
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Hybrid Overloading and Stochastic Analysis for

Redundant Real-time Multiprocessor Systems.

Author(s)
Sun, Wei; Zhang, Yuanyuan; Yu, Chen; Defago,

Xavier; Inoguchi, Yasushi

Citation
26th IEEE International Symposium on Reliable

Distributed Systems, 2007. SRDS 2007.: 265-274

Issue Date 2007-10

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/7801

Rights

Copyright (C) 2007 IEEE. Reprinted from 26th IEEE

International Symposium on Reliable Distributed

Systems, 2007. SRDS 2007. This material is posted

here with permission of the IEEE. Such permission

of the IEEE does not in any way imply IEEE

endorsement of any of JAIST's products or

services. Internal or personal use of this

material is permitted. However, permission to

reprint/republish this material for advertising

or promotional purposes or for creating new

collective works for resale or redistribution

must be obtained from the IEEE by writing to

pubs-permissions@ieee.org. By choosing to view

this document, you agree to all provisions of the

copyright laws protecting it.

Description

*This research is conducted as a program for the "21st

Century COE Program" by Ministry of Education, Culture,
Sports, Science and Technology, Japan

Hybrid Overloading and Stochastic Analysis for Redundant Scheduling in
Real-time Multiprocessor Systems*

Wei Sun1, Yuanyuan Zhang2, Chen Yu1, Xavier Defago1 and Yasushi Inoguchi1, 3

1Graduate School of Information Science
3Center for Information Science

Japan Advanced Institute of Science and Technology
1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan
{sun-wei, yuchen, defago, inoguchi}@jaist.ac.jp

2Fujitsu Laboratories Ltd.
Kawasaki, Kanagawa, 211-8588, Japan

zhang.yuanyuan@jp.fujitsu.com

Abstract
In multiprocessor systems, redundant scheduling is

a technique that trades processing power for increased
reliability. One approach, called primary-backup task
scheduling, is often used in real-time multiprocessor
systems to ensure that deadlines are met in spite of
faults. Briefly, it consists in scheduling a secondary
task conditionally, in such a way that the secondary
task actually gets executed only if the primary task (or
the processor executing it) fails to terminate properly.
Doing so avoids wasting CPU resources in the fail-
ure-free case, but primary and secondary tasks must
then compete for resources in case of failure. To over-
come this, overloading strategies, such as primary and
backup overloading (PB) and backup-backup over-
loading (BB), aim at improving schedulability while
retaining a certain level of reliability.

In this paper, we propose a hybrid overloading
technique based on extended PB overloading, which
combines advantages of both PB and BB overloading.
The three overloading strategies are then compared
through a stochastic analysis, and by simulating them
under diverse system conditions. The analysis shows
that hybrid overloading provides an excellent tradeoff
between schedulability and reliability.

1. Introduction

Real-time multiprocessor systems are defined as
systems in which the correctness depends on not only
the logical results of computations, but also the time at
which the results are produced [1]. Thus, it is essential
that tasks are completed before their deadlines even in

the presence of processor or task failures.
Fault-tolerance is thus an inherent requirement of
real-time systems.

In a multiprocessor system, fault-tolerance can be
provided by redundantly scheduling copies of tasks on
different processors [1-9]. Primary-backup scheduling
is one instance of a fault-tolerant scheduling technique.
In primary backup task scheduling, two instances of a
task, namely, primary and backup tasks, are scheduled
on two different processors. The backup task gets exe-
cuted if and only if the primary task fails some accep-
tance test [4-11].

To improve the schedulability (i.e., the total number
of tasks that can be scheduled), overloading is often
used. Primary backup overloading (called PB over-
loading for short) allows a primary task to be sched-
uled onto a processor and time slot overlapping with
that of the backup instance of another task [11](Fig.1a).
Backup-backup overloading (BB overloading) allows
only backup tasks to overlap with each other, but not
with primary tasks [4,7,11](Fig.1b). Al-Omari et al. [11]
find that PB overloading is able to achieve better per-
formance than BB overloading, which is in turn better
than any non-overloading strategy.

Figure 1. Examples of overloading.

In this paper, we improve existing PB overloading,
and then propose a hybrid overloading strategy (not
meant as a simple combination of PB and BB over-
loading). We evaluate the approach by comparing it
with PB and BB overloading, using both a stochastic
analysis and simulations.

26th IEEE International Symposium on Reliable Distributed Systems

1060-9857/07 $25.00 © 2007 IEEE
DOI 10.1109/SRDS.2007.11

265

26th IEEE International Symposium on Reliable Distributed Systems

1060-9857/07 $25.00 © 2007 IEEE
DOI 10.1109/SRDS.2007.11

265

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

Related work. In primary-backup task scheduling,
the backup version is often referred to as a “ghost” task
[16]; the backup is scheduled only conditionally and is
removed upon the successful completion of the pri-
mary [4,6,11].

The PB overloading of Al-Omari et al. [11] limits
the number of primaries to only two. With this limita-
tion and on three processors, PB overloading offers
better schedulability than BB overloading. However,
on more than three processors, PB overloading with
only two tasks can no longer offer better schedulability
than BB overloading. Although we could not find any
scheduling strategy combining PB and BB overloading,
nothing prevents such a combination.

Schedulability and reliability are often used as the
main metrics to evaluate fault-tolerant real-time task
scheduling. PB overloading was shown to offer better
schedulability but lower reliability than BB overload-
ing [11]. Considering the tradeoff between schedulabil-
ity and reliability in practical situations and the fact
that failures are usually rare events, PB overloading is
overall more effective than BB overloading.

With the approach of Ghosh et al. [4], backups are
scheduled as late as possible, are overloaded on other
backups whenever possible, and a function is used to
control the overlapping depth between overloaded
backups. To tolerate more faults, BB overloading can
be made to take place only on a static subset of the
processors [7] (static grouping). Al-Omari et al. [11]
extended it to dynamic grouping and presented a PB
overloading strategy with improved schedulability.

It is known that no optimal algorithm exists for
dynamic scheduling on a multiprocessor system [15].
Aperiodic tasks (i.e., the arrivals and deadlines of
which are not known in advance) require dynamic
scheduling algorithm. When the scheduler of
Ghosh et al. [4] cannot find a proper time slot for a
new task, some primary is re-scheduled by moving it
forward, while no backups can be re-scheduled. In
[6,11], scheduling is based on the Spring approach [12],
which is a heuristic that dynamically schedules tasks
according to resource requirements.

Roadmap. The rest of the paper is organized as fol-
lows. Section 2 introduces the system model and basic
definitions, including the tasks and fault models used
in our performance analysis. In Section 3, we present
an improved PB overloading technique, as well as our
hybrid overloading. Section 4 presents the stochastic
analysis, and the simulation results are discussed in
Section 5. Section 6 concludes the paper.

2. Models and Definitions

2.1. System model

Figure 2. System structure.

The system model considered in this paper is simi-
lar to those found in the literature [2,6,7,11], and is
illustrated on Fig.2. All tasks arrive at the scheduler, a
centralized server, which process them on a first-come
first-served basis. The tasks are then dispatched to
other processors, and executed according to their
schedule. All processors have identical computing ca-
pability and are connected through a network. The
scheduler is running in parallel with the processors.
Each processor has its own task queue. We assume that
the scheduler never fails, either because it runs on a
fault-proof processor, or because it has been replicated.
The total number of processors is m.

2.2. Task model

Tasks have the following characteristics:
1. Tasks are asynchronous and aperiodic, i.e., task

arrivals are not known in advance. Each task Ti
has the numeric characteristics: arrival time (ai),
worst-case computation time (ci), deadline (di)
and task laxity li. The mean of all ci is C.

2. Each task has two identical versions. The ver-
sion to be scheduled earlier in a schedule is
marked as primary (pri) and the other one is
marked as backup (bki). After a primary has fin-
ished successfully, its backup is immediately
cancelled. The outputs of the primary and its
backup are always identical. In other words, the
tasks are idempotent.

3. Tasks are not parallelizable. A task can be exe-
cuted only on one single processor.

4. Tasks are independent. For tasks with prece-
dence constraints, the deadlines of tasks can be
modified to make tasks comply with their
precedence constraints [7].

5. Tasks are non-preemptable.

2.3. Fault model

Each processor, except the scheduler, may fail due
to hardware or software faults. The failure of a proces-
sor results in the failure of all tasks it executes. Faults
can be either transient or permanent. Faults are as-
sumed to be independent and only affect a single proc-

266266

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

essor. For simplicity, we assume that, at any one time,
at most one single processor can be crashed. In other
words, we consider 1-timely-fault tolerant schedules,
where a k-timely-fault-tolerant (k-TFT) schedule is
defined as the schedule in which no task deadlines are
missed, despite k arbitrary processor failures [13].

MTBF (mean time between failures) is the expected
time between two consecutive failures. TTSF (time to
second failure) is the time to the second simultaneous
failure, i.e., the critical time between two consecutive
failures where the second failure occurs during the
vulnerability window opened by the first one. Hence, a
longer TTSF means a lower reliability. In order to
guarantee the successful execution of tasks, we assume
that ()iii adT −∀ is much less than MTBF. If no over-
loading exists, in the worst case, TTSF will be equal
to ()ii admax − . Because of overloading, TTSF will be
discussed again in the sequel.

A failure detection mechanism is assumed to exist
and provide information on processor/task failures. It is
assumed to be perfect (i.e., no false suspicions) and
timely (i.e., failures announced before the starting time
of backups). The scheduler will not schedule tasks to a
known failed processor.

2.4. Definitions

 An overloading chain refers to a sequence of tasks
that are related due to overloading. In PB overloading,
a chain is formed between two tasks T1 and T2, when
the backup of T1 overlaps with the primary of T2. In
BB overloading, a chain is formed between two tasks
when their backups overlap each other.

The time length lt of an overloading chain is the
length of time interval between the start time of the
first task and the end time of the last task in this chain.

The overloading space s of an overloading chain is
the set of processors involved in this chain. The space
length ls of an overloading chain is the size of s minus
1, viz., 1−= sls . ls is also equal to the number of pri-
maries in the chain. An overloading chain is said to be
looped when it involves the same processor repeatedly.
For instance, the chain depicted in Fig.3 is a looped
chain because processor 4 is involved both for pr1 and
later for bk4. An overloading chain is full when either lt
or ls reaches its maximum.

3. Overloading techniques

In this section, we first improve the PB overloading
of Al-Omari et al. [11], and then introduce our hybrid
overloading. In this paper, we only focus on the over-
loading techniques that are usually affected by practi-
cal scheduling algorithms.

3.1. Extended PB overloading

Although Al-Omari et al. [11] considered primary
backup overloading that can involve only two prima-
ries, it is easy for a scheduler to produce longer over-
loading chains. However, the problem is how to guar-
antee the validity and the reliability of the chain.

For PB overloading, looped chains are invalid. This
is because a single processor failure may actually pre-
vent some tasks from being executed at all. For in-
stance, consider the looped chain of Fig.3. If proces-
sor 4 fails while executing pr1, then bk1 will have to be
scheduled, triggering a domino effect by which each of
the backup tasks of the chain must be executed instead
of their primary. The problem is that bk4 must be
scheduled, but it cannot be executed since processor 4
has failed and may not have recovered. Note that, if

mls > for an extended PB overloading chain, then the
chain must be looped.

Figure 3. Looped chain. The chain across different

processors joins itself on Processor 4.
TTSF is equal to lt for an overloading chain. For BB

overloading, in the worst case we have that
() () iiit T,admaxlmaxTTSF ∀−== , (1)

For PB overloading, in the worst case we have that
() () iiist T,admaxllmaxTTSF ∀−⋅== . (2)

If we do not properly control the length of PB over-
loading chains, then extended PB overloading may
possibly be very unreliable.

Hence, we have the following rules for extended
PB overloading:

1. The primary and backup of a task cannot coex-
ist on the same processor.

2. If the number of processors is m, the maximum
space length ls of any chain is m-1.

3. The time length lt of a chain must be less than
the minimum time interval between failures.

4. A full overloading chain (i.e., when either space
or time length is maximal) cannot be extended.

5. If a full overloading chain is shortened after the
successful completion of a task, this chain is no
longer full and can be extended again.

For a real-time system, it is usually difficult to pre-
dict the minimum time interval between failures. Thus,
lt can be set as an empirical parameter. However, for a

267267

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

multiprocessor system with only a few processors, the
limiting factor for the length of overloading chains will
likely be the number of processors rather than the in-
terval between failures. Similarly, for a system with
many processors, overloading will usually take place
within subgroups of processors [7,11]. As a result,
overloading chains, limited by the number of proces-
sors in each group, will remain relatively short, in par-
ticular, shorter than the MTBF. In fact, even in a sys-
tem with a large number of processors, the probability
of forming the maximum lt remains small. A stochastic
analysis about the reliability is presented in Section 4.

Extended PB overloading is a natural extension of
PB overloading. Hence, in the sequel, PB overloading
will refer to its extended version.

3.2. Hybrid overloading

All tasks in previous schedules have four forms:
single primary (pr), single backup (bk), overloaded
primary and backup (pr, bk) and overloaded backups
(bk, bk). A BB overloading chain can contain (pr) and
(bk, bk). A PB overloading chain can contain (pr), (pr,
bk) and (bk). With a simple combination of PB and BB
overloading, an overloading chain cannot contain all
four forms. But, in our hybrid overloading, a chain can
contain all four forms, plus a new form, overloaded
primary and backups (pr, bk, bk). Two possible hybrid
overloading chains are shown in Fig.4.

Figure 4. Examples of hybrid overloading.

Hybrid overloading inherits all rules and advan-
tages from BB and PB overloading. It has better
schedulability than BB overloading and yet better reli-
ability than PB overloading.

Under some conditions, a hybrid overloading chain
can be transformed into different shapes, including into
a purely BB or PB overloading chain. This means that
hybrid overloading can be made to satisfy different
scheduling requirements, such as, high schedulability
first, resource utilization first, or reliability first. Due to
the flexibility of hybrid overloading, many different
algorithms can be designed to schedule tasks into hy-
brid overloading chains. In this paper, we however
focus on the introduction and analysis of hybrid over-
loading itself, rather than scheduling algorithms.

4. Stochastic analysis

In this section, we compare overloading techniques
according to their respective schedulability and reli-
ability. We use stochastic analysis considering task
arrival, task laxity, and different worst case execution
time. Tasks are scheduled on a first-come first-served
basis.

The number of primaries in an overloading chain is
denoted as n, and the number of primaries in a schedule
is denoted as N. The time interval of task arrivals fol-
lows an exponential distribution with mean 1/λ, where
λ is the arrival rate of tasks.

The worst-case execution time is distributed uni-
formly over the interval [Cmin, Cmax], with

2
minmax CCC +

= .

The task laxity l is distributed uniformly over the
interval [3, L].

The time length and space length of overloading
chains follow uniform distribution within their maxi-
mum values and minimum values respectively.

4.1. Resource utilization analysis
Since primary-backup fault-tolerant scheduling re-

lies on redundancy, the improved reliability of the sys-
tem comes at the expense of resource utilization, in
particular, schedulability. For a full overloading chain,
PB overloading, BB overloading, and hybrid over-
loading have the same maximum resource utilization,
as long as tasks can be tightly overloaded. This re-
source utilization is (m-1)/m, which means that only
one time slot is used for backups. However, maximal
resource utilization cannot always be reached, depend-
ing on task arrival, task computation time, and task
laxity.

A full overloading chain cannot always be sched-
uled successfully. For the model presented in Section 2,
we have the following lemmas.
Lemma 1. The probability of emerging a BB
overloading chain with n tasks, PrBB(n), is

() ∫ ∫
= = −−

=
L

l

C

Cc minmax
BB

max

min
CCL

nPr
3

1
3

1

() () ,dcdle
!z

ccln

z

cclz
z

⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅

−⋅
−× ∑

−

=

−⋅⋅−2

0

221 λλ

12 −≤≤ mn . (3)
Proof Sketch. An example of BB overloading is
shown in Fig.5, where xi denotes the time intervals
between task arrivals. All tasks must be allocated
within l·c. In this paper, a primary and its backup can-
not be executed in parallel, that is, the execution of a
primary cannot be overlapped with the execution of its

268268

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

backup. Thus, if bk2 is scheduled to overload on bk1,
the second task T2, must satisfy cxcl 21 ≥−⋅ .Similarly,
task T3 must satisfy cxxcl 221 ≥−−⋅ . If n tasks are
overloaded together, the probability of forming a BB
overloading chain is

() ()cclxxxPrnPr nBB 2121 −⋅≤+++= −L .

Figure 5. Variables in BB overloading.

xi follows an exponential distribution. We give the
following formula for the sum of n exponentially dis-
tributed random variables, of which we omit the proof.

() =≤+++ kxxxPr nL21

01
1

0
≥⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅− ∑

−

=

⋅− k,e
!z

kn

z

kz
z

λλ .

With this formula, the probability is
() ()cclxxxPrnPr nBB 2121 −⋅≤+++= −L

∫ ∫
= = −−

=
L

l

C

Cc minmax

max

min
CCL3

1
3

1

()dcdlcclxxxPr n 2121 −⋅≤+++× −L .
Hence, we have Eq.3. □

Lemma 2. The probability of emerging a PB
overloading chain with n tasks, PrPB(n), is

() ⎜
⎜

⎝

⎛

−−
= ∫ ∫

= =

L

l

C

Cc minmax
PB

max

min
CCL

nPr
3

1
3

1

12
1

0
−≤≤⎟

⎟
⎠

⎞
⋅×

−−⋅
⋅−∫ mn,dxdcdle

nccl
xλλ . (4)

Proof Sketch. An example of PB overloading is shown
in Fig.6. To schedule a PB overloading chain with n
tasks, the chain must satisfy

123331222 −≥−⋅≥−⋅≥−⋅ nnnn cxcl,,cxcl,cxcl L .
Since li, ci, and xi are independent. The probability of
emerging a PB overloading chain with n tasks is

() ()[]
1

03

1

1
3

1
−−⋅

⋅−

= =

−

⎟
⎟
⎠

⎞
⋅⎜

⎜

⎝

⎛

−−

=−⋅≤=

∫∫ ∫
nccl

x
L

l

C

Cc minmax

n
PB

dxdcdle
CCL

cclxPrnPr

max

min

λλ
.□

Figure 6. Variables in PB overloading.

Figure 7. The probabilities of emerging an overloading chain in different scenarios.

269269

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

The probabilities of emerging an overloading chain
are affected by the task arrival rate, the number of tasks
in the chain, and the task laxity. Given specific pa-
rameters, the probability is represented in Fig.7. l·c is
defined to be the task window [4]. As the task window
decreases, the probabilities decrease. As the number of
tasks (in a chain) increases, the probabilities decrease.
Regardless of the parameters, PrPB is always larger
than PrBB. This is summarized in the following propo-
sition.
Proposition 1. The probability of emerging a PB
overloading chain is larger than that of emerging a BB
overloading chain, if the number of tasks in the PB
overloading chain is equal to that in the BB overload-
ing chain.

The probability of emerging an overloading chain
with n tasks, Pr*(n), can be used to calculate the num-
ber of time slots occupied by all primaries and backups
in a previous schedule with N tasks. (∗=PB or BB).

The scheduling algorithms with overloading tech-
niques always try to improve resource utilization and
increase the number of tasks overloaded together. If
tasks cannot form a long overloading chain, a relatively
short chain will be formed instead. For a prior schedule
with N primaries, the time slots occupied by all prima-
ries and backups, Na, can be calculated from the fol-
lowing theorem.
Theorem 1. Given N previously scheduled tasks, the
number of time slots occupied by all primaries and
backups, Na, is

() ()∑ ∑
−= −=

≥⎥
⎦

⎤
⎢
⎣

⎡
−⋅+⎥⎦

⎤
⎢⎣
⎡

+
⋅⋅=

b

mi

b

mi
a b,iRN

i
iiRNN

1 1
212

1
, (5)

() () ()

()⎪
⎩

⎪
⎨

⎧

=−

−<≤⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

=
∑
+

−=

my,mPr

my,yPrjR
yR

*

*
y

mj

1

121
1

1 . (6)

where b is the minimum bound for which () 1
1

≤∑
−=

b

mx
xR .

and R(i) is the ratio of the number of tasks in the chains
(with ils =) to N tasks.
Proof Sketch. Since a short overloading chain will be
formed only if a long one cannot be made, a longer
chain emerges always prior to a shorter one. The fol-
lowing equations can represent this process.

() ()11 −=− mPrmR * ,
() ()[] ()2112 −⋅−−=− mPrmPrmR ** ,
() () ()[] (){ } 21111 3 −⋅−−−−−=− mPrmPrmPrmR ***

()3−× mPr* ,
() () () (){ } ()43211 4 −⋅−−−−−−=− mPrmRmRmRmR * ,

M
Here, R(i) is defined to be the ratio of the number of

tasks in chains with ils = to all previously scheduled
tasks. This process will go on until all tasks are sched-
uled. Thus, we can get Eq.6. When this process ends,
the shortest space length of an overloading chain can
be any value between 2 and m-1, and there might be
some tasks not being overloaded on any previous task.
For a system with m processors, the maximum number
of tasks in a full overloading chain is m-1, and these
tasks occupy m time slots. Generally an overloading
chain with i tasks will occupy i+1 time slots. A task
that is not overloaded will occupy two time slots. The
iterative calculation is given in Eq.5. □

Finally the resource utilization is given as

aN
NnUtilizatio = . (7)

According to Proposition 1, the resource utilization of
PB overloading is always larger than BB overloading.

4.2. Schedulability and Reliability Analysis

For a system with finite resources, the tradeoff be-
tween schedulability and reliability always comes as a
result of resource competition between primaries and
backups. In this section, we first consider a failure-free
system, and then discuss fault-tolerant systems. For a
failure-free real-time system, when a new task arrives
and finds N previous tasks in the current schedule, this
task can be accepted only if its deadline can be guar-
anteed. Thus, the probability of accepting (N+1)th task
is

() ⎟
⎠

⎞
⎜
⎝

⎛ ≥
⋅

−⋅=+ c
m

CNclPrNPra 1 . N·C/m is the average

finish time of the last task on each processor.

⎟
⎠

⎞
⎜
⎝

⎛ <
⋅

−⋅−=⎟
⎠

⎞
⎜
⎝

⎛ ≥
⋅

−⋅ c
m

CNclPrc
m

CNclPr 1

() ⎥⎦

⎤
⎢⎣

⎡ ⋅
<⋅−−=

m
CNclPr 11

()
dcdl

CCL

lm
CN

C minmax

L

min
∫∫
−⋅

⋅

−−
−=

1

3

1
3

11

() () minmax

min

minmax CC
C

mCCL

LlnCN

−
+

⋅−⋅−

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅
−=

3
2

1

1 . (8)

In Eq.8, all parameters are constant for a specific sys-
tem, except for N. Hence the probability of accepting a
task is a function of the number of tasks in a previous
schedule.

() ()

() ()⎪
⎪
⎩

⎪⎪
⎨

⎧

<
−

+
⋅−⋅−

⎟
⎠
⎞

⎜
⎝
⎛ −

⋅⋅
−

≤

=

=+

Nm,
CC

C
mCCL

LlnCN

mN,
NfNPr

minmax

min

minmax

a

3
2

1

1

1
1

 (9)

270270

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

For PB overloading, a new task can be overloaded
on previous backups that are not in a full overloading
chain. The function should be

() =+1NPr PB
a

()[] ()
⎭
⎬
⎫

⎩
⎨
⎧

−
⋅−⋅+−−⋅

1
111

m
mmPrNmPrNf PBPB (10)

For BB overloading, all time slots occupied by all pri-
maries and backups cannot be used for the new task.
Therefore the function is

() ()a
BB

a NfNPr =+1 . (11)
The acceptance probabilities are shown in Fig.8.

The acceptance probability of PB overloading is al-
ways larger than that of BB overloading. As the num-
ber of previous tasks increases, the acceptance prob-
abilities decrease. The number of previous tasks will
reach a maximum value, which is the equilibrium
status of arrival, departure, and rejection of tasks. This
maximum number for PB overloading is larger than
BB overloading, that is, the system with PB overload-
ing can accept more tasks than the system with BB
overloading. When the task arrival rate is much larger
for a system, the probability for PB overloading is

close to that of BB overloading because almost all
chains will reach the maximum space length, which is
the same for both PB and BB overloading. Note that
we do not consider the effect of scheduling algorithm
in this analysis.

In the literature, real-time systems are usually
characterized by Markov model [4, 7, 11] and queuing
model [18, 19, 20]. In particular, a real-time system
can be characterized by a queuing model such as
M/M/m. In [19, 20], it was shown that M/M/1 is very
accurate to model a real-time system with one single
processor. The fault-tolerant real-time systems with
primary-backup techniques can be characterized by
M/M/m with customer leaving. The rejection of tasks
can be considered as customers leaving the system.
The acceptance probability can be used to build an
M/M/m model with customer leaving. The average
acceptance ratio of the system derives from the prob-
ability of N tasks waiting in the system and the accep-
tance probability of the (N+1)th tasks. In this paper, we
will not give further analytical results of queuing
model due to space constraints.

Figure 8. The Probabilities of acceptance in different scenarios.

The reliability is usually measured by the time to
second failure (TTSF) [4,11]. As shown in Eq.1 and
Eq.2, TTSF is affected by the time length of an over-
loading chain. It may seem that the time length of a PB
overloading chain is much longer than that of a BB
overloading chain, and that the former might be so
long as to be even longer than that MTBF. In fact, it
turns out that the time length of a PB overloading chain
is limited by the maximum number of tasks that can be
accepted by the system.

For BB overloading chains the time length BB
tl is

between 2c and l·c. Hence the average time length is
() ()

4
2

2
2 minmaxBB

a_t
CCLCCLl +⋅+

=
+⋅

= .

For PB overloading, the maximum number of accepted

tasks in a schedule can be worked out from the calcula-
tion of Eq.8, where the upper bound of integration
should be less than maxC . Thus we have

() () maxmax Cl
m

CNC
lm
CN

⋅−≤
⋅

⇒≤
−⋅

⋅ 1
1

() maxCL
m

CN
⋅−≤

⋅
⇒ 1 .

() maxCL ⋅−1 is the real maximum time length of PB
overloading chains. The minimum time length of a full
PB overloading chain is given by m·Cmin. Thus we have
the average time length for PB overloading chains

()
2

1 minmaxPB
a_t

CmCLl ⋅+⋅−
= .

The average time length of full overloading chains
is listed in Table 1.

271271

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

Table 1. The Average time length of overloading
chains in different scenarios.

Cmin

(s)
Cmax

(s)

L

m

BB
(s)

PB
(s)

PB/BB

5 10 26.25 30 1.143
5 15 35 40 1.143
5 25

5

52.5 60 1.143
5 10 45 55 1.222
5 15 60 77.5 1.291
5 25

10

4

90 122.5 1.361
5 10 45 65 1.444
5 15 60 87.5 1.458
5 25

10

90 132.5 1.472
5 10 63.75 90 1.411
5 15 85 125 1.470
5 25

15

8

127.5 195 1.529

 As shown in Table 1, the time length of PB over-
loading chains is longer than that of BB overloading
chains, but the ratio of PB to BB is not very large. Note
that the calculation of time length assumes that the
time length follows a uniform distribution between the
maximum and the minimum. In a practical scheduling
process, the time length of PB overloading chains is
usually close to its minimum due to the heavy traffic of
tasks.

Finally, as shown in Section 3.2, in hybrid over-
loading a new task can be scheduled as BB overloading
when there are lots of free time slots, and scheduled as
PB overloading to use the time slots occupied by the
previous backups when few free time slots are avail-
able. The behaviour of hybrid overloading is totally
decided by a practical scheduling algorithm. Regard-
less of the scheduling algorithm, because of the flexi-
bility of hybrid overloading, hybrid overloading can
achieve the same schedulability as PB overloading and
a short TTSF close to BB overloading. When the task
arrival rate is very large, the acceptance probability of
BB overloading is close to PB overloading. Scheduling
tasks as BB overloading will not hurt the schedulability.
Even if the new task cannot find an available time slot,
it can use the previous time slots of backups, just like
PB overloading. Let RBB denote the ratio of tasks in BB
mode to all tasks in hybrid overloading chain, and RPB
for the tasks in PB mode. We have

1=+ PBBB RR .
The average time length of hybrid overloading chain is

PB
a_tPB

BB
a_tBB

H
a_t lRlRl ⋅+⋅= ,

and
PB

a_t
H

a_t
BB

a_t lll ≤≤ .
RBB and RPB are given in a practical algorithm. An
adaptive scheduling algorithm will certainly be better

than one with fixed RBB and RPB.

5. Simulation Results

The parameters used in our simulations are summa-
rized in Table 2.

Table 2: Parameters of simulations
Parameter Description Value
m number of processors 3,…,10
l task laxity 3,4,…,10
Cmin maximum execution time of tasks 25s
Cmax minimum execution time of tasks 5s
λ task arrival rate 0.1,…,1

The distributions of task laxity, worst-case execu-
tion time, and time interval of task arrivals are totally
the same as those of Section 4.

This paper focuses on overloading techniques and
stochastic analysis for primary-backup based fault tol-
erant task scheduling. We do not present a detailed
scheduling algorithm. There exist many optimal sched-
uling algorithms [1-4,7,11,12]. In order to be fair for
each overloading technique, a first-come first-served
scheduling policy is used in this simulation, and a task
is rejected once no time slot is available. The primary
of a new task is scheduled as early as possible. If the
backup of a new task cannot be overloaded on any pre-
vious backup, it is scheduled closest to its primary in
BB overloading. The backup of a new task is also
scheduled closest to its primary in PB overloading. For
hybrid overloading, we try to ensure that at least one
task in a full overloading chain is scheduled as pri-
mary-backup mode.

In this simulation, we also consider the scheduling
of real-time tasks with no fault-tolerance requirement.
This scheduling always allocates a new task to the
processor where this new task can be finished earlier.

Figure 9．Acceptance Ratio (λ = 0.2, l=3~5).

272272

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

Figure 10. Acceptance Ratio (m=6, l=3~5).

Figure 11. Acceptance Ratio (m=4, λ = 0.1).

Figure 12. Average Time Length.

The simulation results are shown in Fig.9-12. The
solid lines represent hybrid overloading.

The acceptance ration is the number of admitted
tasks to all tasks. TTSF is decided by the time length of
overloading chains, therefore we show the average
time length in Fig.12.

We can see in Fig.9-11 that hybrid overloading can
achieve an acceptance ratio similar to that of PB over-
loading, and in Fig.12 an average time length similar to
that of BB overloading. The simulation shows that hy-
brid overloading provides a good tradeoff between
schedulability and reliability.

Note that, with an optimized scheduling algorithm,
the difference between the overloading techniques will
be much larger and the advantage of hybrid overload-
ing will then be even more obvious.

6. Conclusions

In this paper, we have extended the existing PB
overloading, and proposed a hybrid overloading strat-
egy. The hybrid overloading is a new technique which
combines the advantages of both PB and BB overload-
ing. All overloading strategies are analyzed theoreti-
cally, and we compared them through simulation.
Simulation results have shown the different perform-
ance of each overloading strategy in various conditions.
Through the stochastic analysis and the simulation
studies, the hybrid overloading is shown to provide a
good tradeoff between schedulability and reliability,
i.e., better schedulability than BB overloading and bet-
ter reliability than PB overloading.

In primary-backup based task scheduling, the exis-
tence of backups will necessarily reduce the schedula-
bility. This is the cost for fault-tolerance. Overloading
techniques are the methods to mitigate this cost by
improving schedulability. The improvement of the
schedulability always affects the reliability of a system.
A good scheduler must trade well between schedulabil-
ity and reliability. According to our analysis, the con-
flict between schedulability and reliability is caused by
resource competition. A scheduling algorithm with
overloading techniques should be able to improve re-
source utilization while preserving good reliability at
the same time. Obviously, hybrid overloading is a good
solution. Therefore, a practical scheduling algorithm
should 1) choose proper time slots for new tasks to
increase the number of overloaded tasks, 2) avoid to
form looped chains, 3) exploit the flexibility of hybrid
overloading to adapt the parameters RBB and RPB, and 4)
control the time length of overloading chains within a
reasonable scope when the number of processors, the
task window, and the task arrival rate are very large.
An adaptive scheduling algorithm with hybrid over-
loading is shown in [21].

References

[1] K. Ramamritham, J.A. Stankovic, “Scheduling al-
gorithms and operating system support for real-time

273273

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

systems,” Proc. IEEE, 82(1):55–67, 1994.
[2] G. Manimaran, C. Siva Ram Murthy, “An efficient

dynamic scheduling algorithm for multiprocessor
real-time systems,” IEEE Trans. Parallel Distrib-
uted Systems, 9(3):312–319, 1998.

[3] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “A
New Fault-Tolerant Scheduling Technique for
Real-Time Multiprocessor Systems,” J. Systems and
Software，53(2), pp. 159–171, 2000.

[4] S. Ghosh, R. Melhem, D. Mosse, “Fault-tolerance
through scheduling of aperiodic tasks in hard
real-time multiprocessor systems,” IEEE Trans.
Parallel Distributed Systems, 8(3):272–284, 1997.

[5] H. Zou, F. Jahanian, “Real-time primary-backup
(RTPB) replication with temporal consistency
guarantees,” IEEE Intl. Conf. Distributed Comput-
ing Systems (ICDCS), pp. 48–56, May 1998.

[6] R. Al-Omari, A.K. Somani, G. Manimaran, “An
adaptive scheme for fault-tolerant scheduling of soft
real-time tasks in multiprocessor systems,” J. Par-
allel and Distributed Computing, 65(5):595–608,
2005.

[7] G. Manimaran, C. Siva Ram Murthy, “A
fault-tolerant dynamic scheduling algorithm for
multiprocessor real-time systems and its analysis,”
IEEE Trans. Parallel Distributed Systems,
9(11):1137–1152, Nov. 1998.

[8] H. Kopetz, A. Damm, C. Koza, et al., Distributed
fault tolerant real-time systems: The MARS ap-
proach, IEEE Micro, 9(1):25–40, 1989.

[9] K. Hashimoto, T. Tsuchiya, and T. Kikuno,
“Fault-Secure Scheduling of Arbitrary Task Graphs
to Multiprocessor Systems,” IEEE/IFIP Int’l Conf.
Dependable Systems and Networks (DSN),
pp. 203–212, 2000.

[10] K. Kim, J. Yoon, Approaches to implementation of
reparable distributed recovery block scheme, Proc.
IEEE Fault-tolerant Computing Symposium (FTCS),
pp. 50–55, 1988.

[11] R. Al-Omari, A.K. Somani, G. Manimaran, “Effi-
cient overloading techniques for primary-backup
scheduling in real-time system,” J. Parallel and
Distributed Computing, 64(5):629–648, 2004.

[12] J.A. Stankovic, K. Ramamritham, “The spring
kernel: a new paradigm for real-time operating sys-
tems,” ACM SIGOPS Oper. Systems Rev.,
23(2):77–83, 1995.

[13] Y. Oh and S. H. Son, “Scheduling real-time tasks
for dependability,” J. Operation Reserch Society,
48(6):629–639, 1997.

[14] C. Shen, K. Ramamritham, and J.A. Stankovic,
“Resource Reclaiming in Multiprocessor Real-Time
Systems,” IEEE Trans. Parallel and Distributed

Systems, 4(4):382–397, 1993.
[15] M.L. Dertouzos and A.K. Mok, “Multiprocessor

On-Line Scheduling of Hard Real-Time Tasks,”
IEEE Trans. Soft. Eng., 15(12):1497–1506, 1989.

[16] C.M. Krishna and K.G. Shin, “On Scheduling
Tasks With Quick Recovery From Failure,” IEEE
Trans. Computers, 35(5):448–455, 1986.

[17] B. Kalyanasundaram and K.R. Pruhs,
“Fault-Tolerant Scheduling”, ACM Symp. Theory of
Computing (STOC), pp. 115-124, May 1994.

[18] L. Kleinrock, Queuing System. John Wiley & Sons,
1975.

[19] J.P. Lehoczky, “Real-Time Queueing Theory”, 17th
IEEE Real_Time Systems Symp. (RTSS), pp.186-195,
1996.

[20] J.P. Lehoczky, “Using Real-Time Queueing Theory
to Control Lateness in Real-Time Systems”, ACM
Sigmetrics, pp.158-168, 1997.

[21] W. Sun, Y. Zhang, Y. Chen, X. Défago and Y. Ino-
guchi, “Real-time Task Scheduling Using Extended
Overloading Technique for Multiprocessor Sys-
tems”, IEEE Int’l Symp. Distributed Simulation and
Real Time Applications, to appear.

274274

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 10, 2008 at 20:19 from IEEE Xplore. Restrictions apply.

