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Abstract 
In multiprocessor systems, redundant scheduling is 

a technique that trades processing power for increased 
reliability. One approach, called primary-backup task 
scheduling, is often used in real-time multiprocessor 
systems to ensure that deadlines are met in spite of 
faults. Briefly, it consists in scheduling a secondary 
task conditionally, in such a way that the secondary 
task actually gets executed only if the primary task (or 
the processor executing it) fails to terminate properly. 
Doing so avoids wasting CPU resources in the fail-
ure-free case, but primary and secondary tasks must 
then compete for resources in case of failure. To over-
come this, overloading strategies, such as primary and 
backup overloading (PB) and backup-backup over-
loading (BB), aim at improving schedulability while 
retaining a certain level of reliability. 

In this paper, we propose a hybrid overloading 
technique based on extended PB overloading, which 
combines advantages of both PB and BB overloading. 
The three overloading strategies are then compared 
through a stochastic analysis, and by simulating them 
under diverse system conditions. The analysis shows 
that hybrid overloading provides an excellent tradeoff 
between schedulability and reliability.  

1. Introduction 

Real-time multiprocessor systems are defined as 
systems in which the correctness depends on not only 
the logical results of computations, but also the time at 
which the results are produced [1]. Thus, it is essential 
that tasks are completed before their deadlines even in 

the presence of processor or task failures. 
Fault-tolerance is thus an inherent requirement of 
real-time systems.  

In a multiprocessor system, fault-tolerance can be 
provided by redundantly scheduling copies of tasks on 
different processors [1-9]. Primary-backup scheduling 
is one instance of a fault-tolerant scheduling technique. 
In primary backup task scheduling, two instances of a 
task, namely, primary and backup tasks, are scheduled 
on two different processors. The backup task gets exe-
cuted if and only if the primary task fails some accep-
tance test [4-11].  

To improve the schedulability (i.e., the total number 
of tasks that can be scheduled), overloading is often 
used. Primary backup overloading (called PB over-
loading for short) allows a primary task to be sched-
uled onto a processor and time slot overlapping with 
that of the backup instance of another task [11](Fig.1a). 
Backup-backup overloading (BB overloading) allows 
only backup tasks to overlap with each other, but not 
with primary tasks [4,7,11](Fig.1b). Al-Omari et al. [11] 
find that PB overloading is able to achieve better per-
formance than BB overloading, which is in turn better 
than any non-overloading strategy. 

 
Figure 1. Examples of overloading. 

In this paper, we improve existing PB overloading, 
and then propose a hybrid overloading strategy (not 
meant as a simple combination of PB and BB over-
loading). We evaluate the approach by comparing it 
with PB and BB overloading, using both a stochastic 
analysis and simulations. 
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Related work.  In primary-backup task scheduling, 
the backup version is often referred to as a “ghost” task 
[16]; the backup is scheduled only conditionally and is 
removed upon the successful completion of the pri-
mary [4,6,11]. 

The PB overloading of Al-Omari et al. [11] limits 
the number of primaries to only two. With this limita-
tion and on three processors, PB overloading offers 
better schedulability than BB overloading. However, 
on more than three processors, PB overloading with 
only two tasks can no longer offer better schedulability 
than BB overloading. Although we could not find any 
scheduling strategy combining PB and BB overloading, 
nothing prevents such a combination. 

Schedulability and reliability are often used as the 
main metrics to evaluate fault-tolerant real-time task 
scheduling. PB overloading was shown to offer better 
schedulability but lower reliability than BB overload-
ing [11]. Considering the tradeoff between schedulabil-
ity and reliability in practical situations and the fact 
that failures are usually rare events, PB overloading is 
overall more effective than BB overloading. 

With the approach of Ghosh et al. [4], backups are 
scheduled as late as possible, are overloaded on other 
backups whenever possible, and a function is used to 
control the overlapping depth between overloaded 
backups. To tolerate more faults, BB overloading can 
be made to take place only on a static subset of the 
processors [7] (static grouping). Al-Omari et al. [11] 
extended it to dynamic grouping and presented a PB 
overloading strategy with improved schedulability. 

It is known that no optimal algorithm exists for 
dynamic scheduling on a multiprocessor system [15]. 
Aperiodic tasks (i.e., the arrivals and deadlines of 
which are not known in advance) require dynamic 
scheduling algorithm. When the scheduler of 
Ghosh et al. [4] cannot find a proper time slot for a 
new task, some primary is re-scheduled by moving it 
forward, while no backups can be re-scheduled. In 
[6,11], scheduling is based on the Spring approach [12], 
which is a heuristic that dynamically schedules tasks 
according to resource requirements. 

Roadmap.  The rest of the paper is organized as fol-
lows. Section 2 introduces the system model and basic 
definitions, including the tasks and fault models used 
in our performance analysis. In Section 3, we present 
an improved PB overloading technique, as well as our 
hybrid overloading. Section 4 presents the stochastic 
analysis, and the simulation results are discussed in 
Section 5. Section 6 concludes the paper. 

2. Models and Definitions 

2.1. System model 

 
Figure 2. System structure. 

The system model considered in this paper is simi-
lar to those found in the literature [2,6,7,11], and is 
illustrated on Fig.2. All tasks arrive at the scheduler, a 
centralized server, which process them on a first-come 
first-served basis. The tasks are then dispatched to 
other processors, and executed according to their 
schedule. All processors have identical computing ca-
pability and are connected through a network. The 
scheduler is running in parallel with the processors. 
Each processor has its own task queue. We assume that 
the scheduler never fails, either because it runs on a 
fault-proof processor, or because it has been replicated. 
The total number of processors is m. 

2.2. Task model 

Tasks have the following characteristics:  
1. Tasks are asynchronous and aperiodic, i.e., task 

arrivals are not known in advance. Each task Ti 
has the numeric characteristics: arrival time (ai), 
worst-case computation time (ci), deadline (di) 
and task laxity li. The mean of all ci is C.  

2. Each task has two identical versions. The ver-
sion to be scheduled earlier in a schedule is 
marked as primary (pri) and the other one is 
marked as backup (bki). After a primary has fin-
ished successfully, its backup is immediately 
cancelled. The outputs of the primary and its 
backup are always identical. In other words, the 
tasks are idempotent.  

3. Tasks are not parallelizable. A task can be exe-
cuted only on one single processor. 

4. Tasks are independent. For tasks with prece-
dence constraints, the deadlines of tasks can be 
modified to make tasks comply with their 
precedence constraints [7]. 

5. Tasks are non-preemptable.  

2.3. Fault model 

Each processor, except the scheduler, may fail due 
to hardware or software faults. The failure of a proces-
sor results in the failure of all tasks it executes. Faults 
can be either transient or permanent. Faults are as-
sumed to be independent and only affect a single proc-
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essor. For simplicity, we assume that, at any one time, 
at most one single processor can be crashed. In other 
words, we consider 1-timely-fault tolerant schedules, 
where a k-timely-fault-tolerant (k-TFT) schedule is 
defined as the schedule in which no task deadlines are 
missed, despite k arbitrary processor failures [13]. 

MTBF (mean time between failures) is the expected 
time between two consecutive failures. TTSF (time to 
second failure) is the time to the second simultaneous 
failure, i.e., the critical time between two consecutive 
failures where the second failure occurs during the 
vulnerability window opened by the first one. Hence, a 
longer TTSF means a lower reliability. In order to 
guarantee the successful execution of tasks, we assume 
that ( )iii adT −∀  is much less than MTBF. If no over-
loading exists, in the worst case, TTSF will be equal 
to ( )ii admax − . Because of overloading, TTSF will be 
discussed again in the sequel.  

A failure detection mechanism is assumed to exist 
and provide information on processor/task failures. It is 
assumed to be perfect (i.e., no false suspicions) and 
timely (i.e., failures announced before the starting time 
of backups). The scheduler will not schedule tasks to a 
known failed processor. 

2.4. Definitions 

 An overloading chain refers to a sequence of tasks 
that are related due to overloading. In PB overloading, 
a chain is formed between two tasks T1 and T2, when 
the backup of T1 overlaps with the primary of T2. In 
BB overloading, a chain is formed between two tasks 
when their backups overlap each other. 

The time length lt of an overloading chain is the 
length of time interval between the start time of the 
first task and the end time of the last task in this chain. 

The overloading space s of an overloading chain is 
the set of processors involved in this chain. The space 
length ls of an overloading chain is the size of s minus 
1, viz., 1−= sls . ls is also equal to the number of pri-
maries in the chain. An overloading chain is said to be 
looped when it involves the same processor repeatedly. 
For instance, the chain depicted in Fig.3 is a looped 
chain because processor 4 is involved both for pr1 and 
later for bk4. An overloading chain is full when either lt 
or ls reaches its maximum. 

3. Overloading techniques 

In this section, we first improve the PB overloading 
of Al-Omari et al. [11], and then introduce our hybrid 
overloading. In this paper, we only focus on the over-
loading techniques that are usually affected by practi-
cal scheduling algorithms.  

3.1. Extended PB overloading 

Although Al-Omari et al. [11] considered primary 
backup overloading that can involve only two prima-
ries, it is easy for a scheduler to produce longer over-
loading chains. However, the problem is how to guar-
antee the validity and the reliability of the chain. 

For PB overloading, looped chains are invalid. This 
is because a single processor failure may actually pre-
vent some tasks from being executed at all. For in-
stance, consider the looped chain of Fig.3. If proces-
sor 4 fails while executing pr1, then bk1 will have to be 
scheduled, triggering a domino effect by which each of 
the backup tasks of the chain must be executed instead 
of their primary. The problem is that bk4 must be 
scheduled, but it cannot be executed since processor 4 
has failed and may not have recovered. Note that, if 

mls >  for an extended PB overloading chain, then the 
chain must be looped. 

 
Figure 3. Looped chain. The chain across different 

processors joins itself on Processor 4. 
TTSF is equal to lt for an overloading chain. For BB 

overloading, in the worst case we have that 
( ) ( ) iiit T,admaxlmaxTTSF ∀−== ,    (1) 

For PB overloading, in the worst case we have that 
( ) ( ) iiist T,admaxllmaxTTSF ∀−⋅== .    (2) 

If we do not properly control the length of PB over-
loading chains, then extended PB overloading may 
possibly be very unreliable.  

Hence, we have the following rules for extended 
PB overloading: 

1. The primary and backup of a task cannot coex-
ist on the same processor. 

2. If the number of processors is m, the maximum 
space length ls of any chain is m-1. 

3. The time length lt of a chain must be less than 
the minimum time interval between failures. 

4. A full overloading chain (i.e., when either space 
or time length is maximal) cannot be extended.  

5. If a full overloading chain is shortened after the 
successful completion of a task, this chain is no 
longer full and can be extended again. 

For a real-time system, it is usually difficult to pre-
dict the minimum time interval between failures. Thus, 
lt can be set as an empirical parameter. However, for a 
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multiprocessor system with only a few processors, the 
limiting factor for the length of overloading chains will 
likely be the number of processors rather than the in-
terval between failures. Similarly, for a system with 
many processors, overloading will usually take place 
within subgroups of processors [7,11]. As a result, 
overloading chains, limited by the number of proces-
sors in each group, will remain relatively short, in par-
ticular, shorter than the MTBF. In fact, even in a sys-
tem with a large number of processors, the probability 
of forming the maximum lt remains small. A stochastic 
analysis about the reliability is presented in Section 4. 

Extended PB overloading is a natural extension of 
PB overloading. Hence, in the sequel, PB overloading 
will refer to its extended version. 

3.2. Hybrid overloading 

All tasks in previous schedules have four forms: 
single primary (pr), single backup (bk), overloaded 
primary and backup (pr, bk) and overloaded backups 
(bk, bk). A BB overloading chain can contain (pr) and 
(bk, bk). A PB overloading chain can contain (pr), (pr, 
bk) and (bk). With a simple combination of PB and BB 
overloading, an overloading chain cannot contain all 
four forms. But, in our hybrid overloading, a chain can 
contain all four forms, plus a new form, overloaded 
primary and backups (pr, bk, bk). Two possible hybrid 
overloading chains are shown in Fig.4. 

 
Figure 4. Examples of hybrid overloading. 

Hybrid overloading inherits all rules and advan-
tages from BB and PB overloading. It has better 
schedulability than BB overloading and yet better reli-
ability than PB overloading. 

Under some conditions, a hybrid overloading chain 
can be transformed into different shapes, including into 
a purely BB or PB overloading chain. This means that 
hybrid overloading can be made to satisfy different 
scheduling requirements, such as, high schedulability 
first, resource utilization first, or reliability first. Due to 
the flexibility of hybrid overloading, many different 
algorithms can be designed to schedule tasks into hy-
brid overloading chains. In this paper, we however 
focus on the introduction and analysis of hybrid over-
loading itself, rather than scheduling algorithms. 

4. Stochastic analysis 

In this section, we compare overloading techniques 
according to their respective schedulability and reli-
ability. We use stochastic analysis considering task 
arrival, task laxity, and different worst case execution 
time. Tasks are scheduled on a first-come first-served 
basis.  

The number of primaries in an overloading chain is 
denoted as n, and the number of primaries in a schedule 
is denoted as N. The time interval of task arrivals fol-
lows an exponential distribution with mean 1/λ, where 
λ is the arrival rate of tasks. 

The worst-case execution time is distributed uni-
formly over the interval [Cmin, Cmax], with 

2
minmax CCC +

= . 

The task laxity l is distributed uniformly over the 
interval [3, L]. 

The time length and space length of overloading 
chains follow uniform distribution within their maxi-
mum values and minimum values respectively. 

4.1. Resource utilization analysis 
Since primary-backup fault-tolerant scheduling re-

lies on redundancy, the improved reliability of the sys-
tem comes at the expense of resource utilization, in 
particular, schedulability. For a full overloading chain, 
PB overloading, BB overloading, and hybrid over-
loading have the same maximum resource utilization, 
as long as tasks can be tightly overloaded. This re-
source utilization is (m-1)/m, which means that only 
one time slot is used for backups. However, maximal 
resource utilization cannot always be reached, depend-
ing on task arrival, task computation time, and task 
laxity. 

A full overloading chain cannot always be sched-
uled successfully. For the model presented in Section 2, 
we have the following lemmas. 
Lemma 1. The probability of emerging a BB 
overloading chain with n tasks, PrBB(n), is 

( ) ∫ ∫
= = −−

=
L

l

C

Cc minmax
BB

max

min
CCL

nPr
3

1
3

1  

( ) ( ) ,dcdle
!z

ccln

z

cclz
z

⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅

−⋅
−× ∑

−

=

−⋅⋅−2

0

221 λλ  

12 −≤≤ mn .  (3) 
Proof Sketch. An example of BB overloading is 
shown in Fig.5, where xi denotes the time intervals 
between task arrivals. All tasks must be allocated 
within l·c. In this paper, a primary and its backup can-
not be executed in parallel, that is, the execution of a 
primary cannot be overlapped with the execution of its 
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backup. Thus, if bk2 is scheduled to overload on bk1, 
the second task T2, must satisfy cxcl 21 ≥−⋅ .Similarly, 
task T3 must satisfy cxxcl 221 ≥−−⋅ . If n tasks are 
overloaded together, the probability of forming a BB 
overloading chain is 

( ) ( )cclxxxPrnPr nBB 2121 −⋅≤+++= −L .  

 
Figure 5. Variables in BB overloading. 

xi follows an exponential distribution. We give the 
following formula for the sum of n exponentially dis-
tributed random variables, of which we omit the proof. 

( ) =≤+++ kxxxPr nL21  

01
1

0
≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅− ∑

−

=

⋅− k,e
!z

kn

z

kz
z

λλ . 

With this formula, the probability is 
( ) ( )cclxxxPrnPr nBB 2121 −⋅≤+++= −L  

∫ ∫
= = −−

=
L

l

C

Cc minmax

max

min
CCL3

1
3

1  

( )dcdlcclxxxPr n 2121 −⋅≤+++× −L . 
Hence, we have Eq.3. □ 

Lemma 2. The probability of emerging a PB 
overloading chain with n tasks, PrPB(n), is 

( ) ⎜
⎜

⎝

⎛

−−
= ∫ ∫

= =

L

l

C

Cc minmax
PB

max

min
CCL

nPr
3

1
3

1  

12
1

0
−≤≤⎟

⎟
⎠

⎞
⋅×

−−⋅
⋅−∫ mn,dxdcdle

nccl
xλλ . (4) 

Proof Sketch. An example of PB overloading is shown 
in Fig.6. To schedule a PB overloading chain with n 
tasks, the chain must satisfy 

123331222 −≥−⋅≥−⋅≥−⋅ nnnn cxcl,,cxcl,cxcl L . 
Since li, ci, and xi are independent. The probability of 
emerging a PB overloading chain with n tasks is  

( ) ( )[ ]
1

03

1

1
3

1
−−⋅

⋅−

= =

−

⎟
⎟
⎠

⎞
⋅⎜

⎜

⎝

⎛

−−

=−⋅≤=

∫∫ ∫
nccl

x
L

l

C

Cc minmax

n
PB

dxdcdle
CCL

cclxPrnPr

max

min

λλ
.□ 

 
Figure 6. Variables in PB overloading.

  

   
Figure 7. The probabilities of emerging an overloading chain in different scenarios. 
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The probabilities of emerging an overloading chain 
are affected by the task arrival rate, the number of tasks 
in the chain, and the task laxity. Given specific pa-
rameters, the probability is represented in Fig.7. l·c is 
defined to be the task window [4]. As the task window 
decreases, the probabilities decrease. As the number of 
tasks (in a chain) increases, the probabilities decrease. 
Regardless of the parameters, PrPB is always larger 
than PrBB. This is summarized in the following propo-
sition. 
Proposition 1. The probability of emerging a PB 
overloading chain is larger than that of emerging a BB 
overloading chain, if the number of tasks in the PB 
overloading chain is equal to that in the BB overload-
ing chain. 

The probability of emerging an overloading chain 
with n tasks, Pr*(n), can be used to calculate the num-
ber of time slots occupied by all primaries and backups 
in a previous schedule with N tasks. (∗=PB or BB). 

The scheduling algorithms with overloading tech-
niques always try to improve resource utilization and 
increase the number of tasks overloaded together. If 
tasks cannot form a long overloading chain, a relatively 
short chain will be formed instead. For a prior schedule 
with N primaries, the time slots occupied by all prima-
ries and backups, Na, can be calculated from the fol-
lowing theorem. 
Theorem 1. Given N previously scheduled tasks, the 
number of time slots occupied by all primaries and 
backups, Na, is 

( ) ( )∑ ∑
−= −=

≥⎥
⎦

⎤
⎢
⎣

⎡
−⋅+⎥⎦

⎤
⎢⎣
⎡

+
⋅⋅=

b

mi

b

mi
a b,iRN

i
iiRNN

1 1
212

1
, (5) 

( ) ( ) ( )

( )⎪
⎩

⎪
⎨

⎧

=−

−<≤⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

=
∑
+

−=

my,mPr

my,yPrjR
yR

*

*
y

mj

1

121
1

1 .  (6) 

where b is the minimum bound for which ( ) 1
1

≤∑
−=

b

mx
xR . 

and R(i) is the ratio of the number of tasks in the chains 
(with ils = ) to N tasks. 
Proof Sketch. Since a short overloading chain will be 
formed only if a long one cannot be made, a longer 
chain emerges always prior to a shorter one. The fol-
lowing equations can represent this process. 

( ) ( )11 −=− mPrmR * ,  
( ) ( )[ ] ( )2112 −⋅−−=− mPrmPrmR ** , 
( ) ( ) ( )[ ] ( ){ } 21111 3 −⋅−−−−−=− mPrmPrmPrmR ***  

( )3−× mPr* , 
( ) ( ) ( ) ( ){ } ( )43211 4 −⋅−−−−−−=− mPrmRmRmRmR * , 

M  
Here, R(i) is defined to be the ratio of the number of 

tasks in chains with ils =  to all previously scheduled 
tasks. This process will go on until all tasks are sched-
uled. Thus, we can get Eq.6. When this process ends, 
the shortest space length of an overloading chain can 
be any value between 2 and m-1, and there might be 
some tasks not being overloaded on any previous task. 
For a system with m processors, the maximum number 
of tasks in a full overloading chain is m-1, and these 
tasks occupy m time slots. Generally an overloading 
chain with i tasks will occupy i+1 time slots. A task 
that is not overloaded will occupy two time slots. The 
iterative calculation is given in Eq.5. □ 

Finally the resource utilization is given as 

aN
NnUtilizatio = .       (7) 

According to Proposition 1, the resource utilization of 
PB overloading is always larger than BB overloading. 

4.2. Schedulability and Reliability Analysis 

For a system with finite resources, the tradeoff be-
tween schedulability and reliability always comes as a 
result of resource competition between primaries and 
backups. In this section, we first consider a failure-free 
system, and then discuss fault-tolerant systems. For a 
failure-free real-time system, when a new task arrives 
and finds N previous tasks in the current schedule, this 
task can be accepted only if its deadline can be guar-
anteed. Thus, the probability of accepting (N+1)th task 
is 

( ) ⎟
⎠

⎞
⎜
⎝

⎛ ≥
⋅

−⋅=+ c
m

CNclPrNPra 1 . N·C/m is the average 

finish time of the last task on each processor.  

⎟
⎠

⎞
⎜
⎝

⎛ <
⋅

−⋅−=⎟
⎠

⎞
⎜
⎝

⎛ ≥
⋅

−⋅ c
m

CNclPrc
m

CNclPr 1  

( ) ⎥⎦

⎤
⎢⎣

⎡ ⋅
<⋅−−=

m
CNclPr 11  

( )
dcdl

CCL

lm
CN

C minmax

L

min
∫∫
−⋅

⋅

−−
−=

1

3

1
3

11  

( ) ( ) minmax

min

minmax CC
C

mCCL

LlnCN

−
+

⋅−⋅−

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅
−=

3
2

1

1 .  (8) 

In Eq.8, all parameters are constant for a specific sys-
tem, except for N. Hence the probability of accepting a 
task is a function of the number of tasks in a previous 
schedule. 

( ) ( )

( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

<
−

+
⋅−⋅−

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅
−

≤

=

=+

Nm,
CC

C
mCCL

LlnCN

mN,
NfNPr

minmax

min

minmax

a

3
2

1

1

1
1

 (9) 
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For PB overloading, a new task can be overloaded 
on previous backups that are not in a full overloading 
chain. The function should be 

( ) =+1NPr PB
a  

( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧

−
⋅−⋅+−−⋅

1
111

m
mmPrNmPrNf PBPB (10) 

For BB overloading, all time slots occupied by all pri-
maries and backups cannot be used for the new task. 
Therefore the function is 

( ) ( )a
BB

a NfNPr =+1 .            (11) 
The acceptance probabilities are shown in Fig.8. 

The acceptance probability of PB overloading is al-
ways larger than that of BB overloading. As the num-
ber of previous tasks increases, the acceptance prob-
abilities decrease. The number of previous tasks will 
reach a maximum value, which is the equilibrium 
status of arrival, departure, and rejection of tasks. This 
maximum number for PB overloading is larger than 
BB overloading, that is, the system with PB overload-
ing can accept more tasks than the system with BB 
overloading. When the task arrival rate is much larger 
for a system, the probability for PB overloading is 

close to that of BB overloading because almost all 
chains will reach the maximum space length, which is 
the same for both PB and BB overloading. Note that 
we do not consider the effect of scheduling algorithm 
in this analysis. 

In the literature, real-time systems are usually 
characterized by Markov model [4, 7, 11] and queuing 
model [18, 19, 20]. In particular, a real-time system 
can be characterized by a queuing model such as 
M/M/m. In [19, 20], it was shown that M/M/1 is very 
accurate to model a real-time system with one single 
processor. The fault-tolerant real-time systems with 
primary-backup techniques can be characterized by 
M/M/m with customer leaving. The rejection of tasks 
can be considered as customers leaving the system. 
The acceptance probability can be used to build an 
M/M/m model with customer leaving. The average 
acceptance ratio of the system derives from the prob-
ability of N tasks waiting in the system and the accep-
tance probability of the (N+1)th tasks. In this paper, we 
will not give further analytical results of queuing 
model due to space constraints.

 
Figure 8. The Probabilities of acceptance in different scenarios. 

The reliability is usually measured by the time to 
second failure (TTSF) [4,11]. As shown in Eq.1 and 
Eq.2, TTSF is affected by the time length of an over-
loading chain. It may seem that the time length of a PB 
overloading chain is much longer than that of a BB 
overloading chain, and that the former might be so 
long as to be even longer than that MTBF. In fact, it 
turns out that the time length of a PB overloading chain 
is limited by the maximum number of tasks that can be 
accepted by the system. 

For BB overloading chains the time length BB
tl is 

between 2c and l·c. Hence the average time length is 
( ) ( )

4
2

2
2 minmaxBB

a_t
CCLCCLl +⋅+

=
+⋅

= . 

For PB overloading, the maximum number of accepted 

tasks in a schedule can be worked out from the calcula-
tion of Eq.8, where the upper bound of integration 
should be less than maxC . Thus we have  

( ) ( ) maxmax Cl
m

CNC
lm
CN

⋅−≤
⋅

⇒≤
−⋅

⋅ 1
1

 

( ) maxCL
m

CN
⋅−≤

⋅
⇒ 1 . 

( ) maxCL ⋅−1 is the real maximum time length of PB 
overloading chains. The minimum time length of a full 
PB overloading chain is given by m·Cmin. Thus we have 
the average time length for PB overloading chains 

( )
2

1 minmaxPB
a_t

CmCLl ⋅+⋅−
= . 

The average time length of full overloading chains 
is listed in Table 1.  
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Table 1. The Average time length of overloading 
chains in different scenarios. 

Cmin 

(s) 
Cmax 

(s) 

L 
 

m 
 

BB 
(s) 

PB 
(s) 

PB/BB
 

5 10 26.25 30 1.143 
5 15 35 40 1.143 
5 25 

5 

52.5 60 1.143 
5 10 45 55 1.222 
5 15 60 77.5 1.291 
5 25 

10 

4 

90 122.5 1.361 
5 10 45 65 1.444 
5 15 60 87.5 1.458 
5 25 

10 

90 132.5 1.472 
5 10 63.75 90 1.411 
5 15 85 125 1.470 
5 25 

15 

8 

127.5 195 1.529 

 As shown in Table 1, the time length of PB over-
loading chains is longer than that of BB overloading 
chains, but the ratio of PB to BB is not very large. Note 
that the calculation of time length assumes that the 
time length follows a uniform distribution between the 
maximum and the minimum. In a practical scheduling 
process, the time length of PB overloading chains is 
usually close to its minimum due to the heavy traffic of 
tasks.  

Finally, as shown in Section 3.2, in hybrid over-
loading a new task can be scheduled as BB overloading 
when there are lots of free time slots, and scheduled as 
PB overloading to use the time slots occupied by the 
previous backups when few free time slots are avail-
able. The behaviour of hybrid overloading is totally 
decided by a practical scheduling algorithm. Regard-
less of the scheduling algorithm, because of the flexi-
bility of hybrid overloading, hybrid overloading can 
achieve the same schedulability as PB overloading and 
a short TTSF close to BB overloading. When the task 
arrival rate is very large, the acceptance probability of 
BB overloading is close to PB overloading. Scheduling 
tasks as BB overloading will not hurt the schedulability. 
Even if the new task cannot find an available time slot, 
it can use the previous time slots of backups, just like 
PB overloading. Let RBB denote the ratio of tasks in BB 
mode to all tasks in hybrid overloading chain, and RPB 
for the tasks in PB mode. We have 

1=+ PBBB RR . 
The average time length of hybrid overloading chain is 

PB
a_tPB

BB
a_tBB

H
a_t lRlRl ⋅+⋅= , 

and 
PB

a_t
H

a_t
BB

a_t lll ≤≤ . 
RBB and RPB are given in a practical algorithm. An 
adaptive scheduling algorithm will certainly be better 

than one with fixed RBB and RPB. 

5. Simulation Results 

The parameters used in our simulations are summa-
rized in Table 2. 

Table 2: Parameters of simulations 
Parameter Description Value 
m number of processors 3,…,10 
l task laxity 3,4,…,10
Cmin maximum execution time of tasks 25s 
Cmax minimum execution time of tasks 5s 
λ task arrival rate 0.1,…,1 

The distributions of task laxity, worst-case execu-
tion time, and time interval of task arrivals are totally 
the same as those of Section 4.  

This paper focuses on overloading techniques and 
stochastic analysis for primary-backup based fault tol-
erant task scheduling. We do not present a detailed 
scheduling algorithm. There exist many optimal sched-
uling algorithms [1-4,7,11,12]. In order to be fair for 
each overloading technique, a first-come first-served 
scheduling policy is used in this simulation, and a task 
is rejected once no time slot is available. The primary 
of a new task is scheduled as early as possible. If the 
backup of a new task cannot be overloaded on any pre-
vious backup, it is scheduled closest to its primary in 
BB overloading. The backup of a new task is also 
scheduled closest to its primary in PB overloading. For 
hybrid overloading, we try to ensure that at least one 
task in a full overloading chain is scheduled as pri-
mary-backup mode. 

In this simulation, we also consider the scheduling 
of real-time tasks with no fault-tolerance requirement. 
This scheduling always allocates a new task to the 
processor where this new task can be finished earlier. 

 
Figure 9．Acceptance Ratio (λ = 0.2, l=3~5). 
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Figure 10. Acceptance Ratio (m=6, l=3~5). 

 
Figure 11. Acceptance Ratio (m=4, λ = 0.1). 

 
Figure 12. Average Time Length. 

The simulation results are shown in Fig.9-12. The 
solid lines represent hybrid overloading.  

The acceptance ration is the number of admitted 
tasks to all tasks. TTSF is decided by the time length of 
overloading chains, therefore we show the average 
time length in Fig.12.  

We can see in Fig.9-11 that hybrid overloading can 
achieve an acceptance ratio similar to that of PB over-
loading, and in Fig.12 an average time length similar to 
that of BB overloading. The simulation shows that hy-
brid overloading provides a good tradeoff between 
schedulability and reliability. 

Note that, with an optimized scheduling algorithm, 
the difference between the overloading techniques will 
be much larger and the advantage of hybrid overload-
ing will then be even more obvious. 

6. Conclusions 

In this paper, we have extended the existing PB 
overloading, and proposed a hybrid overloading strat-
egy. The hybrid overloading is a new technique which 
combines the advantages of both PB and BB overload-
ing. All overloading strategies are analyzed theoreti-
cally, and we compared them through simulation. 
Simulation results have shown the different perform-
ance of each overloading strategy in various conditions. 
Through the stochastic analysis and the simulation 
studies, the hybrid overloading is shown to provide a 
good tradeoff between schedulability and reliability, 
i.e., better schedulability than BB overloading and bet-
ter reliability than PB overloading. 

In primary-backup based task scheduling, the exis-
tence of backups will necessarily reduce the schedula-
bility. This is the cost for fault-tolerance. Overloading 
techniques are the methods to mitigate this cost by 
improving schedulability. The improvement of the 
schedulability always affects the reliability of a system. 
A good scheduler must trade well between schedulabil-
ity and reliability. According to our analysis, the con-
flict between schedulability and reliability is caused by 
resource competition. A scheduling algorithm with 
overloading techniques should be able to improve re-
source utilization while preserving good reliability at 
the same time. Obviously, hybrid overloading is a good 
solution. Therefore, a practical scheduling algorithm 
should 1) choose proper time slots for new tasks to 
increase the number of overloaded tasks, 2) avoid to 
form looped chains, 3) exploit the flexibility of hybrid 
overloading to adapt the parameters RBB and RPB, and 4) 
control the time length of overloading chains within a 
reasonable scope when the number of processors, the 
task window, and the task arrival rate are very large. 
An adaptive scheduling algorithm with hybrid over-
loading is shown in [21]. 
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