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Abstract-A parameter tuning scheme for the neural oscil-
lator is addressed to achieve biologically inspired robot control
architectures based on a neural oscillator. It would be desira-
ble to determine appropriately unknown parameters of the
neural oscillator to accomplish a task of rhythmic movement
under various changes of environment. Human or animal ex-
hibits natural dynamics with efficient and performs robust
motions against unexpected disturbances or environment
changes. The neural oscillator needs to be tuned using its op-
timal parameters to generate such natural movement. As sim-
ple examples, this paper connects the neural oscillator to a
pendulum system and a rotating crank system. To determine
the optimal parameters of the neural oscillator for the examples,
the optimization scheme based on the Simulated Annealing
(SA) method is used. We verify the performance of the given
tasks with the obtained optimal parameters of the neural os-
cillator, showing the adaptation motions of the example systems
with entrainment property in numerical simulations.

I. INTRODUCTION

Studies on human-like movement of robots that need a
biologically inspired motion generation and control have
been performed by real or virtual human-like robots for the
last decade. With this, many previous works have been
yielded, particularly in robotic field for embodiment of hu-
manoid locomotion. Owing that such approaches enable
robots to realize autonomous dynamic adaptation motion
from unknown environmental changes, its attraction has
become generally gained and issued. Rhythmic movements
ofhuman or animal like walking, running, swimming, flying,
breathing, turning a steering wheel, rotating a crank, etc. are
dependent on both the musculoskeletal system and nervous
system based on rhythmic neural oscillator inherent in their
systems. In the musculoskeletal system, it is well known that
functions of limbs and limb segments connected to each
other with tendons are activated like a mechanical spring by
means of a neural signal. The motions of those limbs may
look similar to joint motions of a pendulum. The neural os-
cillator in the nervous system offers a potential controller,
since it is known to be robust and have an entrainment cha-
racteristic as a general controller

Incorporating the artificial neural oscillator to produce
and sustain rhythmic patterned outputs in a robotic system
with a coupling method and network, we can realize the
nervous and musculoskeletal systems of an animal in dif-
ferent types of artifacts such as robots. Entrainment plays a
key role to adapt the nervous system to the natural frequency
of the biomechanical system. A neural oscillator, the basic

unit of a neural oscillator network, incorporates a sensory
feedback, dealing with environmental perturbations. There-
fore, more interests on the artificial neural oscillator coupled
to robot dynamics have been increasing in the field of bio-
logically inspired robots to be deployable to real-world en-
vironments.

Relating these previous works on the application of the
artificial neural oscillator to humanoid locomotion, the ma-
thematical description of the artificial neural oscillator was
addressed in detail in Matsuoka's works [1]. He proved that
neurons generate the rhythmic patterned output and analysed
the conditions necessary for the steady state oscillations. He
also investigated the mutual inhibition networks to control
the frequency and pattern in the neural rhythm generator [2].
However, that work didn't include the effect of the feedback
on the artificial neural oscillator. Employing the Matsuoka's
neural oscillator, Taga et al. investigated a task with more
reasonable complexities [3]. The sensory signals from the
joint angles of a biped robot were used as the feedback sig-
nals. The sensory signals were entrained with the neural os-
cillator [4]. As a result, the robot became robust to the per-
turbation and could walk up the slope. And this bipedal robot
walking was also simulated and applied to the 3D locomo-
tion by Miyakoshi et al. [5]. According to theses works, the
neural oscillator successfully realized a dynamic quadru-
pedal walking and bipedal locomotion with real robot by
Kimura et al. [6] [7].

In addition to the studies on robotic locomotion, more
efforts have been made to implement the neural oscillator to
a real robot for various applications. Williamson showed the
system that had biologically inspired postural primitives. The
joint actuators of that system were implemented using spring
models such that the system successfully dealt with unex-
pected collisions sustaining cyclic motions ofthe stable arms
[8]. He also proposed the neuro-mechanical system that was
coupled with the neural oscillator for controlling its arm [9].
Arsenio [10] suggested the multiple-input describing func-
tion technique to evaluate and design a nonlinear system
based on the neural oscillator. Even though possibility and
feasibility of natural dynamic motions adapting to external
changes were accomplished by the works mentioned above,
approaches based on a biologically inspired system for a
complex task of a robotic manipulator were not clearly de-
scribed.

As above, researches in the field of biologically inspired
system with the neural oscillator have yielded notable results
in many cases. However an approach for the behavior gen-
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eration of robotic arms or a legged robot's locomotion still
has many problems undetermined due to the difficulty of
parameter tuning of a neural oscillator coupled to a me-
chanical system for generating a desired motion. Therefore,
this paper proposes a new methodology to tune parameters of
a neural oscillator connected to a mechanical system to ac-
complish the desired task. To do this, the paper deals with a
simple mechanical system that consists of a pendulum and a
two-link planner arm and is coupled to the neural oscillator
for control. A procedure based on optimization to choose the
parameters of the neural oscillator is proposed. In the fol-
lowing section, we briefly describe the mathematical form of
the neural oscillator. In section III, the analysis of the
coupled model and the optimization algorithm to determine
parameters of the neural oscillator are described. Details of
dynamic responses and the verification of developed me-
thodology are discussed in Section IV. Conclusions are
drawn in Section V.

II. GENERATION OF RHYTHMIC MOVEMENT USING A
NEURAL OSCILLATOR

A. Matsuoka's neural oscillator

Our work is motivated by studies and facts ofbiologically
inspired locomotion control employing oscillators. Espe-
cially, the basic motor pattern generated by the Central Pat-
tern Generator (CPG) of inner body of human or animal is
usually modified by sensory signals from motor information
to deal with environmental disturbances. Similarly to the
sensory system ofhuman or animal, the neural oscillators are
entrained with external stimuli at a sustained frequency.
They show stability against perturbations through global
entrainment between the neuro-musculo-skeletal systems
and the ground [3]. Thus, neural oscillators have been ap-
plied to the CPG of humanoid robots with rhythmic motions
[4]. The oscillators provide robust performance in a wide
variety ofrhythmic tasks, when they are implemented to such
a system as a robotic arm. The reason is that the oscillators
use sensory signals about the joint state to adapt the fre-
quency and phase of the joint motion regardless of the ref-
erences corresponding to change of the environment.

Tonic input bv,, l

[Extensor neuro7\1

k[i]9r Yei
Proprioceptive input / \ + Output

gij Y(Out)i
WeiYei Wflf

\ / ~~~~~~Yfi
ki[gj]-

LF/exor neu1ron7

Tonic input bvfj......

Excitatory connection

Inhibitory connection
-0-

Matsuoka's neural oscillator consists of two simulated
neurons arranged in mutual inhibition as shown in Fig. 1 [1],
[2]. If gains are properly tuned, the system exhibits limit
cycle behaviours. The trajectory of a stable limit cycle can be
derived analytically, describing the firing rate of a neuron
with self-inhibition. The neural oscillator is represented by a
set of nonlinear coupled differential equations given as

T.*ei +±Xi Wfiyfi, -W,yi -bve, i-k,[g,] +±s
j=l

±aVei+ Vei = Yei

Ye, [Xe, ]
(1)

T17fi + Xfi

= max(Xe,i, 0)

=: - 11iYei-E wxlyjy-bv fi - ki [gi ] + si
j=l

Ta fi fiy =: Yfi

yfI>=,[x]+ = max(xfv, 0), 1, 2,

where xe,6i is the inner state of the i-th neuron which
represents the firing rate; ve,i is a variable which represents
the degree of the adaptation, modulated by the adaptation
constant b, or self-inhibition effect of the i-th neuron; the
output of each neuron YeW6i is taken as the positive part of xi,
and the output of the whole oscillator as Y(011)i; wq,i
represents the total input from the neurons inside a neural
network; the input is arranged to excite one neuron and in-
hibit the other, by applying the positive part to one neuron
and the negative part to the other; the inputs are scaled by the
gains ki; T, and Ta are time constants ofthe inner state and the
adaptation effect of the i-th neuron respectively; b is a
coefficient ofthe adaptation effect; wij is a connecting weight
from thej-th neuron to the i-th neuron; si is an external input
with a constant rate. Especially, wij (0 for i#j and 1 for i=j) is
a weight of inhibitory synaptic connection from the j-th
neuron to the i-th, and wei, wfi are also a weight from extensor
neuron to flexor neuron, respectively.

B. Coupling neural oscillator to mechanical systems

This subsection addresses a new control method exploit-
ing the natural dynamics of the oscillator coupled to the
dynamic system that closely interacts with environments.
This method enables a robot to adapt to changing conditions.
For simplicity, we employed a general 2nd order mechanical
system connected to the neural oscillator as seen in lower
system of Fig. 2. The desired torque input at the i-th joint can
be given by [8]

(2)

where ki is the stiffness of the joint, bi the damping coeffi-
cient, Oi the joint angle, and 0i the desired joint position
which is the output ofthe neural oscillator. The output ofthe
neural oscillator drives the mechanical system corresponding
to the sensory signal input (feedback) from the actuator
(displacement or torque). The oscillator entrains the input
signal so that the mechanical system can exhibit adaptive
behaviour even under the unknown environment condition.

Fig. 1 Schematic diagram of the NEURAL OSCILLATOR
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The key to implementing this method is how to incorporate
the input signal's amplitude information as well as its phase
information.

where Nnotes a distributed random number from [-1, 1] such
as Gaussian noise. By means of Eq. (3) is generated new
solution of the given cost function at i-th trial. If the cost
function, AE, computed at i-th trial is less than zero, Xi is
accepted and stored. If otherwise, the transition probability,
Probi(E) of the i-th unit is given by the following equation,

1 AEProbjE) =( ~)exp(- -)>y),Z(T) c
(4)

Fig. 2 Mechanical system model coupled to the neural oscillator

III. PARAMETERS OPTIMIZATION OF THE COUPLED
NEURAL OSCILLATOR

A. Function analysis

The neural oscillator connected to a mechanical system is
a non-linear system. So it is generally difficult to solve this
equation analytically. Therefore a graphical approach has
been taken by some researchers. This method is known as
describing function analysis [11]. The main idea of the me-
thod is to plot the equation in the complex plane and find the
intersection points of the two curves. The intersection points
of the two curves with match the natural frequency, a), in-
dicate limit cycle solution. However, even if rhythmic
movement of the mechanical system coupled with the neural
oscillator is generated, it may be difficult to obtain the pe-
culiar motion to satisfy the requested task due to a number of
the parameters of neural oscillator and the different dynamic
response of the model according to connection structure of
the neural oscillator networks. Hence, in subsection B, we
describe how to determine the parameters ofneural oscillator
using optimization to sustain stability of the oscillator.

B. Optimization ofneural oscillator parameters

Metropolis method based on the SA for optimization [ 12],
is employed to obtain the optimal parameters of the neural
oscillator coupled to the mechanical system. Metropolis
method has been used to search the global extremum
(minimum or maximum) of a cost function in many applica-
tions. This optimization algorithm based on the SA is said to
guarantee the global optimality [13].

In optimization, the essential starting parameters mini-
mizing cost function E to evaluate an energy equation are To,
initial temperature; X (e.g. X=[Tr, Ta, w, s, ...]T, optimization
variables of the neural oscillator; and v, the step size, called
learning rate, for X. A function evaluation equation is given
by;

Xi =X+il v N, (3)

where AE is change in the cost function value, AE=E1-E11l; y
is random value uniformly distributed between 0 and 1. IfAE
>0 and Probi(E) is less than y or equal zero, Xi is rejected.
Cooling schedule is ci=k ci1l (k is the Boltzmann constant or
effective annealing gain) and Z(T) is a tempera-
ture-dependant normalization factor. Here the lower cost
function value and large difference ofAE indicate that Xi is
the better solution.

However, even though the SA has several potential ad-
vantages over conventional algorithms, if the SA is applied
for achievement ofthe objective task of a mechanical system
coupled with the neural oscillator, a crucial problem may be
happened. On searching for objective variables, this is an-
nealing process in viewpoint of the SA, we can't recognize
whether the task is successively performed with the selected
parameter values or not. If the probability to be driven errors
which wrong parameters are taken exists in processing ofthe
SA in terms of such reason, the final stable values at the
lowest level of cost function is unbelievable. We newly,
accordingly, designed a cost function comparator and a dis-
tinguishable module of a task performance in this work as
shown in Fig. 3. The process for embodiment of these mod-
ules is added to the SA and is illustrated with thick-lined box
of Fig. 3. In our work, the comparator finds the optimized
parameters ofthe lowest cost function level to be normalized
and whether objective task is feasible or not results from the
distinguishable module. If a failure task is happened after
examining the desired task, the process is terminated at a
moment and the two modules proposed in this research are
activated in sequential. And than again this optimal process
is operated with parameters and initial values to perform the
objective task at the lowest cost function value.

IV. SIMULATION RESULTS

For validation of the proposed scheme on optimal dy-
namic systems control based on the neural oscillator to adapt
to an environmental variation, we evaluate swing task of
pendulum model and crank-rotation task of two-link planner
robot arm in this section. And then, we discuss and prove on
entrainment property in point of view of dynamic property
when the neural oscillator is coupled to mechanical systems.
The coupled models are illustrated in Fig. 4 (a) and (b). Here,
the oscillators are individually connected with mechanical
joints. In this work, inner networks of the neural oscillators
isn't considered owing that same signed initial conditions
drive an identical effectiveness with excitatory connection of
neural oscillator network.
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ploying the optimized parameters. The pendulum model is
described by the following equation:
ml20+ypS+mglsinO r (5)

where x is induced by means of the output of the neural os-
cillator. This output is given by:

T Yei Y = [Xei'] -[xfi] (6)

In addition, the output, 0, ofEq. (5) is fed again into the input,
ki [gi]+, of the neural oscillator as sensory signal. This
coupled model is incorporated for validation of the proposed
parameter turning method based on the SA according to an
objective. Hence, the objective task in this simulation is to
generate the most efficient swing motion of the one-link
pendulum.

To technically accomplish this objective, cost functions to
exhibit performance of dynamic motion are employed, re-
spectively, as followings:
1. Energy generated by torque (E1)
2. Energy consumption caused by viscosity (E2)
3. Potential energy (E3)
While the coupled oscillator-pendulum model periodically
moves to do the given task, the energies called cost functions
in this paper are generated and consumed. Here, the lowest
level of the summation of each cost function notes that the
coupled model considering parameters of the neural oscil-
lator acquired from the improved SA is superior to its model
using arbitrary parameters in the viewpoint of motion's ef-
ficiency. Motion's efficiency indicates the ratio of the
in/output as follow:

Me[°/0] =0x 100 (7)
Fig. 3 Flowchart ofthe upgraded SA for task based parameter optimization
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(a) (b)
Fig. 4 (a) Schematic model of pendulum coupled with the neural oscillator (b)
Schematic model of crank rotation task of two-link planner elbow arm coupled

with the neural oscillator

A. Swing ofa single pendulum

This subsection explores the optimization process of pa-
rameters of the neural oscillator for swing task of pendulum
and describes the discrepancy of behavior generated by the
mechanical system coupled with the neural oscillator em-

The optimization variables, X, of the neural oscillator are
Tr, Ta and w. And initial parameters of the neural oscillator
and mechanical model in order to perform this given task are
seen in Table I. Fig. 5 indicates cooling state in terms of
cooling schedule and cooling or annealing gain K is set as
0.95. We are convinced in Fig. 6 that the optimization
process is well operated and obtains better solution at the
lowest cost function level converged by steps. Figures 7 (a)
and (b) illustrate the procedure in order to select parameters
of the neural oscillator. The behavior of the coupled oscil-
lator-pendulum model shows oscillatory motion converging
quickly to a steady state frequency and amplitude of motion.
This motion is illustrated in (c) of Fig. 7, where the red thin
line is the output of the neural oscillator and the blue thick
line is the output of the pendulum. In Fig. 8, the proposed
optimization process is verified employing Eq. (7). When
appropriate parameters are applied to the neural oscillator
within neighborhood of the pendulum's length such as
0.5<1<1.5, respectively, the output of coupled oscilla-
tor-pendulum larger than that of coupled model incorporat-
ing parameters optimized in case of 1=1.0. The upper
blue-dash line (e) indicates the former and the result of the
latter is drawn by lower red line (m). By means of this, we are
able to confirm that the motion of the swing pendulum is
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under the best condition when the parameters through the
proposed parameter turning method are adapted.
Table I. Initial parameters of the neural oscillator and mechanical model

Neural Oscillator
Inhibitory weight 2
Adaptation constant 2
Tonic input 3
Sensory gain 8
Time constant (Tr) 0.5

(Ta) 1
Mechanical Model
Mass lkg
Viscosity 4.5Ns/m
Length Im

100

90

80

70

60_
0.
E 50_
I-

40_

30_

20_

10_

0

60

55

50

45

40

35
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Length of Link [m]
Fig. 8 Plot of motion's efficiencies

1.5

B. Crank rotation oftwo-linkplanner arm

As shown in Fig. 4 (b), two-link planar arm is considered
to evaluate the improved SA and the dynamic entrainment
property ofthe neural oscillator. Also, the dynamic model for
the crank rotation is designed to generate a constraint and an
appropriate external force. The crank model has moment of
inertia Iand derives torque with viscosity, C, from a motor. If
arbitrary Cartesian coordinate of the end-effector of the
two-link arm is defined as (x, y) on the crank dynamic model
and the origin of the crank centre in Cartesian coordinate is
(xo, yo), the coordinates x and y are given as

1000 2000 3000 4000
Number of task

Fig. 5 Temperature transition for cooling schedule

(x)_ (-rsino5+x0 11c1
+12C12

5000 ty) tLrcoso+yo Is +l2sI2

(j r sin OS - r cos O aJ(O)2

y t-rcos 3- rsin%s0 2O

(8)

Equation (8) can be rearranged as follows:
.2

J(0)0 + J(O, O)O = r(u(O)O - v(O)O ), (9)
a)

0r._

0

I-o-

9
0 1000 2000 3000

Number of task

Fig. 6 A transition of total cost function level of the

2.5

s 6 -

S 5-

.o4

= 3

where J is the Jacobian matrix of [x, y]T. y and 0i are the
crank angle and the i-th joint angles, respectively. Ii is the i-th
joint length. cl, c12, s1 and s12 denote cos 01, cos(01+ 02), sin
0_ and sin(01+ 02), respectively. r is the radius ofthe crank. u
is the tangential unit vector and v is the normal unit vector at
the outline of the crank model. These vector directions are
shown in Fig. 2, respectively.

_- The dynamic equilibrium equations of the crank and
two-link arm are in the standard form

4000 5000 IX + Ci = ru(5)T F (10)

neural oscillator M(O)O + V(O,0) + G(O) =' J(O)TF (11)

4.5r

1.50

3.5

m 0.5.

E 0

1E-0.5
-1

-1 .5

o 0 s 1-Sll -2 l l
o 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 5 10 15 20 25 30 35 40

Number of task Number of task Time[s]

(a) (b) (c)
Fig. 7 (a) A weight transition of inhibitory connection of neural oscillator (b) A rising time constant transition of neural oscillator (c) The output of the coupled

pendulum and neural oscillator. The red thin line is the output of neural oscillator and the blue thick line is the output of the coupled pendulum.
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where M is the inertia matrix, V the Coriolis/centripetal
vector, and G the gravity vector, where ' = z - b 0 and b
denotes the joint viscosity matrix [14]. F is the contact force
vector interacted at the connecting joint between the crank
and two-link arm. By solving Eqs. (10) and (11) simulta-
neously using Eq. (9), F is given as

F= {J(O)M(O)-1J(O)T +r2I-U(Qi5)U(Qi)T}-1 (12)

{J(O)M(O)- (r'z- V(O)) + J(O,O ) + r0(v(¢0 + CI- u(O))}
In this dynamic model, not only Fhas unique solution, but

a general dynamic system has only unique solution without
kinematic redundancy. In a system of this kind, it is so hard
to select appropriate parameters of the neural oscillator for
the given task even though this system dynamics is a re-
dundant system where the number of D.O.F. is short in
comparison with the number of actuators. Turning approach
based on the SA has necessary cost functions to embody the
objective task of a robot system. In the SA, the given task
motion is performed repeatedly and, at same time cost func-
tions are calculated according to annealing schedule with
various parameters. However, the failure of the process may
be happened frequently owing that the objective task isn't
successively done with various parameters and, what is more,
this dynamic model is a unique system, not redundant system.
By means of such reasons, we improved the parameter
turning method based on the SA to cope with various tasks
with the coupled oscillator-mechanical system as mentioned
in section III.

Individual joints of the dynamic model considered in this
paper are coupled to the neural oscillators as shown in fig. 4.
With this, the objective task is to rotate the crank with each
joint output of manipulator controlled in terms of the neural
oscillator. In this simulation, the neural oscillator network
doesn't construct. The individual neural oscillators are able
to entrain multi-body system without network such as direct
inter-oscillator inhibitory connection. Entire process of the
parameter turning approach is divided into two steps as fol-
lows:

1) Step 1: To roughly make the appropriate initial inputs
of the neural oscillator corresponding to desired inputs of
each joint, the cost function is given by:

(0= T-TG +v.max( d -1 0) (13)
TG ~~B

subject to
A <Ad<Ai) Ami <d < max

ii) |Ad-C|<B

where C=(Amax+Amin)/2, B=(Amax-Amin)/2; Ad is the desired
amplitude, Amax and Amin are the maximum and minimum of
amplitude, respectively; T denotes the natural frequency of a
signal. v is performance gain.

2) Step 2: Incorporating the initial parameters obtained
by Step 1, the improved SA is operated with process illu-
strated in Fig. 7. In cost function for the crank rotation, we
employ velocity of the rotating crank, generating torque and
consumed energy.

Implementing Stepl and Step2 in sequential, we are able
to acquire the appropriate initial and properly tuned para-

meters as seen in Table II. As expected, when tuned para-
meters are employed in order to perform the given task, ap-
propriate stable motion could be accomplished. This result is
shown well in Fig. 9. In Fig. 9 (b), a transient region in the
early part of the simulation appears and disappears on ac-
count of the particular entrainment property of the neural
oscillator. This property enables a manipulator to implement
and sustain the given task under various environmental
changes such as change of a manipulator's platform, outer
disturbances, etc.

Hence, in order to verify the possibility of such adaptation
performance, we apply various circumstances to the coupled
oscillator-two link arm model. Since the neural oscillator for
the objective task totally dominates the kinematic constraints
of the crank and two-link arm, we alter the conditions with
respect to geometric parameters of the two-link arm and the
crank dynamic properties up to about two and three times;
joint length and mass, crank radius and inertia, viscosity, etc.
In Fig. 10, the coupled model tuned properly is enforced to
fast and smoothly revolve the crank in terms of the changed
circumstance. Fig. 10 (a) and (d) indicate the desired tra-
jectories that an alternation is enforced according to envi-
ronmental variety. Although severe changes as previously
mentioned are applied, the coupled model with adaptation
time successfully performs the given tasks as illustrated in
Fig. 10 (b), (c), (e) and (f). With the above simulation result,
therefore, it can be verified that the neural oscillators enable
the two-link planner arm to skillfully perform the desired
task regardless of somewhat change of the used mechanical
model dynamics and outer circumstance if the desired joint
input for a task is closed to periodic angle.

0.56

0.54 X

052 -

0.48 ,,,i

0.46 - ""/

o044024 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12
X[m]
(a)

1 515

1.4

1.3

')x 1.12_

0I9

0.8L0 10 20 30 40 50
Time[s]

(b)
Fig. 9 (a) The end-effector trajectory of two-link arm (b) The output ofjoint
angle. The red dash line is the first joint angle and the second joint angle is

drawn by the blue thin line
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(d) (e) (f)
Fig. 10 (a) The desired trajectory of end-effector (b) The output ofjoint angle. The red dashed line is the first joint angle and the second joint angle is drawn by the

blue thin line (c) The trajectory of end-effector of two-link model coupled with neural oscillator (in case of about two times change)
(a) The desired trajectory of end-effector (b) The output ofjoint angle. The red dashed line is the first joint angle and the secondjoint angle is drawn by the blue thin

line (c) The trajectory of end-effector of two-link model coupled with neural oscillator (in case of about three times change)

Table II. Comparison between initial parameters and parameters of the
neural oscillator tuned optimally by the modified SA

Initial parameters Optimized parameters
Inhibitory weight 2.0 Inhibitory weight 1.8922
Time constant (Tr) 0.25 Time constant (Tr) 1.0075

(Ta) 0.5 (Ta) 2.0150
Sensory gain 1 Sensory gain 2.4210
Tonic input 60 Tonic input 59.9575

V. CONCLUSION

We have described a dynamic response of a mechanical
system coupled with the artificial neural oscillator with en-
trainment capability which can be applied under the condi-
tion of unknown environment. Even if there exist some ap-
proaches to design and analyze the coupled system, existing
works on the neural oscillator did not distinctively address
how to cope with the possible parameter designing and the
entrainment property when the objective task was given
under various states. Our aim was to optimally tune para-
meters of the artificial neural oscillator connected into a
mechanical system with regard to the given task. For this, we
newly improved the optimal method based on the SA and
proposed how to deal with the coupled model with the pro-
cedure of the approach.
Our scheme to select appropriate parameter and by this,

adaptable movements of the modelled manipulator were
clearly verified under environmental change through effi-
cient numerical simulations. Particularly, the adaptation
motion in terms of the entrainment property of the virtual
coupled model was investigated with some different condi-
tions. Also, it was observed from simulation results of the

model was investigated with some different conditions. Also,
it was observed from simulation results of the appropriately
tuned coupled model that transient regions corresponding to
alternation of conditions appear. This approach will be a new
contribution toward the realization of biologically inspired
robot control architectures. A rigorous feasible possibility
with the various tasks and entrainment property based on the
proposed scheme is currently under way within the frame-
work of control theory. Relating to the future research, we
will show the practical validity of this approach through
experiments with real robots.
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