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Cache Memory Architecture for Leakage Energy Reduction

Kiyofumi Tanaka
School of Information Science, Japan Advanced Institute of Science and Technology

kiyofumi@jaist.ac.jp

Abstract

Recently, energy dissipation by microprocessors is get-
ting larger, which leads to a serious problem in terms of
allowable temperature and performance improvement for
future microprocessors. Cache memory is effective in bridg-
ing a growing speed gap between a processor and relatively
slow external main memory, and has increased in its size.
Almost all of today’s commercial processors, not only high-
performance microprocessors but embedded ones, have on-
chip cache memories. However, energy dissipation in the
cache memory will approach or exceed 50% of the increas-
ing total energy dissipation by processors. An important
point to note is that, in the near future, static (leakage) en-
ergy will dominate the total energy consumption in deep
sub-micron processes. This paper describes cache mem-
ory architecture, especially for on-chip multiprocessors,
that achieves efficient reduction of leakage energy in cache
memories by exploiting gated-Vdd control, software self-
invalidation for L1 cache, and dynamic data compression
for L2 cache. The simulation results show that our tech-
niques can reduce a substantial amount of leakage energy
without large performance degradation.

1. Introduction

In recent years, energy consumption of a microprocessor
is getting larger due to increasing transistor counts accord-
ing to Moore’s Law and improvement of operation clock
frequency. The high energy consumption makes a lifetime
of increasingly common battery-powered devices short. In
addition, the increase of energy dissipation raises the tem-
perature of LSIs and consequently violates an operational
condition or becomes an obstacle to progress of micropro-
cessor’s running clock frequency. Therefore, reduction of
energy consumption is indispensable to performance im-
provement of future microprocessors.

Several commercial processors have facilities for dy-
namic voltage and frequency scaling (DVS, DVFS) [21]
which is an effective technique for energy reduction by dy-

namically lowering the voltage and clock frequency, since
energy consumption of CMOS devices depends on the driv-
ing voltage and clock frequency. However, DVS mainly re-
duces dynamic energy and has little effect on static or leak-
age energy. For future sub-micron processes, some tech-
niques for static energy reduction are required.

On the other hand, large-scale and sophisticated soft-
ware is spreading and working set size in applications is
getting larger. Therefore, high performance processing re-
quires a large amount of cache memory in order to bridge a
speed gap between a processor and external memory. Con-
sequently, energy dissipation in the cache memory exceeds
50% of the total consumption by a processor [2]. The en-
ergy reduction in cache memories is essential and some so-
lution to the problem must be provided for future micropro-
cessor architecture, especially in terms of leakage energy
that would be more serious in the future sub-micron pro-
cesses.

On-chip multiprocessors are becoming popular since
they have the advantage of high performance while they
consume relatively low energy compared to uniprocessors
with a higher clock frequency. In this paper, we describe
a low-energy cache memory hierarchy for on-chip multi-
processors, that exploits gated-Vdd transistors [14] and ex-
plicit gated-Vdd control. The primary cache memory per-
forms explicit control of gated-Vdd transistors, which is
caused by execution of some special load and store instruc-
tions. We call this technique “software self-invalidation”.
On the other hand, a data compression technique is applied
to the secondary cache and vacant areas are turned off by
the gated-Vdd, which does not increase additional cache
misses that generates long penalty due to external memory
accesses.

Section 2 describes several related works on leakage en-
ergy reduction in cache memories. In Section 3, we give
a cache memory hierarchy for on-chip multiprocessors. In
Section 4, the software self-invalidation technique for pri-
mary caches is shown. Section 5 describes the leakage en-
ergy reduction scheme for secondary cache memories with
the hardware data compression. Section 6 shows the simu-
lation results and the effectiveness of the energy reduction
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schemes and Section 7 concludes this paper.

2. Related Work

There are several architectural techniques proposed for
leakage energy reduction in cache memories. Dynamically
ResIzable instruction cache (DRI i-cache) reduces energy
dissipation by dynamically downsizing effective caching ar-
eas [17]. Whether downsizing or upsizing is performed de-
pends on the number of cache misses that occurred in an
execution interval. When the miss count is smaller than a
bound given in advance, the cache is downsized, and vice
versa. The area that is not to be accessed is turned off
by controlling gated-Vdd transistors and does not consume
static energy after that [14]. This method focuses only on an
instruction cache and the whole cache is divided into only
two parts, active and sleeping areas.

There are other methods that are based on fine-grain
gated-Vdd control. Cache decay is an energy-reduction
scheme that controls gated-Vdd transistors per cache block
[18]. A block is in a dead-time state when it is in the in-
terval between the last access to the block and replacement.
Blocks in the dead-time state are turned off by gated-Vdd
control and then any static energy is not wasted for the
blocks. However, it is impossible for a hardware mecha-
nism to exactly decide whether a block is in dead-time or
not. In their hardware organization, the decision depends
on a counter value for each block. The counter counts cy-
cles or ticks during which the block is not accessed. When
the counter gets saturated, the corresponding block is re-
garded as having entered dead-time. This mechanism re-
quires extra hardware for the counters and cannot eliminate
misjudgment completely due to various access patterns in
applications that include both short and long access inter-
vals.

Cache blocks that are turned off cannot preserve data
values in the methods mentioned above. Therefore, reac-
cessing such blocks causes a cache miss and involves
a miss penalty and additional dynamic energy to access
lower-level memories. On the other hand, there are state-
preserving techniques, ABC-MT-CMOS (Auto-Backgate-
Controlled Multi-Threshold CMOS) [9] and drowsy cache
[8]. ABC-MT-CMOS is a technique where threshold volt-
ages are dynamically manipulated and leakage energy is re-
duced. Memory cells can retain values even in a sleep mode.
However, reaccessing the sleep cells requires waiting for
the cells to wake up. The MT-CMOS requires complex cir-
cuitry and therefore tends to increase the hardware size.

Drowsy cache prepares two different supply-voltage
modes, high-power and low-power modes, instead of turn-
ing off. Cache blocks in the low-power mode cannot be
read or written. Although the amount of energy reduction
is smaller than the gated-Vdd control, blocks even in the

low-power mode can preserve data values. Each block pe-
riodically falls into the low-power mode, and is woken up
to the high-power mode when the block is reaccessed. The
penalty for waking up a low-powered block is much smaller
than that in the gated-Vdd controlled caches. This mecha-
nism expects the characteristics in programs that there are
a limited number of memory blocks that are frequently ac-
cessed in some short period, and effectively reduces leakage
energy.

The defects of the gated-Vdd control are an additional
cache miss penalty caused by data disappearance (mis-
shutdown) and increase of dynamic energy consumption for
accessing the next level memory hierarchy on the misses.
On the other hand, those of state preserving ones such
as drowsy caches are relatively large additional hardware
and lower efficiency of leakage energy reduction since any
memory cells always keep some voltage.

Our methods shown in this paper aims at eliminating ex-
tra cache misses caused by mis-shutdown while achieving
as much energy reduction as gated-Vdd control, by using
software self-invalidation for primary caches and dynamic
data compression for a secondary cache.

3. Cache Memory Hierarchy

As depicted in Figure 1, the memory hierarchy of our
system consists of multiple processor cores each of which
has primary (L1) instruction and data caches based on a
writeback scheme, a write buffer, a secondary (L2) uni-
fied writeback cache on chip, and an external main mem-
ory. All processor cores and the write buffer are connected
by a shared bus. Data in L1 caches are kept coherent by
following a snoop-based invalidation protocol.

The leakage energy reduction method for the L2 cache
exploits data compression and decompression, and there-
fore the compressor and decompressor hardware compo-
nents are provided in the memory hierarchy system. This
organization is similar to that in the literature [3] which has
compressor and decompressor, except that they assumes an
exclusion property between L1 and L2. On the other hand,
our L1 and L2 have an inclusion property that is more nat-
ural for today’s microprocessor architecture. In addition,
the objective in the literature [3] is virtual increase of as-
sociativity of the cache where the cache can behave as any
associativity from 4-way to 8-way depending on compres-
sion results. On the other hand, we aim at reducing leakage
energy consumption in the L2 cache without a change of the
associativity.

On writeback from L1 to L2 cache in replacement or on
filling from external main memory to L2 cache, block data
pass through the pipelined compressor. When missing in L1
cache and hitting in L2 cache, or when a block in the L2 is
replaced, the compressed block data are decompressed by
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Figure 1. Cache memory hierarchy.

the pipelined decompressor. When the block is the origi-
nal (uncompressed) one, the decompressor is bypassed and
the data are directly sent to the L1 cache and the execution
pipeline, or to external main memory, in order to eliminate
the decompression overheads.

4. Leakage Energy Reduction by Software
Self-Invalidation

In multiprocessor systems with snooping caches, cache
blocks can get invalid when receiving invalidation requests.
It is an effective way to turn off those invalid blocks by con-
trolling gated-Vdds. In addition, self-invalidation can in-
crease the number of blocks that can be turned off.

Self-invalidation was originally a technique for miti-
gating overheads of cache coherence management in dis-
tributed shared memory [5, 1]. We apply the concept of self-
invalidation to energy reduction in cache memory. The self-
invalidation methods proposed in the literatures [5, 1] were
mechanisms that were controlled fully by hardware. There-
fore, they are not appropriate for energy-reduction since
they require special hardware, version number directory or
signature tables, that would consume dynamic energy by
itself. Then we introduce a software self-invalidation tech-
nique in our system.

4.1. Last-touch memory access instructions

For efficiency of software self-invalidation, we introduce
the instructions, last-touch load/store, execution of which
not only functions as conventional load/store but also in-
validates cache blocks after accessing them. There are two
types of condition for invalidation as follows.

� A cache block is invalidated at the same time as it is
accessed.

� A word is marked when it is accessed. The cache block
is invalidated when all words in it get marked.

We call the former type of instructions “last-touch-block
load/store (ltb ld/st)”, and the latter “last-touch-word
load/store (ltw ld/st)”. When write-back policy is employed
and a block that is designated to be invalidated is of a modi-
fied state, the invalidation is performed after write-back op-
eration or insertion into a write buffer.

For example, load/store instructions that access each ad-
dress only once before it is invalidated by other processor
caches can be replaced by the last-touch load/store instruc-
tions. Similarly, ones that access each address only once in
a generation (between block filling and replacement) can be
replaced by the last-touch load/store instructions.

4.2. Hardware Mechanisms

It is necessary to give a small modification to conven-
tional L1 cache memory structure to reduce energy dissipa-
tion by using the last-touch instructions.

Last-touch flag bits are a part of L1 cache tag informa-
tion and indicate which word in the cache block has been
accessed by the last-touch load or store instruction. Figure 2
shows the cache memory structure including the last-touch
flag bits, when the block size is 16 bytes and a word size is 4
bytes. A single last-touch flag bit corresponds to a word in
the block. When a last-touch-word load/store instruction is
executed, the corresponding flag bit is cleared. On the other
hand, when a last-touch-block load/store instruction is exe-
cuted, all flag bits are cleared (as depicted in the second row
in the figure). Then, a block is invalidated when all the flag
bits are cleared.
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Figure 2. L1 cache memory structure.
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A valid bit of the whole cache block can be generated
by a logical disjunction (OR) of the last-touch flag bits. In
other words, last-touch flag bits are regarded as a valid bit of
each word. The last-touch flag bits are additional hardware
to conventional cache tag information. We choose flag bits
per word, not per byte, considering that the additional hard-
ware amounts should be small and that applications often
process data on a word basis.

We assume that the gated-Vdd (or gated-Vss) is imple-
mented by following the technique proposed by Yang, et
al. [17]. This is a wide NMOS dual-Vt gated-Vdd with
a charge pump and has about 5% of area overheads. The
gated-Vdd transistor is inserted between ground and SRAM
cells (virtual ground). When the gated-Vdd transistor is
turned off, the leakage energy is virtually eliminated. Fig-
ure 3 is a conceptual diagram of an L1 cache block. The
address tag and data parts of the block are connected with
one or more gated-Vdd transistors. The gated-Vdd transis-
tors are controlled by the valid bit. When the valid bit is one,
the gated-Vdd is turned on, otherwise, turned off and leak-
age energy in the address tag and data areas is eliminated.
(When the valid bit is prepared separately from last-touch
flag bits, the last-touch flag bits can be turned off as well. )

After a block is turned off, it takes a certain delay to wake
the block up again. This wakeup latency depends on the LSI
process used and the number of bits that a single gated-Vdd
transistor takes charge of. Short wakeup latency is desirable
from a performance point of view [16]. Kaxiras, et al. were
optimistic about the wakeup latency, since they estimated
that the latency is hidden by an L1 cache miss penalty [18].
Several researches adopted relatively short time, a few cy-
cles, as the wakeup latency [22][23]. We follow the same
(optimistic) assumption in this paper, since the latency can
be hidden by the effect of the write buffer or by access la-
tency for the next level in the hierarchy.

Valid
Last-touch
flag bits Address tag, etc. Data

GND

Gated-Vdd

Virtual ground

Figure 3. L1 gated-Vdd control.

5. Leakage Energy Reduction by Data Com-
pression

The size and energy dissipation of L2 cache memories
would grow in future processors, and therefore we try to
efficiently reduce leakage energy by gated-Vdd, without in-
creasing cache misses. We proposed the technique that used
gated-Vdd control per block and data compression [10, 11].
In our approach, only cache areas that had no valid data
were turned-off, which means that the turned-off areas lead
to no additional cache misses and the drawbacks of gated-
Vdd control that data might disappear can be eliminated.
This section describes the summary of the technique we
proposed, including a compression algorithm that we apply
newly in this paper.

5.1. Data compression schemes in secondary cache

In our strategy, data in a secondary cache memory are
compressed and the areas vacated by the compression are
turned off by controlling gated-Vdd transistors, which leads
to effective reduction of leakage energy. We use compres-
sion thresholds of 1/4, 1/2 and 3/4. For example, when a
block could be compressed into smaller than a fourth, the
compressed block data are stored in L2 cache and the other
three fourths area is turned off. When a block could not
be compressed into smaller than three fourths, the origi-
nal block is stored as it is. Although compression and de-
compression overheads exist when accessing the secondary
cache, they are not significant since a frequency in access-
ing the secondary cache is not high.

There are several hardware algorithms proposed for data
compression. Although the compression ability in the sense
that how small data can be compressed into is an important
point, the hardware size of the compressor/decompressor
and the compression/decompression latency are more im-
portant from the point of view of a tradeoff between the
cost/performance and the amount of energy-reduction.

In our previous study, we applied several hardware com-
pression/decompression algorithms, frequent pattern com-
pression (FPC) [4], frequent value compression (FVC) [7],
X-match algorithm and X-RL algorithm [13]. In the FPC,
pattern matching rules are applied to cache block data on
a word-by-word basis. The rules consist of zero run, 4-,
8-, or 16-bit data that can be decompressed to the original
32-bit data by sign-extension, repeated bytes, and so on.
The FVC performs compression by referring a dictionary
that contains frequent values in a running program. The X-
match temporarily constructs a dictionary for a given mem-
ory block and uses it for compression of the block. X-RL is
the same as the X-match, except it includes a zero run rule.
In the evaluation, X-RL was the best among all the above
algorithms in terms of compression sizes of cached blocks
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[11].
The evaluation in [11] was targeted to programs that

dealt mainly with integer data. The X-RL algorithm might
not fit applications with many floating point data. There-
fore, we investigate another compression algorithm that
may be appropriate for floating point data, “floating-point
compression algorithm (FPCA)” [12]. FPCA performs
compression per 64-bit data that is the size of a double-
precision floating-point number, and exploits value predic-
tion techniques which are originally for speculative execu-
tion. It reads a datum in a block and predicts the next value.
Then, the difference between the predicted value and the
actual value is used as a compressed datum. The prediction
techniques are FCM [24] and DFCM [6] that are context-
based predictors.

5.2. Hardware mechanisms

Figure 4 depicts the tag information for the L2 cache.
The “C1” and “C0” are the compression bits which indicate
how the corresponding block has been compressed. That
is, the value of “11” in the bits means the block has been
compressed into smaller than a fourth, “10” is a half, “01”
is three fourths, and “00” means the block couldn’t be com-
pressed. This information is directly used for controlling the
gated-Vdd transistors where at least three gated-Vdd tran-
sistors are required for a cache block to support the above
compression grain. This compression-bit field should be
held by some flip flops separated from the tag memory. (Ac-
tually, this field does not need to be visible to any software.)

The tag includes an “M” bit field that indicates the block
has been modified, since the L2 cache is managed by write-
back policy. The L1 caches also follow writeback policy
to alleviate the compression overheads in the L2 on every
store operation. For cache coherence management in case
of a multiprocessor configuration, the modified bit informa-
tion in the L1 caches should be immediately propagated to
the L2 tag on every update in the L1 cache.

Figure 5 is a conceptual diagram of an L2 cache block.
The rightmost part of the block is directly connected with a
ground, that is, the SRAM cells are always active with the
value of either one or zero. The other three parts are con-
nected with one or more gated-Vdd transistors. Each gated-
Vdd transistor is controlled by the compression bits. When
the compression bits are “00”, all the gated-Vdd transistors
are turned on. When “01”, the leftmost gated-Vdd is turned

C0 M Others Address tagC1

Figure 4. Tag in L2 cache.

C1 C0 . . .

L2 Cache Tag

. . . .

L2 Cache Data Block

GND GND GND GND

Gated-Vdd Tr

Figure 5. L2 gated-Vdd control.

off, and so on.

6. Evaluation

6.1. Simulation environment

We developed a scalar processor simulator that executes
the SPARC version 9 instruction set [19]. Binary executable
files generated by GNU C compiler were input to the simu-
lator. The simulator executes an instruction per cycle (sev-
eral instructions such as multiplication and division take
three or more cycles) and outputs the total execution cycles
and other informations; the number of cache misses, write
buffer stall cycles, consumed leakage energy, etc. The sim-
ulator has two target processors for multiprocessor configu-
ration. Each processor has L1 instruction/data split caches
that follow write-back policy. The L1 caches are connected
by a shared bus and managed based on a write invalidate
protocol. The system includes a write buffer and an L2 uni-
fied cache that is shared by all processors. The block size,
associativity, total cache size, and access latency can be set
up to any values.

In the simulation, the simulator calculated leakage en-
ergy in the L1 and L2 caches by using the following for-
mula.

Leak energy � Active cells� Active leakage� Active cycles

� Standby cells� Standby leakage� Standby cycles

The active leakage is for a turned-on cell and the standby
leakage is for a turned-off cell. The parameter values that
were shown in the literature [14] were applied to the above
formula (1740 nJ/s for an active cell and 53 nJ/s for a
standby cell, under 0.18µm).

6.2. Effects of self-invalidation scheme

For evaluation of software self-invalidation, we simu-
lated five kernel programs in the SPLASH-2 suite [15] in
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multiprocessor configuration. The input data sizes and in-
put file in the five programs are shown in Table 1.

The programs were simulated in advance to generate
traces of memory accesses. After that, we updated the
program codes by manually replacing load/store instruc-
tions with last-touch ones, referring to the traces. For
the last-touch instructions, we exploited load/store instruc-
tions from/to an alternate space that are implementation-
dependent instructions in the SPARC architecture. These
instructions can specify an address space identifier (ASI).
We used a discrete ASI value for each of last-touch-block
and last-touch-word instructions. We set up the L1 instruc-
tion and data caches as 32KB, 4-way set associative, 16B
block, and 1-cycle latency on hit, and the L2 cache as in-
finite size, 16B block, and 10-cycle on hit, and the write
buffer as infinite size and 1-cycle for insertion.

Table 2 shows the results of the five programs on three
different execution schemes; “base” is the execution with-
out gated-Vdd control, “inv.off” is the execution with gated-
Vdd control of invalid blocks, and “last-touch” is the exe-
cution with gated-Vdd control of invalid blocks supported
by last-touch load/store instructions. In the table, “Exec.
time” is the relative execution time normalized to the base.
Similarly, “Leakage energy” is the relative leakage energy
normalized to the base.

The “inv.off” execution reduced 15.5% of leakage en-
ergy in LU-contig, 33.0% in LU-noncontig, and 2.6% in
RADIX. For FFT and CHOLESKY, the execution could not
reduce leakage energy. (0.6% and 0.08%, respectively. )

For all of the five programs, our method (“last-touch”)
reduced more leakage energy than the simple “inf.off” ex-
ecution; 2.5% of leakage energy in FFT, 20.6% in LU-
contig, 46.3% in LU-noncontig, 46.5% in RADIX, and
1.0% in CHOLESKY. Table 3 shows the number of self-
invalidation by last-touch-block (ltb) and that by last-touch-
word (ltw) instructions, and the number of last-touch-word
instructions executed. Roughly, one self-invalidation oper-
ation is performed every four executions of the last-touch-
word instructions. The table 2 and table 3 show that a
large amount of leakage energy was reduced by “last-touch”

Table 1. Input data sizes and input file for
SPLASH-2 five programs.

Program Input data size / input file

FFT 65,536 complex
LU contig 256x256 matrix
LU non-contig 256x256 matrix
RADIX 262,144 keys
CHOLESKY wr10.O

Table 2. Results of last-touch load/store
scheme in L1 cache.

Program
Exec. Exec. Leakage

scheme time energy

base 1.0000 1.0000
FFT inv.off 1.0000 0.9938

last-touch 0.9999 0.9752
base 1.0000 1.0000

LU-contig inv.off 1.0000 0.8447
last-touch 0.9999 0.7943

base 1.0000 1.0000
LU-noncontig inv.off 1.0000 0.6697

last-touch 0.9968 0.5369
base 1.0000 1.0000

RADIX inv.off 1.0000 0.9741
last-touch 0.9989 0.5353

base 1.0000 1.0000
CHOLESKY inv.off 1.0000 0.9992

last-touch 0.9997 0.9895

Table 3. The number of self-invalidation.

Program # of self-invalidation # of ltw
ltb ltw instructions

FFT 36 66,044 264,190
LU contig 18 82,150 396,571
LU non-contig 18 157,156 908,555
RADIX 25 272,420 1,179,675
CHOLESKY 9 14,839 71,630

for LU-noncontig and RADIX, which included many self-
invalidations.

For all the programs, the “last-touch” execution de-
creased the execution cycles, although the difference was
small. This is because the number of cache misses was
decreased. The caches basically employed LRU replace-
ment policy where a block that was least recently used was
replaced. On replacement, an invalid block entry, if it ex-
isted, was selected for an entry that was filled with a missing
block. Therefore, the self-invalidation facilitates optimal re-
placement decision by invalidating blocks that are already
in dead-time. On the other hand, without self-invalidation,
the simple LRU might replace blocks that are still in live-
time and lead to cache misses later. This is the reason why
the execution time of “last-touch” was shorter than those of
“base” and “inv.off”.
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6.3. Effects of data compression scheme

We show the results of the data compression scheme
for the L2 leakage reduction. We used seven programs
in the SPEC CINT95 suite [20]; 099.go, 124.m88ksim,
129.compress, 130.li, 132.ijpeg, 134.perl, 147.vortex, and
130.li. Table 4 shows the seven programs. (Working sets in
SPLASH-2 programs were not large enough to utilize the
L2 cache. Therefore we did not use them for this evalua-
tion.) For each program, the first one billion of instructions
for initialization were skipped and the next one billion of
instructions were traced. We set up the L1 instruction and
data caches as 64KB, 2-way set-associative and 32B block,
and the L2 cache as 1MB, 2-way and 32B block. The write
buffer had 8 entries. The latency of compression and de-
compression was assumed 10 cycles. For the frequent value
compression (FVC) algorithm, we used 16 frequent values
that were obtained in the execution of the first 100 mil-
lion instructions. For FPCA, we used the level three, which
means a 23

� 8-entry table was used to store data contexts.
Table 5 shows the results of the seven programs on five

different compression schemes. The values in the table
are the relative leakage energy normalized to the base ex-
ecution without gated-Vdd control or compression. Of the
five compression algorithms, X-RL cut leakage energy most
for all programs. The execution of 099.go, 124.m88ksim,
130.li, 134.perl, and 147.vortex could reduce more than
30% of leakage energy by X-RL. However, the execution
of 129.compress could not reduce enough leakage energy.
The execution with FPCA could not match that with X-RL
for these integer applications. We will investigate the ability
of FPCA by using SPEC CFP programs in future works.

We confirmed that influence of the compression and de-
compression overheads was insignificant. As for compres-
sion, the write buffer could absorb the overheads since
blocks that were written back to the L2 cache were inserted

Table 4. Benchmark programs.

Program Outline Input

099.go
An internationally ranked

refgo-playing program

124.m88ksim
A chip simulator for Motorola

ref88100 microprocessor

129.compress
An in-memory version of the

refcommon UNIX utility
130.li Xlisp interpreter ref

132.ijpeg
Image compress/decompress

refon in-memory images
134.perl An interpreter for the Perl ref
147.vortex An object oriented database ref

into the buffer while the execution pipeline could continue
to run. After leaving the buffer, the blocks are sent to the
compressor. On the other hand, decompression latency can-
not be hidden. However, the frequency of accesses to com-
pressed blocks in the L2 was not high. Therefore, additional
execution time was relatively short. At worst, 3.7% degra-
dation in execution time was observed in 130.li with X-RL.
On average, the degradation was small, 1.82%, with X-RL.

7. Conclusion

Increasing energy consumption of microprocessors not
only raises the temperature of the LSIs but is an obstacle
to improvement of running speed. Therefore, reduction of
energy dissipation is essential to performance improvement
of future microprocessors. In this paper, we focused on
cache memories the size and energy consumption of which
are growing, and showed leakage energy reduction methods
that utilize gated-Vdd control, the software self-invalidation
scheme and dynamic data compression scheme.

In the evaluation, the software self-invalidation tech-
nique could reduce leakage energy consumption in the L1
cache without performance degradation compared to the ex-
ecution without the self-invalidation. The evaluation used
codes that were generated by manual translation based on
execution traces, which brought optimal application of last-
touch instructions, but would not be practical in actual soft-
ware execution. We will explore other methods of auto-
matic code generation. For example, the literature [25]
showed that cache misses could be decreased by compiler
optimization that made load and store instructions have in-
formation about temporal and spatial locality between in-
structions. We have prospects of applying similar compiling
techniques for leakage energy reduction.

The data compression technique reduced leakage energy
consumption in the L2 cache with less than 4% perfor-
mance degradation. Our evaluation did not include neither
dynamic energy consumption nor energy by the tag mem-
ory. In the future, we will try to evaluate total (static and
dynamic) energy including that of the compressor and de-
compressor hardware. For the purpose, we will design the
compressor and decompressor hardware, which will reveal
exact overheads and the hardware size.

In addition, for more practical usage, we will evaluate the
techniques, software self-invalidation for L1 and dynamic
compression for L2 simultaneously, with larger block sizes
appropriate for the secondary caches, by using a simulator
of a processor whose execution is based on instruction-level
parallelism, superscalar and out-of-order execution, where
a rate of memory references would be higher. Furthermore,
we will try to evaluate our methods for embedded proces-
sors which suffer energy limitation more seriously and have
smaller caches that cause more cache misses, which might
impact the methods.
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Table 5. Results of data compression scheme in L2 cache.

Program
Compression algorithm

fpc fvc x-match x-rl fpca

099.go 0.7227 0.9671 0.7647 0.6484 0.8673
124.m88ksim 0.8066 0.8793 0.6496 0.6201 0.9920
129.compress 0.9955 0.9981 0.9842 0.9824 0.9845
130.li 0.7561 0.7995 0.7522 0.6789 0.9346
132.ijpeg 0.8630 0.8898 0.9105 0.8601 0.8907
134.perl 0.7055 0.9821 0.7164 0.6201 0.8056
147.vortex 0.5624 0.7097 0.6913 0.5550 0.7579
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