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Rami Yared, Xavier Défago, Matthias Wiesmann†
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Abstract

The paper presents a fail-safe mobility management and
a collision prevention platform for a group of asynchronous
cooperative mobile robots. The fail-safe platform consists
of a time-free collision prevention protocol, which guaran-
tees that no collision can occur between robots, indepen-
dently of timeliness properties of the system, and even in the
presence of timing errors in the environment. The collision
prevention protocol is based on a distributed path reserva-
tion system. Each robot in the system knows the composi-
tion of the group, and can communicate with all robots of
the group.

A performance analysis of the protocol provides insights
for a proper dimensioning of system parameters in order to
maximize the average effective speed of the robots.

1 Introduction

Many interesting applications of mobile robotics envi-
sion groups or swarms of robots cooperating toward a com-
mon goal. Consider a distributed system composed of co-
operative autonomous mobile robots cultivating a garden.
Cultivating a garden requires that mobile robots move in
all directions in the garden sharing the same geographical
space. A robot has no prior knowledge about neither the
paths of other robots, nor their speeds.

A robot uses its local sensing system to detect unknown
fixed obstacles in the garden, and a robot is based on its lo-
cal motion planning facility to compute a path between the
current location and the goal. This path avoids the collisions
with fixed known obstacles.1

∗Work supported by MEXT Grant-in-Aid for Young Scientists (A)
(Nr. 18680007).

†Swiss National Science Foundation Fellowship PA 002-104979. Now
with Google Switzerland, Freigustraße 12, 8002 Zürich

1The robots are the only moving entities in the considered applications.

In cooperative autonomous mobile robot environments,
where robots move with unpredictable speeds, sensor-based
motion planning approaches cannot guarantee safe motion,
as mobile robots may collide with each other, because of
the unpredictable speeds of robots and the uncertainty of
the sensory information.

Specification. The robots are not provided with vision ca-
pability. In the considered applications, there is no central-
ized control nor global synchronization.

Problem. The robots are moving in different directions
sharing the physical space, thus collisions between mobile
robots can possibly occur. It is very important to focus on
the problem of preventing collisions between mobile robots.
Collision prevention leads to a dependable system and pre-
vents the occurrence of serious damage to the robots, which
could cause failures in the system.

Requirements. It is essential to provide a fail-safe plat-
form on which mobile robots can rely for their motion. This
platform guarantees that no collision between robots can oc-
cur.

A robot knows neither the positions of other robots nor
their destinations. Additionally, the speed of a robot is un-
known by other robots, and there is no known upper bound
on robot’s speed, so a robot cannot estimate the position of
another robot in the system. Therefore, robots need to coop-
erate in order to achieve a fail-safe motion. Cooperation is,
however, difficult to obtain under the weak communication
guarantees offered by wireless networks, because retrans-
mission of messages is needed to ensure message delivery
in wireless environments. The communication delays to de-
liver messages are difficult to anticipate. The previous argu-
ments ensure that a time-free collision prevention protocol
is indispensable.
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Contribution. In this paper, we present a fail-safe plat-
form on which cooperative mobile robots rely for their mo-
tion. Our fail-safe platform consists of a time-free collision
prevention protocol for an asynchronous system of cooper-
ative mobile robots, and guarantees that no collision can oc-
cur between robots, independently of timeliness properties
of the system, and even in the presence of timing errors in
the environment. The collision prevention protocol is based
on a distributed path reservation system. The paper presents
proofs of correctness of the protocol and proves the dead-
lock freedom, and the liveness properties of the protocol. A
performance analysis of the protocol provides insights for a
proper dimensioning of system parameters in order to max-
imize the average effective speed of the robots.

Related work. Martins et al. [4] demonstrated a sce-
nario of three cooperating cars, elaborated in the CORTEX
project, which relies on the existence of Timely Computing
Base TCB wormholes. The TCB concept was introduced by
Verı́ssimo and Casimiro in [6, 7]. Martins et al. in [4] use
an application’s fail-safety and time-elasticity to overcome
the uncertainty of the environment. The approach of Matins
et al. [4] is time-elastic, while our approach is time-free.

Nett et al. [5] presented a system architecture for coop-
erative mobile systems in real-time applications. The ap-
proach of Nett et al. [5] aims at real-time cooperative mobile
systems. The communications are synchronous, assuming
the existence of a known constant upper bound on the com-
munication delays, the infrastructure is based on wireless
LAN, and the protocols use the access point as a central
router. Our approach fundamentally differs in several as-
pects, our approach is asynchronous, and the mobile robots
form naturally a mobile ad hoc network on which they rely
for their communication. MANETs have no centralized
control nor global synchronization, also they do not guar-
antee the real-time constraints to deliver messages.

Structure of the paper. The rest of the paper is orga-
nized as follows. Section. 2 describes the system model,
definitions, and terminology. Section. 3 defines the colli-
sion prevention problem and its specification. In Section. 4,
we present our collision prevention protocol. Section. 5
presents a performance analysis of the protocol. Section. 6
concludes the paper.

2 System model and terminology

2.1 System model

We consider a system of n mobile robots S =
{r1, . . . , rn}, moving in a two dimensional plane. Each
robot has a unique identifier. The total composition of the
system is known to each robot.

Robots have access to a global positioning device that,
when queried by a robot ri, returns ri’s position with a
bounded error εgps.

The robots communicate using wireless communication
such that a robot ri can communicate with all robots of the
system. Communications assume retransmissions mecha-
nisms such that communication channels are reliable.

The system is asynchronous in the sense that there is no
bound on communication delays, processing speed and on
robots speed of movement.

2.2 Total Order Broadcast.

Total Order Broadcast, also called (atomic broadcast),
is a group communication primitive, which ensures that all
correct processes deliver all the messages in the same order.
Therefore, the total order broadcast ensures that all the cor-
rect processes agree on the same total order delivery of the
messages, so they can behave consistently. The total order
broadcast primitive also guarantees several other properties.
If a correct process broadcasts a message m then, this pro-
cess eventually delivers m. The total order broadcast also
ensures that if a process delivers a message m then, all cor-
rect processes eventually deliver m. Furthermore, for any
message m, every process delivers m at most once, and
only if m was previously broadcasted by some process. (see
Défago et al. [1] for a survey).

2.3 Definitions and terminology

Paths. A chunk is a line segment along which a robot
moves. A path of a robot is a continuous route composed of
a series of contiguous chunks. A path can take an arbitrary
geometric shape, but we consider only line segment based
paths for simplicity.

Errors. The are three sources of geometrical incertitude
concerning the position and the motion of a robot. Error re-
lated to the position information provided by the position-
ing system denoted εgps. In addition, the motion of a robot
creates two additional sources of errors. The first error is
related to the translational movement, denoted: εtr. The
second error is related to the rotational movement, denoted:
εθ.

Zones. A zone is a finite convex area of the plane. A zone
is defined as the area needed by a robot to move safely
along a chunk. This includes provisions for the shape of
the robot, positioning error, and imprecision in the moving
of the robot. The zone must contain the chunk the robot
is following. Figure 1 shows the zone Zi for a robot ri lo-
cated in point A and moves along the segment AB, where
d represents the radius of the geometrical shape of ri. The
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Figure 1. Reservation Zone.

zone Zi is composed of the following three parts, illustrated
in Figure 1: the first part named pre-motion zone and de-
noted pre(Zi), is the zone that robot ri possibly occupies
while waiting (before moving). The second part named mo-
tion zone and denoted motion(Zi), is the zone that robot ri

possibly occupies while moving. The third part named post-
motion zone and denoted post(Zi), is the zone that robot ri

possibly reaches after the motion.

3 Collision prevention protocol

3.1 Problem Specification

Before entering a zone Z, robot r executes reserve(r, Z).
After leaving a zone Z, robot r executes release(r, Z).

A robot ri releases the zone Zi that it has owned and
keeps only a part of post(Zi) under its reservation. The part
of the zone that has been released by ri is denoted: RelZ i.

Operations. We say that two reservation operations
reserve(ri, Zi), reserve(rj , Zj) conflict if ri 6= rj and
Zi ∩ Zj 6= ∅, we denote this o1 ./ o2. If a robot r exe-
cuted reserve(r, Z) but did not execute yet release(r, Z),
we say that r owns zone Z.

Schedules. We call a schedule an ordered sequence of op-
erations S = {o1, . . . om} where every operation is either
reserve(ri, Z

j
i ) or release(ri, Z

j
i ).

The notion of schedule is closely related to the notion of
histories used to model database operations [2]. The nota-

tion o1

S
� o2 is used to mark that operation o2 happens after

o1 in schedule S. We say that a schedule is correct, if it
enforces the following constraints.

• if a robot r executes release(r, Z), then it executed
reserve(r, Z) before.

• if robot r owns zone Z then there is no robot r
′

that
owns a zone Z

′
such that Z ∩ Z

′ 6= ∅

If in a given schedule all robots own at most k zones, we
say that this is a k-schedule. As robots need to be able to
reserve at least two zones (the one currently occupied and
the next one) k ≥ 2. We say that two schedules Sa and Sb

are compatible if:

• All operations of a given robot are in the same order,

i.e. ∀r | or
i

Sa� or
j 7−→ or

i

Sb� or
j .

• All conflicting operations are in the same order i.e.

∀oi, oj | oi ./ oj oi

Sa� oj 7−→ oi

Sb� oj

We say that two schedules are equivalent if they are com-
patible and contain the same set of operations:

• They contain the same set of operations, i.e. ∀o | o ∈
Sa 7−→ o ∈ Sb

The local schedule Sr of robot r is the ordered subset of a
schedule that only contains operations that either initiated
by robot r or conflict with operations initiated by robot r.

Scheduler. A scheduler is an algorithm that takes as input
a sequence of zone requests and builds as output for every
robot r ∈ R a local schedule Sr. A scheduler is correct if
all local schedules Sr are compatibles with correct schedule
S. We distinguish two types of deadlocks, the first type of
deadlocks is due to a cyclic happens after relation, and the
second type of deadlocks is due to pathological situation of
intersection between two requested zones. The details of
deadlock situation are explained in the extended version of
the paper [8]. We say that a scheduling algorithm is dead-
lock free if it avoids deadlocks. In the rest of the paper,
we concentrate on algorithms that are correct and deadlock
free.

4 State Machine Scheduler

The protocol is essentially a mutual exclusion on geo-
graphical areas. It is based on the state machine approach
of Lamport [3]. Briefly, the idea is as follows. Each robot
maintains a copy of the reservation queue and a protocol
ensures that all requests/releases are delivered in the same
sequence. With all replicas starting in the same state, they
evolve consistently with no need for further synchroniza-
tion.
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4.1 Basic idea.

The algorithm consists of a distributed path reservation
system, such that a robot must reserve a zone before it
moves. When a robot reserves a zone, it can move safely
inside the zone. All robots run the same protocol. When a
robot wants to move along a given chunk, it must reserve
the zone that surrounds this chunk. When this zone is re-
served, the robot moves along the chunk. Once the robot
reaches the end of the chunk, it releases the zone except
for the area that the robot occupies. When moving along a
path, the robot repeats this procedure for each chunk along
the path.

4.2 Detailed scheduler description

We present the variables used in the protocol.

• Zi is the zone currently requested or owned by robot
ri.

• Dagwait is a directed acyclic graph represents the
wait-for relations between robots, such that the ver-
tices represent the robots, and a directed edge from
vertex(ri) to vertex(rj) indicates that ri waits for rj .

We explain briefly2 the phases of the scheduler with respect
to a robot ri. The robot ri is located in the pre-motion zone
pre(Zi). When robot ri requests a new zone Zi, it proceeds
as follows.

1. TO-Broadcast. ri performs a total order broadcast of
a message that consists of two parts. The first part is
a REQUEST with the parameters of the requested zone
Zi, and the second part is a RELEASE of the previous
owned zone.

2. Append-Vertex. When the robot ri TO-delivers a
new message, a new vertex is added to the wait-for
graph Dagwait and an existing vertex is removed from
the graph. The new added vertex corresponds to the
REQUEST part of the message and the removed ver-
tex corresponds to the RELEASE part of the message.
When a robot releases the previous zone, the corre-
sponding vertex and its incoming edges are removed
from the wait-for graph. When a robot ri requests a
new zone Zi, a new vertex is added to Dagwait with
outgoing edges from the new vertex to all the vertices
of the graph such that the corresponding zone inter-
sects with the requested zone Zi. When the vertex that
represents the robot ri in Dagwait becomes a sink ver-
tex (has no outgoing edges), the requested zone Zi is
reserved to ri.

2The algorithm, omitted due to space limitations, is presented in the
extended version of the paper [8].

3. Request-Rejection. As the possibility of deadlock ex-
ists, the scheduler can reject some zone requests to
avoid deadlock situations. The routing algorithm of
the robot needs to be able to handle those rejections,
either by retrying at a later time, or by planning a dif-
ferent route.

4. Rejection-Handler. If the request (ri, Zi) is rejected
due to a Request-Rejection situation then, the routing
algorithm of robot ri handles the rejected request ei-
ther by retrying at a later time, or by planning a dif-
ferent route (alternative path). If there is no available
alternative path and the request is still rejected after a
certain number of trials then, an exception is raised.

5. Release. When ri reaches the post-motion zone
post(Zi), it computes its new position and thus it com-
putes the zone to be released which is Zi except the
place that ri may possibly occupy (footprint in addi-
tion to the positioning system error εgps). Initially, the
released zone is set to ⊥. All the robots build the same
wait-for graph Dagwait.

Property 1 (Liveness) If a robot ri requests Zi then even-
tually (ri owns Zi or an exception is raised).

ri requests Zi ⇒ ♦ (ri owns Zi or Exception)

Property 2 (Non triviality) Exception is raised only if
there is no available alternative path and the request is re-
jected after a certain number of trials.

The proofs of the correctness, the deadlock freedom and
the liveness properties of the scheduler, are omitted due to
space restrictions. They can be found in the extended ver-
sion of the paper [8].

5 Performance analysis

We study the performance of our protocol in terms of
the time needed by a robot ri to reach a given destination
when robots are active (robots do not sleep). We compute
the average effective speed of robots executing our collision
prevention protocol. We provide insights for a proper di-
mensioning of system parameters in order to maximize the
average effective speed of the robots. For simplicity, we as-
sume in this section that the physical dimensions of robots
are too small such that a robot can be considered as a point
in the plane. The geometrical incertitude related to the posi-
tioning system, translational and rotational movements are
neglected.
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5.1 Time needed to reserve and move a
chunk

The average physical speed of a robot is denoted by:
Vmot. We calculate the average time required for a robot
ri to reserve and move along a chunk of length Dch with a
physical speed Vmot.

When a robot requests a zone, it releases the previously
owned zone thus, a robot waits at most for (n − 1) robots
where n is the number of robots in the system. So, the av-
erage number of robots that ri waits for is: navg = n−1

2

Communication delays. In order to evaluate the perfor-
mance of the protocol, we need to consider an average com-
munication delays in the system, although the protocol is
time-free. The average communication delays in the sys-
tem is denoted: Tcom. When all the robots are active run-
ning the protocol, then the time needed to reserve and move
along a chunk denoted Tch is the sum of the time needed by
each of the following steps:

1. The delay to deliver a message, which depends on the
performance of the total order broadcast algorithm. We
consider that the delay to deliver a message is T n,
where T is a constant.

2. The time to receive the release messages from navg

robots each of which has owned its zone for Dch

Vmot
time

units. navg(Tcom + Dch

Vmot
)

3. The time needed by ri to move along a chunk. Dch

Vmot

Therefore, the time needed to reserve and move along a
chunk Tch is:

Tch = Tn +
n− 1

2
Tcom + (

n + 1
2

)
Dch

Vmot
(1)

5.2 Average effective speed

We compute the average effective speed V of a robot ri

as a function of the chunk length Dch and of the number of
robots n in the system.

The average effective speed V is:

V =
Dch

Tn + n−1
2 Tcom + ( n+1

2Vmot
)Dch

(2)

The previous relation shows that the effective speed is a
function of the chunk length and the number of robots
n, also the effective speed depends on some system-based
fixed parameters such as the communication delays Tcom

and the physical speed of robots Vmot. The effective speed
depends also on the performance of the total order broadcast
algorithm.

0 0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

1

A
v
e

ra
g

e
 E

ff
e

c
ti
v
e

 S
p

e
e

d
 [
m

/s
]

T
com

 = 10 [ms]

T = 50 [ms]

v
mot

 = 1 [m/s]

n=1 [robot]

n=2 [robot]

n=3 [robot]

n=6 [robot]

n=10 [robot]

n=60

Chunk length [m]

Figure 2. Effective speed vs chunk length.

5.3 Average effective speed vs chunk
length

We focus on the relation between the average effective
speed and the chunk length for a given number of robots n.
The effective speed increases as the chunk length increases.
The explanation is that a robot ri waits at most for n − 1
robots (in a group of n robots) to move along each chunk of
its path. ri needs to do a certain number of steps to reach the
destination, and the number of steps depends on the chunk
length. When the chunk length increases, the number of
steps decreases. Therefore, the average effective speed V
increases with the chunk length Dch. Equation 2 implies
that the average effective speed approaches toward the value
2Vmot

n+1 as the chunk length tends to infinity. Figure 2 repre-
sents the relationship between the effective speed and the
chunk length for different values of the number of robots.
The average effective speed of robots increases as the chunk
length increases for a given number of robots. There is an
optimal value of the chunk length that maximizes the ef-
fective speed of the robots. The effective speed keeps this
maximal value as the chunk length getting longer than the
optimal value. The average effective speed has a horizontal
asymptote at 2Vmot

n+1

Numerical values. The values of the fixed system param-
eters are: Tcom = 10[ms], Vmot = 1[m/s]. We consider
that the time required to deliver a message is T n, where
T = 50[ms]. The number of robots varies from one robot
until 60 robots, and the chunk length varies from zero to 3
meters. The average effective speed increases as the chunk
length increases until it reaches a maximal value. Figure 2
shows that, in a case of a system composed of 3 robots for
example, the maximal effective speed is 0.48[m/s] which
corresponds to optimal chunk length ≈ 2[m].
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5.4 Average effective speed vs number of
robots

We focus on the relation between the average effective
speed V and the number of robots n in the system for
a given value of the chunk length. The effective speed
decreases as the number of robots increases for a given
chunk length, because a robot ri must wait for more robots.
Figure 3 shows the variation of the average effective speed
with respect to the number of robots for different values of
the chunk length.

Numerical values. The chunk length varies from 1[cm]
until 10 meters. (Figure 3). The set of curves in Figure 3
have an envelop curve, given by the following equation:
V = 2Vmot

n+1 = 2
n+1

• The envelop curve corresponds to the average effec-
tive speed for very high values of the chunk length
(tends to infinity), because the average effective speed
approaches to a constant value.

• All curves in Figure 3 approaches to zero, when the
number of robots tends to infinity. (horizontal asymp-
tote at effective speed = 0).

6 Conclusion

We presented a fail-safe mobility management and
achieved a collision prevention platform for a group of
asynchronous cooperative mobile robots.

Our fail-safe platform consists of a time-free collision
prevention protocol, which guarantees that no collision can
occur between robots, independently of timeliness proper-
ties of the system, and even in the presence of timing er-
rors in the environment. The collision prevention protocol is

based on a distributed path reservation system. Each robot
in the system knows the composition of the group, and can
communicate with all robots of the group. We proved the
correctness, the deadlock freedom, and the liveness proper-
ties of the protocol. We have analyzed the performance of
the protocol and provided insights for a proper dimension-
ing of system parameters in order to maximize the average
effective speed of the robots. We have also successfully im-
plemented a working prototype of the platform on Pioneer
3DX robots, in Java and using the ARIA library3.
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