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Adaptive Self-configurable Robot Swarms Based on Local Interactions

Geunho Lee, Student Member, IEEE and Nak Young Chong, Member, IEEE

Abstract— This paper presents a motion planning framework
for a large number of autonomous robots that enables the robots
to configure themselves adaptively into an area of an arbitrary
geometry. A locally interacting geometric technique provides
a unique solution that allows the robots to converge to the
uniform distribution by forming an equilateral triangle with
their two neighbors. The basic idea underlying the proposed
solution is that robots can be thought of as liquid particles
that change their relative positions conforming to the shape
of the container they occupy. Specifically, it is assumed that
robots are not allowed to have the identification number,
a pre-determined leader, a common coordinate system, and
communication capabilities. Under such minimal conditions,
the convergence of the algorithm is mathematically proved and
verified through extensive simulations. The results validate the
feasibility of applying the algorithm to self-configuration of
mobile sensors across the constrained environment.

I. INTRODUCTION

Swarm robotics [1] is gaining increasing attention because

a robot swarm is expected to perform a variety of real

applications such as environmental or habitat monitoring,

exploration, search-and-rescue, and so on. In order to enable

a robot swarm to perform the aforementioned tasks adapting

to an environment, a motion planning framework is needed

for the robots to determine their relative positions from an

arbitrary initial distribution. Such frameworks mostly use a

balance between inter-individual interactions based on the

observations from an organism of animals and insects, or

physical phenomena in nature, that we call respectively

behavior-based [2-3] and physics-based [4-11] approaches.

Balch and Hybinette [2] suggested the notion of social

potentials to achieve robot formations mimicking the process

of forming a crystalline structure that holds the molecules

into place. Martison and Payton [4] proposed the virtual

line force to deploy robots into a regular lattice. Spears

et al. [5] developed a physics-based framework to achieve

the desired deployment using the gravitational force model.

Shucker and Bennett [6] introduced the virtual spring forces

to maximize coverage and uniformity using the acute angle

algorithm. Likewise, many algorithms for mobile sensor

network deployment use different types of force, including

electromagnetic forces [7], inter-molecular forces [8], and

virtual potential fields [9]. These approaches require an effort

to adjust parameters to obtain the desired behavior of self-

configuration. Most importantly, to the best of our knowl-
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Fig. 1. Concept of adaptive self-configuration in an unknown environment

edge, no research has been performed under the geometric

constraint of the environment.

In this paper, we address adaptive self-configuration of

a robot swarm that enables a large number of robots with

limited ranges of sensing to configure themselves into a

2-dimensional plane from an arbitrarily initial distribution.

Through local interactions between individual robots that

attempt to form an equilateral triangle, a robot swarm can

eventually be deployed conforming to the shape of the

environment as illustrated in Fig. 1. This will provide a

systematic approach to adapting to an unknown environment

regardless of limited sensing and communication capabilities

of the robots. In practice, this adaptive self-configuration

enables a robot swarm to strive toward achieving its mission

in the presence of changes in environments. For instance,

a robot swarm can maintain local geometric configurations

while navigating through an environment populated with ob-

stacles [12]. The main contribution of this paper is to provide

a simple, distributed swarm self-configuration algorithm that

exhibits self-organizing and self-stabilizing features.

The rest of this paper is organized as follows. Section

II presents the assumptions about the robot and the defi-

nitions of the adaptive self-configuration problem. Section

III describes the fundamental concepts in local interaction

and the convergence properties of the algorithm. Section IV

addresses the proposed adaptive self-configuration algorithm

and its properties under geometric constraints. Section V

provides the results of the simulations and discussions.

Section VI draws conclusions.

II. PROBLEM STATEMENT

We consider a swarm of autonomous mobile robots

{r1, · · · , rn}. Each robot is modeled as a point, that freely
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moves on a 2-dimensional plane with limited ranges of

sensing. The robots have no leader and no prior knowledge of

their identification number. They do not share any common

coordinate system, and do not retain any memory of past

actions. They can detect the position of other robots in close

proximity, but are not allowed to communicate explicitly

with them. Instead of the direct communication method,

robots are able to locally interact by observing locations of

other robots. Each of the robots executes the same algorithm,

but acts independently and asynchronously from other robots.

Time is represented as an infinite sequence of discrete

instants t1, t2, · · ·. At a time instant, one of the following

three actions will be taken by the robots:

• Observation: The robot ri detects the position

{p1, p2, · · ·} of other robots located within its sensing

range SB, and makes the observation set Oi of the

obtained positions with respect to its local coordinate

system.

• Computation: ri performs the computation according

to the local interaction algorithm to be proposed, yield-

ing the target position pti.

• Motion: ri moves to pti and returns to the observation

state.

Each of the robots repeats an endless activation cycle of

observation, computation, and motion. Now the adaptive

self-configuration problem of a swarm of mobile robots in

this work can be stated as follows.

Given that a swarm of robots r1, · · · , rn located at

arbitrarily distinct positions in a two-dimensional plane,

how can the robots configure themselves into equilateral

triangular lattices adapting to the environment?

It is assumed that the robots can exactly determine the

position of other robots using sonar [13] or infrared detectors

[5], and distinguish between other robots and obstacles in the

environment.

III. LOCAL INTERACTION

This section describes our local interaction algorithm

that enables to generate an equilateral triangular lattice by

cooperation of three neighboring robots (See ALGORITHM-

1).

A. Description of the Local Interaction Algorithm

All robots are initially located at distinct positions. Among

them, consider a robot ri and its two neighbors s1 and

s2 located within ri’s sensing boundary SB. Hereafter, we

denote the constant uniform distance interval by du, and the

position of ri, s1, and s2 by pi, ps1, and ps2, respectively.

As shown in Fig. 2-(a), three robots configure into a triangle

whose vertices are pi, ps1, and ps2, respectively. Fig. 2-(b)

illustrates that ri finds the centroid pct of the configured

triangle △pips1ps2 with respect to its local coordinates,

and measures the angle φ between the line connecting two

neighbors and ri’s horizontal axis. Using pct and φ, ri

calculates its target position pti.

ALGORITHM-1 LOCAL INTERACTION (code executed by the robot
ri at the point pi)

constant du := uniform distance
FUNCTION ϕinteraction({ps1, ps2}, pi)
1 (ctx, cty) := centroid({ps1, ps2, pi})
2 φ := angle between ps1ps2 and ri’s local horizontal axis

3 targetx := ctx + du cos(φ ± π/2)/
√

3

4 targety := cty + du sin(φ ± π/2)/
√

3
5 pti := (targetx, targety)

p

(Sensing Boundary)

ir

1sp

2sp

ti

SB

ir

1sp

2sp
ip

(Sensing Boundary)SB

(a) (b)

ctp

Fig. 2. Illustration of ALGORITHM-1 (a) triangular configuration, (b) target
point computation

Consider a triangle with three vertices pa, pb, and pc

that represent the position of three robots A, B, and C
as shown in Fig. 3. Let α, β, and γ denote the internal

angles of the triangle, respectively. Each robot located at

the vertex of △papbpc may move to the new position pta,

ptb, and ptc computed by ALGORITHM-1. The internal

angles of △ptaptbptc are α′, β′, and γ′, respectively. Let

pct denote the centroid of △papbpc. Also, let p denote the

point projected from pct onto papb. Similarly, let q indicate

the point projected from pct onto papc. If we consider a

quadrangle pappctq, the angles of p and q are right angles.

Therefore, 6 ppctq becomes 180◦−α. From Fig. 3, 6 ptbpctptc

is equal to 6 ppctq. △ptbpctptc is an isosceles triangle since

pctptb and pctptc is identical (du/
√

3 =
√

3/2 × du × 2/3).

Hence, α of △papbpc is equal to 2a in the figure. With

the same manner, β and γ become 2b and 2c, respectively.

Moreover, we see that α′ of △ptaptbptc is (β + γ)/2 (or

equal to (b + c)). Likewise, β′ indicates (α + γ)/2 and γ′

does (α+β)/2. Accordingly, α′ is given by (β +γ)/2. Now

the relation between internal angles can be rewritten as a

function of time to give the following equation:

α(t + 1) = (β(t) + γ(t))/2, (1)

where t and t + 1 represent the current time instant and

the next time instant. Thus, the internal angle of ri at

t + 1 is obtained by dividing the sum of internal angles

of two neighbors observed at t with 2. Intuitively, ri may

maintain du with two neighbors. In other words, each robot

attempts to form an isosceles triangle at each time instant,

and by repeatedly doing this, three robots configure into an

equilateral triangle with a side length du.
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Fig. 3. Robots attempt to form an isosceles triangle

B. Convergence of Local Interactions

Let’s consider the circumscribed circle of an equilateral

triangle whose center is pct of △pips1ps2 configured from

three positions occupied by three robots and radius is du/
√

3.

Under the local interaction algorithm, motion planning for

the robots is performed by controlling the distance from pct

and the internal angle (See Fig. 4-(a)).

First, the distance is controlled by the following equation

ḋi(t) = −a
(

di(t) − dr

)

, (2)

where a is a positive constant and dr represents the length

du/
√

3. Indeed, the solution of (2) is di(t) = |di(0)|e−at+dr

that converges exponentially to dr as t approaches infinity.

Secondly, the internal angle is controlled by the following

equation

α̇i(t) = k
(

βi(t) + γi(t) − 2αi(t)
)

, (3)

where k is a positive number. Because the total internal angle

of a triangle is 180◦, (3) can be re-written as

α̇i(t) = k′
(

60◦ − αi(t)
)

, (4)

where k′ is 3k. Likewise, the solution of (4) is αi(t) =
|αi(0)|e−k′t + 60◦ that converges exponentially to 60◦ as t
approaches infinity.

Note that (2) and (4) imply that the trajectory of ri

converges to dr and 60◦, an equilibrium state shown in Fig.

4-(b). This also implies that three robots eventually form an

equilateral triangle with du. In order to prove the correctness,

we will take advantage of stability based on Lyapunov’s the-

ory [14]. The stability theorem states if there exists a scalar

function fl,i of the state x = [di(t) αi(t)]
T with continuous

first order derivatives such that fl,i is positive definite, ḟl,i

is negative definite, and fl,i → ∞ as ‖ x ‖→ ∞, then

equilibrium at a specific state [dr 60◦]T is asymptotically

stable. The desired configuration is one that minimizes the

energy level of the scalar function.

tip

ctp

1sp

2sp

id

xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxx

ip

iα

rd )
3

( ud
=

(a) two control parameters: range and bearing

ud

1sp

2sp

ri dd =

ip
°=60iα

(b) desired equilateral triangular configuration

Fig. 4. Illustration of two control parameters in local interaction

Consider the following scalar function:

fl,i =
1

2
(di − dr)

2 +
1

2
(60◦ − αi)

2 (5)

This scalar function is always positive definite except di 6=
dr and αi 6= 60. The derivative of the scalar function is given

by

ḟl,i = −(di − dr)
2 − (60◦ − αi)

2, (6)

which is obtained by differentiating fl,i using (2) and (4)

to substitute for ḋi and α̇i. Eq. (6) is negative definite. The

scalar function fl,i is radially unbounded since it tends to

infinity as ‖ x ‖→ ∞. Therefore, the equilibrium state is

asymptotically stable, implying that ri reaches a vertex of

the desired triangle.

Now we prove the convergence of the algorithm for n
robots. The n-order scalar function F is defined as

F =

n
∑

i=1

fl,i

(

di(t), αi(t)

)

. (7)

It is straightforward to verify that F is positive definite and

Ḟ is negative definite. F is radially unbounded since it tends

to infinity as t approaches infinity. Consequently, n robots

move toward the equilibrium state.
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(a) detecting an environment (b) approaching an environment

Fig. 5. Illustration of uniform adaptation algorithm

Finally, as mentioned earlier, the robots have no mem-

ory (oblivious). Hence, the algorithm uses the function

ϕinteraction whose arguments consist of the position set of

the robot and its two neighbors at the current time instant.

The return value is the target position of the robot at the next

time instant. It has been proven that the oblivious strategy

yields a self-stabilizing algorithm 1 [15].

IV. ADAPTIVE SELF-CONFIGURATION

This section describes how to deploy the robots at a uni-

form interval conforming to the geometry of the environment

using local interactions. We assume that the geometry of the

environment can be represented by a continuous function.

A. Description of Adaptive Self-Configuration Algorithm

At the time instant t, ri detects the first neighbor s1
located the shortest distance. First of all, we assume that the

surface geometry of an environment can be represented by a

continuous function e(t) without discontinuity. As illustrated

in Fig. 5-(a), when detecting the environment, ri defines a

point pe projected from pi onto the environment surface with

the minimum distance de and computes the tangent e′(t)
to the environment surface at pe. It is obvious that e′(t)
is perpendicular to the vector −−→pipe, termed the environment

direction. Let A(le) denote the area in the environment

direction within SB. That is, A(le) is the area between the

surface of the environment and the line passing through pi

and parallel to e′(t). If no neighbors exist in A(le) or if the

condition de ≤
√

3du

2
is satisfied, in order to approach the

environment, ri computes the midpoint pm of pips1 from

which the virtual point pv is projected onto e′(t). Now pv

is considered as ps2 as illustrated in Fig. 5-(b). Otherwise,

to approach other robots, s2 is selected such that the total

distance from ps1 to pi through ps2 is minimized. Now with

ps1 and ps2, ri can compute the next target point pti by

ϕinteraction in ALGORITHM-1. When three robots are all

aligned, the centroid pct is set to the center point of the

line segment between ps1 and ps2. If ri is located on the

line segment, pti is set to the point
√

3du

2
away from pct.

Otherwise, pti is set to the point du√
3

away from pct.
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Fig. 7. Simulation results of self-configuration for three robots

B. Uniform Adaptation Property

It is verified in Section III that three neighboring robots are

able to form an equilateral triangle with distance du. Without

loss of generality, ri can converge into an isosceles triangle

with a neighbor and a virtual point. Now we show that the

robots maintain a constant uniform distance du with each

other while conforming to the geometry of the environment.

As shown in Fig. 6, this requires that, the vector −−−→pips1 with

distance du should be parallel to −−−−→peipes1, where pei (or

pes1) indicates the point projected from pi (or ps1) onto the

environment surface.

We first consider the case of the indented wall in Fig. 6.

Let pvi and pvs1 indicate the virtual point for ri and s1,

respectively. Note that, due to the limited ranges of SB, ri

is not able to identify whether −−→pipei is parallel to −−−−→ps1pes1.

According to the geometry of the environment, pvi may

1Self-stabilization is the property of a system which, started in an arbitrary
state, always converges toward a desired behavior [16] [17].
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(a)initial distribution (b) 3.68 [sec]

(c) 6.60 [sec] (d) d1%: 25.55 [sec]

Fig. 8. Simulation results of self-configuration for 100 robots

vary since e′(t) changes. Thus, pvi and pvs1 may not be

coincident.

By the convergence of local interactions, it is obvious

that △pips1pvi and △ps1pipvs1 are the isosceles triangles

with du (the length of pips1, pipvi, and ps1pvs1 are the

same). Since the two triangles have the same height of
√

3du

2
,

they are congruent. Also, since 6 ps1pipvi and 6 pips1pvs1,

and 6 ps1pvs1pm and 6 pipvipm have the same measure,
6 pvipipei and 6 pvs1ps1pes1 have the same measure. Hence,

△pvipipei and △pvs1ps1pes1 are congruent. Since pipei and

ps1pes1 have the same length and 6 ps1pipei and 6 pips1pes1

have the same measure, the quadrangle pips1pes1pei is an

isosceles trapezoid. Thus, it is readily evident that −−−→pips1 is

parallel to −−−−→peipes1. The conformity condition for the case of

the flat wall can be satisfied with the same manner.

V. SIMULATION RESULTS

The proposed self-configuration algorithm terminates

when all robots converge into the distance du ± 1% with

their two neighbors, which is denoted as d1%. Fig. 7 shows

that how three robots converge into an equilateral triangle,

where Fig. 7-(a) and (b) display the initial and the final

position of the robots. Fig. 7-(c) and (d) indicate the varia-

tions in the distance and the internal angle that eventually

converge into du and 60◦. Fig. 8 shows that 100 robots

configure themselves into a uniformly distributed pattern

with distance interval du over the empty plane. We tested

extensive simulations in a variety of initial distributions and

compared the total deployment time. For 30 kinds of initial

distributions, the deployment time is summarized as follows:

27.36 [sec] for d1%, 42.86 [sec] for d0.1%, and 61.48 [sec]

for d0.01%. Specifically, each robot interacts with only two

neighbors, which ensures that the motion of the robot is less

(a) 4.53 [sec] (b) 9.75 [sec]

(c) 12.38 [sec] (d) d1%: 32.02 [sec]

Fig. 9. Simulation results of self-configuration over a flat surface

(a) 3.57 [sec] (b) 7.63 [sec]

(c) 13.64 [sec] (d) d1%: 41.54 [sec]

Fig. 10. Simulation results of self-configuration over a curved surface

affected than other approaches employing a large number of

neighbors and the computational load decreases.

Figs. 9 and 10 show that how 100 robots self-configure

into a geometrically-constrained environment. As mentioned

in Section IV, all robots could eventually converge to the

uniformly distributed position conforming to the environment

geometry. It is evident from Fig. 10 that even the robots

that do not detect the environment was able to conform to

the geometry of the environment by just interacting with

their neighbors. Fig. 11 shows the simulation results when
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Fig. 11. Surface conforming of Fig. 10 according to the changes in distance

TABLE I

COMPARISON OF GRADIENT OF LINE SEGMENTS IN FIG. 11 [DEG]

order

Fig. 11-(a) Fig. 11-(b) Fig. 11-(c)

grad. grad. grad. grad. grad. grad.

of pe of pi of pe of pi of pe of pi

1-2 78.055 77.186 78.055 77.946 90.000 89.607

2-3 67.071 67.871 67.028 66.688 90.000 89.956

3-4 77.983 76.983 84.868 84.492 87.938 87.395

4-5 -63.524 -63.520 -56.535 -57.197 70.676 71.112

5-6 -49.474 -50.151 -48.831 -49.309 75.748 75.723

6-7 -50.205 -51.387 -52.975 -53.566 -59.991 -59.801

7-8 -58.213 -58.116 -66.250 -67.583 -49.421 -49.693

8-9 -86.746 -87.205 -58.376 -57.714

9-10 -78.585 -78.331

10-11 74.721 75.175

11-12 55.529 56.340

the uniform distance is changed to (a) 3.5, (b) 5.5, and (c)

7.5, respectively. In the figure, the black bold line shows

the outline of the environment. The blue dots indicate pi

of the robot and the red dots on the outline display pe

projected from pi (see Fig. 5 in Section IV). The red dotted

and blue solid line segments represent peipes1 and pips1,

respectively, illustrated in Fig. 6. As expected, each robot

could be distributed uniformly regardless of the changes in

the uniform distance while conforming to the environment.

Table I shows that the average error rate over the entire set

of gradients is about 0.84 [%]. It is readily evident from

the table that pips1 is closely parallel to peipes1. If we take

the nonuniform curvature of the outline into consideration,

the robots was able to conform as closely as possible to the

uneven surface.

VI. CONCLUSION

In this paper, we presented a local interaction algorithm

between neighboring robots, enabling a large-scale swarm of

robots to self-configure into various two-dimensional planes.

The robots were assumed to have no individual identification,

no determined leader, no common coordinates, no memory

for past actions, and no communication capability. They

were allowed to interact with two dynamically selected

neighbors by observing other robots in their sensing range.

Based on the geometric approach to forming an equilateral

triangle, the swarm could be uniformly self-deployed, and

moreover adapt to an unknown environment. The proposed

algorithm featuring decentralized, self-organized, and self-

stabilizing design was proved mathematically and verified

by simulations. Our analysis and simulation results show

that the proposed adaptive self-configuration is a simple and

efficient approach to uniform deployment of a robot swarm

in a changing environment. As a first step toward real-world

implementations, we intend to apply this algorithm to build

an ad hoc mobile robotic sensor network with uniform spatial

density where measurement errors exist.
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