.15 GACC 0.15
H3K79me3 GCGT 0.17 CGCA 0.17 ACAC 0.17 TCGT 0.15 CAGG 0.15

GGGA 0.14 TCCC 0.14 CCAC 0.14 TCTT 0.14 GGGC 0.14
Most informative features for positive class from a set of 4-gram and context-based features.

Table 6. Most informative features for negative class from 4-gram and context-based features

Feature Weight Feature Weight Feature Weight Feature Weight Feature Weight
H3 CGCG -0.36 CGCT -0.24 CGGA -0.23 CGTG -0.22 AGGA -0.21

CGGG -0.20 ep -0.20 CGGC -0.18 CGCC -0.18 CGTA -0.17
H4 GCGC -0.16 GCCG -0.15 CGCG -0.15 CGGG -0.15 GTAA -0.14

bc -0.13 TACA -0.11 GACA -0.11 TATA -0.11 GTAG -0.11
H3K9ac CTCC -0.32 TACC -0.31 ATCC -0.28 GTCC -0.26 CCGC -0.24

TTGA -0.22 CCGT -0.22 CACC -0.20 TTCC -0.19 GTCG -0.17
H3K14ac CGGC -0.44 ep -0.42 ec -0.36 CGGG -0.31 CGGT -0.29

CGGA -0.28 CACC -0.26 AGAA -0.26 TACC -0.25 CCGT -0.23
H4ac CCGT -0.41 CCGC -0.34 TACC -0.32 ep -0.30 ec -0.28

CGGC -0.27 CACC -0.26 CGGG -0.23 CGGA -0.22 TGGG -0.21
H3K4mel bc -0.77 bp -0.73 TCCC -0.26 AGGG -0.25 ACCC -0.24

AGGA -0.21 CGCC -0.20 TGAC -0.19 CGCA -0.19 TGAT -0.18
H3K4me2 GCGT -0.39 ACAG -0.28 AGCA -0.27 CCGT -0.27 CGGC -0.27

GCGC -0.25 TCCC -0.25 ACAT -0.24 CGGG -0.24 CCAG -0.23
H3K4me3 ep -0.47 ec -0.40 CCGC -0.39 CTTC -0.28 CCGT -0.26

ACTC -0.25 ACGC -0.24 GCGC -0.23 TACC -0.21 GGAT -0.21
H3K36me3 bc -0.70 bp -0.67 CCTG -0.26 CCTA -0.26 CCTT -0.25

CACA -0.23 CACG -0.20 AAAG -0.19 TAAG -0.19 TTCG -0.18
H3K79me3 ACGC -0.27 AGGG -0.23 AGCG -0.23 CACA -0.21 CGTA -0.19

CCGC -0.18 ep -0.17 GTCC -0.17 ACTA -0.17 ACGA -0.16
Most informative features for negative class, from a set of 4-gram and context-based features.
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5 CONCLUSIONS

Histone occupancy as well as modification states can
be qualitatively predicted by computational models. Our
computational method can give quickly the prediction at
any position in a DNA sequence based on the content and
context of the subsequence around that position. It is also
used to extract informative characteristics of areas in DNA
sequences with high or low histone modifications. The
qualitative prediction of histone occupancy, acetylation and
methylation from our method would be useful for experi-
mental studies as guidances to focus or ignore some areas
in DNA sequences.
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