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PAPER

A Higher-Order Knuth-Bendix Procedure and Its Applications

Keiichirou KUSAKARI†a), Member and Yuki CHIBA††b), Nonmember

SUMMARY The completeness (i.e. confluent and terminating) prop-
erty is an important concept when using a term rewriting system (TRS) as
a computational model of functional programming languages. Knuth and
Bendix have proposed a procedure known as the KB procedure for generat-
ing a complete TRS. A TRS cannot, however, directly handle higher-order
functions that are widely used in functional programming languages. In this
paper, we propose a higher-order KB procedure that extends the KB pro-
cedure to the framework of a simply-typed term rewriting system (STRS)
as an extended TRS that can handle higher-order functions. We discuss the
application of this higher-order KB procedure to a certification technique
called inductionless induction used in program verification, and its appli-
cation to fusion transformation, a typical kind of program transformation.
key words: simply-typed term rewriting system, higher-order KB proce-
dure, inductive theorem, inductionless induction, fusion transformation

1. Introduction

A term rewriting system (TRS) can be used as a com-
putational model of functional programming languages, in
which the introduction of higher-order functions consisting
of arguments and values achieves a high level of abstraction
and increases the expressive power. A TRS, however, cannot
directly handle higher-order functions, which makes it diffi-
cult to use accumulated results in the automatic verification
of functional programs. Against this background, research
on higher-order rewriting systems that can handle higher-
order functions has been actively studied. This research,
however, has come to place a priority on theoretical inter-
ests resulting in formalizations having excessive expressive
power when viewed as a model of functional programming
languages. With this in mind, we propose a simply-typed
term rewriting system (STRS) as a higher-order rewriting
system having sufficient expressive power for giving opera-
tional meaning to functional programming languages while
still being easy to handle theoretically [16].

The completeness (i.e. confluent and terminating)
property is an important concept when using a TRS as a
computational model of functional programming languages.
Knuth and Bendix have proposed a procedure known as the
KB procedure for generating a complete TRS [14]. This KB
procedure finds a complete TRS equivalent to the given set
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of first-order equations.
In this paper, we propose a higher-order KB procedure

and demonstrate its validity. The STRS can be made to han-
dle higher-order functions simply by slightly easing the re-
strictions on the data structure of first-order terms. As a
consequence, many of the theoretical properties that hold
for the first-order framework can be directly transported to a
higher-order one. Indeed we can achieve a higher-order KB
procedure. We also examine the application of this higher-
order KB procedure that we have designed to inductionless
induction and fusion transformation.

Most of the data structures used in functional program-
ming are inductive structures such as list and tree structures.
For this reason, most properties that a program must guar-
antee are formalized as inductive theorems, and as a result,
a method for automatically proving inductive theorems is
essential for establishing an automatic program verification
method. Various methods for automatically proving induc-
tive theorems have been proposed in the research of TRS
as a computational model of functional programming lan-
guages [6], [7], [10], [15], [18], [19], [21]. In this regard, we
present the application of a higher-order KB procedure to
the results in [18], which extends the results of induction-
less induction in [15], [21] to an STRS framework.

Programming using a functional programming lan-
guage begins with the definition of basic functions that can
then be combined to define more complex functions. Most
basic functions are defined in the form of a data structure
having an inductive structure such as a list or tree. When
combining such functions, a large amount of intermediate
data inherent in those data structures can be generated, and
a program that generates such intermediate data is generally
weak in terms of computational efficiency. It is therefore de-
sirable that a program of this type be converted to one that
does not generate such intermediate data so that program
efficiency can be improved. This kind of program conver-
sion is called a fusion transformation [8], [20], [22]. Bel-
legarde has proposed a fusion transformation based on the
KB procedure [5]. This technique imposes the restriction
that fused terms must be linear, and it does not directly use
the KB procedure. Ito, Kusakari, and Toyama have shown
that fusion transformation of a TRS can be performed even
with direct use of the KB procedure, and have also shown
by experiment that the linearity restriction on fused terms
can be removed [11]. These results, however, pertain to a
first-order TRS framework: they cannot handle higher-order
functions. In the study presented here, we examine by ex-
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periment the fusion transformation of higher-order functions
using a higher-order KB procedure.

2. Preliminaries

In this section, we introduce some notions for ab-
stract reduction systems (ARSs), untyped term rewriting
systems (UTRSs), simply-typed term rewriting systems
(STRSs), and many-sorted term rewriting systems (MS-
TRSs), needed later on. We assume that the reader is fa-
miliar with notions of term rewriting systems [3].

2.1 Abstract Reduction Systems

An abstract reduction system (ARS) R is a pair 〈A,→〉
where A is a set and → is a binary relation on A. The
transitive-reflexive closure of a binary relation → is de-

noted by
∗→, the transitive closure is denoted by

+→, and the

transitive-reflexive-symmetric closure is denoted by
∗↔.

Let R = 〈A,→〉 be an ARS. An element a ∈ A is
said to be a normal form if there exists no b ∈ A such that
a→ b. We denote all normal forms in R by NF(R). An ARS
R is said to be weakly normalizing, denoted by WN(R), if

∀a ∈ A. ∃b ∈ NF(R). a
∗→ b; to be strongly normalizing (ter-

minating), denoted by S N(R), if there exists no infinite se-
quence a0 → a1 → · · · ; to be confluent, denoted by CR(R),

if a1
∗← a

∗→ a2 ⇒ ∃b ∈ A. a1
∗→ b

∗← a2 for all a, a1, a2 ∈ A.

2.2 Untyped Term Rewriting Systems

Untyped term rewriting systems (UTRSs) introduced in
[16]† represent a basis for various rewriting systems:
simply-typed term rewriting system, many-sorted term
rewriting system, and traditional term rewriting system.
In this subsection, we introduce some notions of UTRSs
needed later on.

Let Σ be a signature, that is, a finite set of function
symbols, which are denoted by F,G, . . .. Let V be an enu-
merable set of variables with Σ ∩ V = ∅. Variables are
denoted by x, y, z, f , . . .. An atom is a function or vari-
able symbol denoted by a, a′, . . .. The set T (Σ,V) of (un-
typed) terms constructed from Σ and V is the smallest set
such that a(t1, . . . , tn) ∈ T (Σ,V) whenever a ∈ Σ ∪ V and
t1, . . . , tn ∈ T (Σ,V). If n = 0, we write a instead of a().
Identity of terms is denoted by ≡. For s ≡ a(s1, . . . , sn), we
often write s(t1, . . . , tm) instead of a(s1, . . . , sn, t1, . . . , tm).
We define the root symbol by root(a(t1, . . . , tn)) = a. Var(t)
is the set of variables in t. A term is said to be closed if
no variable occurs in the term. The set of closed terms is
denoted by T (Σ). The size |t| of t is the number of function
symbols and variables in t.

A substitution θ is a mapping from variables to
terms. Each substitution θ is naturally extended to a
mapping from terms to terms, denoted by θ̂, as follows:
θ̂(F(t1, . . . , tn)) = F(θ̂(t1), . . . , θ̂(tn)) if F ∈ Σ; θ̂(z(t1, . . . , tn))
= a′(t′1, . . . , t

′
m, ˆθ(t1), . . . , θ̂(tn)) if z ∈ V with θ(z) =

a′(t′1, . . . , t
′
m). For simplicity, we identify θ and θ̂. We write

tθ instead of θ(t).
A context is a term which has exactly one special sym-

bol �, called hole, at a leaf position. A suffix context is a
term which has the symbol � at the root position. For ex-
ample, F(0,�) and F(�, xs) are contexts, �(0) and �(0,Nil)
are suffix contexts, and � is a context and a suffix context.
For a context C[ ] (a suffix context S [ ]), C[t] (S [t]) denotes
the result of placing t in the hole of C[ ] (S [ ]). For example,
C[t] ≡ a(t, t′) for C[ ] ≡ a(�, t′), and S [a(t)] ≡ a(t, t′) for
S [ ] ≡ �(t′). A term t′ is said to be a subterm of a term t if
there exists a context C[ ] such that t ≡ C[t′]. We denote by
S ub(t) all subterms of t. A term s is said to be an instance
of a term t if there exists a substitution θ such that s ≡ tθ.

A rule is a pair (l, r) of terms such that Var(l) ⊇ Var(r).
We write l → r instead of (l, r). For a set R of rules,
the reduction relation s→

R
t is defined as s ≡ C[S [lθ]] and

t ≡ C[S [rθ]] for some l → r ∈ R, C[ ], S [ ] and θ. We often
omit the subscript R whenever no confusion arises. An un-
typed term rewriting system (UTRS) is an abstract reduction
system 〈T (Σ,V),→

R
〉, where R is a set of rules. We often de-

note an UTRS 〈T (Σ,V),→
R
〉 by R. If t has a unique normal

form in an UTRS R we denote it by t ↓R. Note that if we
don’t use suffix contexts in the definition of the reduction
relation, UTRSs are too restrictive to model of functional
programming languages. For instance, the following UTRS
is not confluent without suffix contexts.
{

I(x)→ x
App( f , x)→ f (x)

In the system, we have

I( f , x)← App(I( f ), x)→ App( f , x)→ f (x).

However, to reduce I( f , x) to f (x) we need to apply the first
rule in the suffix context �(x) which has the hole at a non-
leaf position. Finally we give an example of UTRS which is
a representation of the Map-function:

{
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)

Note that we use the standard representation for list struc-
tures by symbols Nil and Cons, and abbreviate Cons(x, xs)
to x :: xs throughout the paper. Then we have the following
reduction sequence.

Map(F, F(0) :: 0 :: Nil)

→
R

F(F(0)) :: Map(F, 0 :: Nil)

→
R

F(F(0)) :: F(0) :: Map(F, Nil)

→
R

F(F(0)) :: F(0) :: Nil

†In [16], UTRSs were called term rewriting systems with
higher-order variables (TRS-HVs). Since there exists no “higher-
order variable” in untyped systems, we use UTRS in the paper.
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2.3 Simply-Typed Term Rewriting Systems

We introduced simply-typed term rewriting systems
(STRSs), which are defined as UTRSs with simply-type
constraints [16].

A set of basic types (sort) is denoted by B. The set
T of simple-types is generated from B by the constructor
→ as T ::= B | (T → T ). To minimize the number of
parentheses, we assume that→ is right-associative, and omit
redundant parentheses. A type attachment τ is a function
from Σ ∪V to T . A term a(t1, . . . , tn) has a type β if τ(a) =
(α1 → (· · · → (αn → β) · · · )) and each ti has the type αi.
A term t is said to be a simply-typed term if it has a simple-
type. We denote all simply-typed terms by Tτ(Σ,V), and
denote all simply-typed terms with a type α by Tα(Σ,V).
A simply-typed term t is said to be ground if t is closed
and of basic type. We denote all ground terms by TB(Σ).
We use Vh to stand for the set of higher-order variables (i.e.
Vh = {x ∈ V | τ(x) ∈ T \ B}).

To keep the type consistency, we assume that τ(x) =
τ(θ(x)) for all x ∈ V and substitutions θ. We also prepare
the hole �α with a simple type α, and for each context C[ ]
(suffix context S [ ]) with a hole �α we assume that τ(t) = α
whenever we denote C[t] (S [t]). We define order of types
by ord(α) = 1 if α ∈ B; ord(α) = max(1+ord(α1), ord(α2))
if α = α1 → α2. We notice that each ti is of basic type in a
simply-typed term a(t1, . . . , tn) whenever ord(τ(a)) ≤ 2.

A simply-typed rule is a rule l→ r such that τ(l) = τ(r).
A simply-typed term rewriting system (STRS) is an abstract
reduction system 〈Tτ(Σ,V),→

R
〉, where R is a set of simply-

typed rules. We often denote an STRS 〈Tτ(Σ,V),→
R
〉 by

R. For example, the Map-function is also represented
by the STRS, which is the UTRS presented in the previ-
ous subsection with τ(Nil) = L, τ(::) = N → L → L
and τ(Map) = (N → N) → L → L. For an STRS
〈Tτ(Σ,V),→

R
〉, we define GNF(R), GWN(R), GS N(R) and

GCR(R) as NF(R′), WN(R′), S N(R′) and CR(R′) in the ARS
R′ = 〈TB(Σ),→

R
〉, respectively. A simply-typed equation is

a pair (e1, e2) of simply-typed terms e1, e2 ∈ Tτ(Σ,V) such
that τ(e1) = τ(e2). We write e1 = e2 instead of (e1, e2). For
any set E of equations,→

E
is defined as similar to reduction

relation.
According to the traditional way, we partition off Σ into

D and C, called by defined symbols and constructors, re-
spectively. A simply-typed term t ∈ Tτ(C,Vh) is said to be
a pseudo-value if any variable occurrence is at a leaf posi-
tion. We denote all pseudo-values by PVal(C,Vh). A STRS
R is said to be strongly quasi-reducible, denoted by S QR(R),
if any basic-typed term F(t1, . . . , tn) is reducible by R when-
ever t1, . . . , tn ∈ PVal(C,Vh) and F ∈ D.

Simply-typed terms s and t are unifiable if there exists a
substitution θ such that sθ ≡ tθ. Then θ is said to be a unifier
of s and t. A unifier θ of s and t is said to be a most general
unifier if for any unifier θ′ of s and t there exists θ′′ such

that θ′ = θ′′ ◦ θ. Let l1 → r1 and l2 → r2 be simply-typed
rules, and suppose these rules have no variables in common.
If l2 ≡ C[l′2], l′2 � V, and l′2 and l1 are unifiable with the
most general unifier θ, then the pair 〈C[r1]θ, r2θ〉 is called a
critical pair.

Finally we introduce a result for proving termination of
STRSs.

Proposition 2.1 [16] Let R be an STRS. R is terminating iff
there exists a reduction order > such that ∀l→ r ∈ R. l > r.
Here a reduction order is a well-founded order closed under
contexts and substitutions.

Definition 2.2 [17] A precedence � is a strict partial order
on Σ. For any simply-typed terms s ≡ a(s1, . . . , sn) and t ≡
a′(t1, . . . , tm), we define s >lpo t if τ(s) and τ(t) have the
same type whenever all basic types are identified, and one
of the following properties holds:

• τ(s) ∈ B, a�a′ and for all j either s >lpo t j or ∃i. si ≥lpo

t j,
• a = a′, [s1, . . . , sn] >lex

lpo [t1, . . . , tm] and for all j either
s >lpo t j or ∃i. si ≥lpo t j,

• there exists k such that ∃i. si ≥lpo a′(t1, . . . , tk) and ∀ j >
k. ∃i j. si j ≥lpo t j.

Here ≥lpo is defined as >lpo ∪ ≡.

Proposition 2.3 [17] The lexicographic path order >lpo is a
reduction order.

2.4 Many-Sorted Term Rewriting Systems

We introduced many-sorted term rewriting systems (MS-
TRSs), which are defined as UTRSs with sort constraints.

A set of sort is denoted by S ort, and the set of non-
empty sequences of sorts is denoted by S ort+. We often
denote α1, . . . , αn, β ∈ S ort+ by α1 × · · · × αn → β. A
sort attachment st is a function from Σ ∪ V to S ort+ such
that st(x) ∈ S ort for any x ∈ V. A term a(t1, . . . , tn) is of
β ∈ S ort+ if st(a) = α1 × · · · × αn → β and each ti is of
αi. A term a(t1, . . . , tn) is said to be a sorted term if it is
of α for some α ∈ S ort+. We denote all sorted terms by
Tst(Σ,V). We restrict substitutions and contexts to sort pre-
serving ones. A many-sorted rule is a rule l → r such that
st(l) = st(r). A many-sorted term rewriting system (MS-
TRS) is an abstract reduction system 〈Tst(Σ,V),→

R
〉, where

R is a set of many-sorted rules. The notion of critical pair is
defined as in STRSs. Note that usual first-order term rewrit-
ing systems correspond to MS-TRSs with |S ort| = 1.

3. Higher-Order Knuth-Bendix Procedure

In order to solve word problems in universal algebras, Knuth
and Bendix proposed a completion procedure known as the
KB procedure [14]. The KB procedure attempts to trans-
form a finite set of equations into a complete TRS, which
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serves as a decision procedure for word problems. In this
section, we propose a higher-order KB procedure based on
the formulation in [4], and prove its soundness.

Procedure 3.1 (Higher-Order KB Procedure)� �
Input: A set E of equations and a reduction order >.
Output: A complete STRS R that is logically equiva-

lent to E.
(1) R := ∅
(2) If E = ∅ then return R; otherwise repeat the fol-

lowing (3)–(9).
(3) Pick an equation s = t (or t = s) from E such that

s > t; if none exists, terminate with failure.
(4) R := {l→ r↓R′ | l→ r ∈ R}where R′ = {s→ t}∪R
(5) Add to E all critical pairs between s→ t and each

rule in {s→ t} ∪ R.
(6) Remove all rules from R whose left-hand side con-

tains an instance of s.
(7) R := R ∪ {s→ t}
(8) E := {e1 ↓R = e2 ↓R | e1 = e2 ∈ E}
(9) Remove any equation in E whose reduced sides

are identical.
� �
We note that for an STRS R, the completeness property is
defined as CR(R) and S N(R), and logically equivalent to E

means that
∗↔
R
=
∗↔
E

.

In the following, we use a glass-replacement puzzle to
explain the solution to a word problem using a higher-order
Knuth-Bendix procedure (HKB procedure).

Assume a certain sequence of sake, whisky, and beer
glasses. This row of glasses may be replaced according to
the following glass-replacement rules.

• A sake glass may be inserted to the left of a beer glass.
Conversely, a sake glass having a beer glass to its right
may be removed.

• A sake glass and whisky glass may be added to the
left and right, respectively, of an appropriately selected
contiguous glasses. The reverse operation may also be
performed.

For example, the following changes are possible. In the fol-
lowing figure, sake, whisky, and beer glasses are indicated
by S , W, and B, respectively.

We consider the following problems:

(1) Can the sake-sake-whisky-beer sequence be replaced
by the sake-sake-beer-whisky sequence?

(2) Can the sake-whisky-whisky-whisky sequence be re-
placed by the sake-whisky-whisky-beer sequence?

The answer to problem (1) is “yes” and the answer to prob-
lem (2) is “no”. The answer to (1) can be obtained by ac-
tually searching for a valid replacement procedure. In this

case, the procedure can be found by a simple trial-and-error
process. The difficulty arises when the answer is “no” as
in problem (2). Because there is an infinite number of pro-
cedures for replacing these glasses, inspecting all of them
would take forever.

This problem can be formalized as a typical word
problem. We denote sake, whisky, and beer glasses as S ,
W, and B, respectively, and the type of these symbols as
S ,W, B : ∗ → ∗, where ∗ is a basic type. Now, if we
introduce the function symbol ⊥ : ∗ to represent the end
of the glass sequence, then the state of glasses arranged in
the order of sake-sake-beer-whisky-beer can be expressed
as S (S (B(W(B(⊥))))). In this formalization, the above two
replacement rules can be given by the following set of equal-
ities denoted by E.

E =

{
S (B(y)) = B(y)

S (x(W(y))) = x(y)

Here, x, y are variables. We note in particular that variable x
used in the second rule has the function type ∗ → ∗, which
means that it is a higher-order variable. The two problems
described above can therefore be formalized by the follow-
ing term-based word problem.

(1) S (S (W(B(⊥))))
∗↔
E

S (S (B(W(⊥)))) ?

(2) S (W(W(W(⊥))))
∗↔
E

S (W(W(B(⊥)))) ?

We attempt to solve these two word problems using an HKB
procedure. If we use the lexicographic path order (Def. 2.2)
as a reduction order (in this example, there is no need to
give precedence), we obtain the following complete STRS
denoted by R.

R =


S (B(y)))→ B(y)

S (x(W(y)))→ x(y)
B(W(y)))→ B(y)

The top two rewrite rules here are obtained by giving
direction to the set E of rules, and the last rule is obtained by
giving direction to the added critical pair. If we now try to
solve the above word problems using this STRS, we obtain
the following results.

(1) S (S (W(B(⊥))))↓= B = S (S (B(W(⊥))))↓
(2) S (W(W(W(⊥))))↓= W(W(⊥)) � W(B(⊥)) =

S (W(W(B(⊥))))↓

Accordingly, as the normal forms of the two glass sequences
in problem (1) agree, the answer is “yes”; and as they do
not agree in problem (2), the answer is “no”. These results
also indicate that the formalization denoted by S (x(W(y))) =
x(y) is not possible in a first-order TRS, which points to
the difficulty of directly handling the appearance of arbi-
trary contiguous glasses in the glass sequence. Although
some readers may think that the equality S (x(W(y))) = x(y)
can be represented in a first-order setting by substituting the
closed terms of the type ∗ → ∗ for the higher-order vari-
able x, this approach generates an infinite system because
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there exist infinite terms of the type ∗ → ∗. Using an STRS
that can handle terms that include higher-order variables can
suppress such problems.

The rest of this section demonstrates the validity of our
HKB procedure, or more specifically, that the STRS R ob-
tained as output is logically equivalent to the equality set E
given as input, and complete as well. The proof is given by
dropping into a first-order framework using currying [13].

Definition 3.2 For any simple types α and β, we prepare the
special constant @α,β. We define Σ@ = Σ∪{@α,β | α, β ∈ T }.
For any simple type α, we prepare the sort σα, and define
S ortT = {σα | α ∈ T }. For a type attachment τ, we define
the sort attachment stτ by stτ(@α,β) = σα→β ×σα → σβ and
stτ(a) = στ(a) for any a ∈ Σ ∪V.

For any simply-typed term t ∈ Tτ(Σ,V), we induc-
tively define the sorted term t@ ∈ Tstτ(Σ

@,V) as follows:

• a@ = a for any a ∈ Σ ∪V
• a(t1, . . . , tn)@ =@α,β(a(t1, . . . , tn−1)@, t@

n )
if n ≥ 1 and τ(a(t1, . . . , tn−1)) = α→ β

We notice that Tstτ (Σ
@,V) = {t@ | t ∈ Tτ(Σ,V)}. We

naturally extend the notion over substitutions as θ@(x) =
(θ(x))@, and over sets of pairs (like equations or rules) as
E@ = {(s@, t@) | (s, t) ∈ E}.

Lemma 3.3 The equality C[S [tθ]]@ ≡ C@[S @[t@θ@]]
holds for any term t, context C[ ], suffix context S [ ] and
substitution θ such that C[S [tθ]] has a simple type.

Proof. Firstly we prove (tθ)@ ≡ t@θ@ by induction on |t|.
Let t ≡ a(t1, . . . , tn). The case n = 0 is trivial. Suppose that
n > 0. Let u ≡ a(t1, . . . , tn−1) and τ(u) = α → β. Then
(tθ)@ ≡ (u(tn)θ)@ ≡ ((uθ)(tnθ))@ ≡ @α,β((uθ)@, (tnθ)@) ≡
@α,β(u@θ@, t@

n θ
@) ≡ @α,β(u@, t@

n )θ@ ≡ t@θ@.
We can also prove S [tθ]@ ≡ S @[(tθ)@] by induction

on S [ ], and C[S [tθ]]@ ≡ C@[S [tθ]@] by induction on C[ ].
Hence we obtain C[S [tθ]]@ ≡ C@[S @[t@θ@]]. �

The following properties directly follows from this
lemma.

Lemma 3.4

(i) For any STRS R, s→
R

t ⇐⇒ s@→
R@

t@.

(ii) Let P be all critical pairs between l1 → r1 and l2 → r2,
Q be all critical pairs between l@1 → r@

1 and l@2 → r@
2 .

Then Q = P@.
(iii) A subterm of a simply-typed term s is an instance of

a simply-typed term t if and only if a subterm of the
sorted term s@ is an instance of the sorted term t@.

Theorem 3.5 Let E be a set of simply-typed equations and
> be a reduction order. If the HKB procedure applied to
E and > terminates successfully with output R, then R is a
finite complete STRS that is logically equivalent to E.

Proof. The HKB procedure (Procedure 3.1) corresponds to
the first-order KB procedure presented in [4]. We define
>′ by s@ >′ t@ ⇐⇒ s > t. Then >′ is a reduction
order on Tst(Σ@,V). Hence, thanks to Lemma 3.4 (ii, iii),
the first-order KB procedure with sort constraints applied to
E@ and >′ terminates successfully with output R@†. Thanks
to Lemma 3.4 (i), STRS R is finite, complete and logically
equivalent to E. �

This proof shows that the STRS can be viewed within
the framework of a curried TRS, which is a first-order TRS
with sort constraints. Nevertheless, there are three reasons
for using STRS:

• First, for all terms in a curried TRS, all appearances at
internal nodes take on @α,β, which only classify type
information. This is an exceptionally strong restriction
in the proof for termination. In particular, recursive
path order and lexicographic path order, as well as the
dependency pair method (strictly speaking, the argu-
ment filtering method) cannot be used in most cases
(cf. [16], [17]).

• The second reason concerns the problem of execution
efficiency. It can be seen from a simple calculation that
|t@| = 2|t| − 1. In other words, the curried term t@ has
almost twice the redundancy of term t. That is a fatal
problem in implementation.

• The third reason relates to the problem of readability.
Let’s examine actual definitions for addition in both
STRS and curried TRS (omitting the subscript of @).{

Add(x, 0)→ 0
Add(x, S (y))→ S (Add(x, y))

@(@(Add, x)), 0)→ 0
@(@(Add, x),@(S , y))

→ @(S ,@(@(Add, x), y))

Clearly STRS on the upper is more readable. While
TRS is widely used in research of algebraic specifi-
cations, the specifications themselves are to be pre-
pared by people regardless of how far research ad-
vances. This calls for a specific description language
with high readability to avoid human errors. For this
reason, STRS is superior to curried TRS as an alge-
braic specification language.

4. Inductionless Induction

The concept of inductive theorems is extremely important in
practical applications. In actuality, most data structures used
in functional programming are inductive structures such as
list and tree structures. As a result, most properties that a
program must guarantee are formalized as inductive theo-
rems. For example, consider the following STRS R:

†The correctness of the KB procedure in [4] is proved on one-
sorted TRSs (first-order TRSs). These proof still holds on many-
sorted TRSs, because many-sorted TRSs has the subject property
(s→

R
t ⇒ st(s) = st(t)).
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

App(Nil, ys)→ ys
App(x :: xs, ys)→ x :: App(xs, ys)

Rev(Nil)→ Nil
Rev(x :: xs)→ App(Rev(xs), x :: Nil)

F(Nil, ys)→ ys
F(x :: xs, ys)→ F(xs, x :: ys)

Frev(xs)→ F(xs,Nil)

Both Rev and Frev give a definition of a list-reverse
function, but from the viewpoint of execution efficiency,
Frev results in a more efficient implementation. The
transformation from Rev to Frev is a typical example
of improving program efficiency. The problem here,

however, is that Rev(xs)
∗↔
R

Frev(xs) does not hold in

R. Why should this be the case despite the fact that

Rev([a1, . . . , an])
∗↔
R

[an, . . . , a1]
∗↔
R

Frev([a1, . . . , an]) for any

list [a1, . . . , an]? The answer is that xs, which is given
as input to Rev, Frev, is a variable, which prevents a spe-
cific list from being evaluated. In reality, the property that

Rev(t)
∗↔
R

Frev(t) is important for all input t that can be con-

sidered. This is the concept of inductive theorems. Further-
more, to enable an equality like Rev = Frev to be handled
in a higher-order framework, it is also necessary to incorpo-
rate the concept of extensionality in inductive theorems. We
here introduce the definition of inductive theorems in STRSs
given in [18].

Definition 4.1 [18] Let R be a set of equations. An equation
s = t is said to be a primitive inductive theorem in R, denoted

by R �pind s = t, if S g[sθc]
∗↔
E

S g[tθc] for all ground suffix

context S g[ ] and closed substitution θc (i.e.∀x ∈ Var(s) ∪
Var(t). xθc ∈ Tτ(Σ)). We define R �1

pind s = t by R �pind

s = t; R �n+1
pind s = t by R′ �pind s = t where R′ = {u = v |

R �n
pind u = v}. An equation s = t is said to be an inductive

theorem in R, denoted by R �ind s = t, if R �n
pind s = t for

some n. We also denote R �ind E (R �pind E) if R �ind s = t
(R �pind s = t) for all s = t ∈ E.

In general, automated reasoning for inductive theorems
is not so easy. To overcome the difficulty, the induction-
less induction method, which provides a mechanical support
for inductive theorems, was proposed by Musser [19], and
extended by Huet and Hullot [10]. Toyama made clear an
essence of the method [21]. Recently, Kusakari, Sakai and
Sakabe extended the method to higher-order settings [18].

Proposition 4.2 [18] Let R and R′ be STRSs, and E be a
set of equations. If all of the following properties hold then
R �pind E and R �ind E.

(i)
∗↔

R∪E
⊆ ∗↔

R′
in TB(Σ)

(ii) GWN(R)
(iii) GCR(R′)
(iv) GNF(R) ⊆ GNF(R′)

Example 4.3 Consider the following STRS R.

R =



Map( f ,Nil)→ Nil
Map( f , x :: xs)→ f (x) :: Map( f , xs)

App(Nil, ys)→ ys
App(x :: xs, ys)→ x :: App(xs, ys)

We suppose that Σ = {0, S ,Nil, ::, App,Map}, τ(0) = N,
τ(S ) = N → N, τ(Nil) = L, τ(::) = N → L → L, τ(App) =
L→ L→ L and τ(Map) = (N → N)→ L→ L.

Based on Proposition 4.2, we prove that the following
equation is an inductive theorem.

Map( f , App(xs, ys)) = App(Map( f , xs),Map( f , ys))

Let R′ be the union of R and the above equation. Then all
conditions in Proposition 4.2 hold, and hence we succeed to
prove that the equation is an inductive theorem in R.

The above example is relatively easy because the gen-
erated STRS R’ is ground confluent. However, this is in
general not always the case. The difficulty can be overcome
by using the HKB procedure.

Example 4.4 Consider the following STRS R.

R =



Add(0, y)→ y
Add(S (x), y)→ S (Add(x, y))

One(0)→ S (0)
One(S (x))→ S (0)

Len(Nil)→ 0
Len(x :: xs)→ S (Len(xs))

S um(Nil)→ 0
S um(x :: xs)→ Add(x, S um(xs))
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)

We suppose that Σ = {0, S ,Nil, ::, Add,One, Len, S um,
Map}, τ(0) = N, τ(S ) = N → N, τ(Nil) = L, τ(::) =
N → L → L, τ(Add) = N → N → N, τ(One) = N → N,
τ(Len) = L → N, τ(S um) = L → N and τ(Map) = (N →
N)→ L→ L.

Based on Proposition 4.2, we prove that the following
equation is an inductive theorem.

S um(Map(One, xs)) = Len(xs)

Firstly, as similar to Example 4.3, let R′ be the union of R
and the above equation. However, R′ is not confluent. In
fact, we have:

S um(Map(One, x :: xs))→ Len(x :: xs)

→ S (Len(xs))

S um(Map(One, x :: xs))

→ S um(One(x) :: Map(One, xs))

→ Add(One(x), S um(Map(One, xs)))

→ Add(One(x), Len(xs))

Since S (Len(xs)) and Add(One(x), Len(xs)) are distinct nor-
mal forms, STRS R′ is not confluent.



KUSAKARI and CHIBA: A HIGHER-ORDER KNUTH-BENDIX PROCEDURE AND ITS APPLICATIONS
713

By the HKB procedure, we can overcome the prob-
lem. Indeed, we succeed to transform R′ ∪ {Add(x, 0)→ x}
to a complete STRS. We note that we prove the lemma
Add(x, 0) = x together with S um(Map(One, xs)) = Len(xs)
because our HKB implementation could not transform R′ to
a complete STRS. As a reduction order, we use the lexi-
cographic path order (Definition 2.2) with the precedence
Map � Len �S um � Add � One� :: �Nil � S � 0. Then the
HKB procedure returns the following STRS R′′:



Add(0, y)→ y
Add(x, 0)→ x

Add(S (x), y)→ S (Add(x, y))
One(x)→ S (0)

Len(Nil)→ 0
Len(x :: xs)→ S (Len(xs))

S um(Nil)→ 0
S um(x :: xs)→ Add(x, S um(xs))
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)
S um(Map(One, xs))→ Len(xs)

From Theorem 3.5, R′′ is confluent, hence GCR(R′′) holds.
The properties

∗↔
R∪E
⊆ ∗↔

R′′
in TB(Σ), GWN(R) and GNF(R) ⊆

GNF(R′′) can be showed as similar to Example 4.3. There-
fore we have:

R �ind S um(Map(One, xs)) = Len(xs)

Proposition 4.5 [18] Let R and R′ be STRSs, and E be a set
of equations. Suppose that all of the following four condi-
tions hold:

(i)→
R
⊆ +→

R′
∧ ∗↔

R∪E
=
∗↔
R′

in TB(Σ)

(ii) GS N(R′)
(iii) GCR(R)
(iv) GNF(R) � GNF(R′)

Then we have R �pind E. Moreover if all of the following
three conditions additionally hold then we also have R �ind

E.

(v) S QR(R)
(vi) ord(τ(C)) ≤ 2 for any C ∈ C
(vii) l � Tτ(C,V) for any l→ r ∈ R

The HKB procedure is also useful for disproving in-
ductive theorems.

Example 4.6 Consider the following STRS R.



Add(0, y)→ y
Add(S (x), y)→ S (Add(x, y))

One(0)→ 0
One(S (x))→ S (0)

Len(Nil)→ 0
Len(x :: xs)→ S (Len(xs))

S um(Nil)→ 0
S um(x :: xs)→ Add(x, S um(xs))
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)
S um(Map(One, xs))→ Len(xs)

This R is obtained by the STRS in Example 4.4: we change
One(0)→ S (0) into One(0)→ 0.

Based on Proposition 4.5, we prove that

S um(Map(One, xs)) = Len(xs)

is not an inductive theorem. As similar to Example 4.3, let
R′ be the union of R and the above equation. Unfortunately,
GNF(R) ⊆ GNF(R′) holds, that is, the condition (iv) does
not hold. Hence we transform R′ to a complete STRS as
similar to Example 4.4. Then the HKB procedure returns
the following STRS R′′:



Add(x, 0)→ x
Add(0, y)→ y

One(x)→ 0
Len(Nil)→ 0

Len(x :: xs)→ Len(xs)
S um(Nil)→ 0

S um(x :: xs)→ Add(x, S um(xs))
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)
S um(Map(One, xs))→ Len(xs)

S (y)→ y

Since S (0) ∈ GNF(R) and S (0) � GNF(R′), the condition
(iv) holds. All remaining conditions can be proved as similar
to Example 4.4. Therefore we have:

R �ind S um(Map(One, xs)) = Len(xs)

5. Fusion Transformation

Programming using a functional programming language be-
gins with the definition of basic functions that can then be
combined to define more complex functions. Most basic
functions are defined in the form of a data structure having
an inductive structure such as a list or tree. When combining
such functions, a large amount of intermediate data inherent
in those data structures can be generated, and a program that
generates such intermediate data is generally weak in terms
of computational efficiency. It is therefore desirable that a
program of this type be converted to one that does not gen-
erate such intermediate data so that program efficiency can
be improved. This kind of program conversion is called a
fusion transformation [8], [20], [22].
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Bellegarde has proposed a fusion transformation based
on the KB procedure [5]. This technique imposes the re-
striction that fused terms must be linear, and it does not
directly use the KB procedure. Ito, Kusakari and Toyama
have shown that fusion transformation of a TRS can be per-
formed even with direct use of the KB procedure, and have
also shown by experiment that the linearity restriction on
fused terms can be removed [11]. These results, however,
pertain to a first-order TRS framework: they cannot handle
higher-order functions. In this section, we examine by ex-
periment the fusion transformation of higher-order functions
using the HKB procedure.

Consider a function S qS um satisfying the following
specification:

S qS um [a1, a2, . . . , an] = a1
2 + a2

2 + · · · + an
2

Let R be the following STRS:

R =



Add(0, y)→ y
Add(S (x), y)→ S (Add(x, y))

Mul(0, y)→ 0
Mul(S (x), y)→ Add(Mul(x, y), y)

S q(x)→ Mul(x, x)
S um(Nil)→ 0

S um(x :: xs)→ Add(x, S um(xs))
Map( f ,Nil)→ Nil

Map( f , x :: xs)→ f (x) :: Map( f , xs)

By using this STRS, we also give the specification for
S qS um as follows:

S qS um(xs) = S um(Map(S q, xs))

Here we use the HKB procedure. Its inputs are R ∪
{S qS um(xs) = S um(Map(S q, xs))} and the lexicographic
path order (Definition 2.2) with Map� S qS um� S um� S q
�Mul � Add� :: �Nil � S � 0. Then the HKB procedure
returns the union of R and the following three rules:

S um(Map(S q, xs))→ S qS um(xs)
S qS um(Nil)→ 0

S qS um(x :: xs)→ Add(Mul(x, x),S qS um(xs))

Then two back rules give the definition of S qS um:
{

S qS um(Nil)→ 0
S qS um(x, xs)→ Add(Mul(x, x), S qS um(xs))

This definition is more efficient than the input S qS um(xs) =
S um(Map(S q, xs)). Actually, this definition can be ob-
tained only by carrying out scan once, although scan of list
xs is carried out twice in the definition at the time of an in-
put. Thus, fusion transformation can be performed using the
HKB procedure.

6. Concluding Remarks

The higher-order KB procedure proposed in this study has

already been implemented and subjected to various exper-
iments. Since the achievement of a higher-order KB pro-
cedure is presently not known, we feel that this study will
make a significant contribution to the field. This higher-
order KB procedure is currently being applied directly to in-
ductionless induction. When applying the KB procedure to
inductionless induction, obtaining complete output for only
ground terms is sufficient, and as a result, various improve-
ments are being made in advanced research within the first-
order TRS framework. In particular, the technique called
linear strategy proposed by Fribourg is especially effective
in suppressing the generation of critical pairs [9]. The in-
troduction of results such as these will be taken up as a fu-
ture research theme. The application of our higher-order
KB procedure to fusion transformation is currently being
performed by experiment only, but good results are being
achieved. Its theoretical analysis must also be pursued as
a future research theme. Of considerable interest here is
Example 4.4, which presents an application of this higher-
order KB procedure to inductionless induction. In this ex-
ample, the rule {One(0) → S (0),One(S (x)) → S (0)} is op-
timized as {One(x) → S (0)} by the higher-order KB proce-
dure. The use of the procedure should be analyzed within a
much larger framework than simply fusion transformation.

A higher-order KB procedure and its application to
inductionless induction were implemented by the first au-
thor Kusakari, as a post-doctorate sub-theme at the Japan
Advanced Institute of Science and Technology (JAIST) in
1999. Example 4.3, which presents an application to in-
ductionless induction (Proposition 4.2), was first presented
at that time. Results similar to these with respect to in-
ductionless induction were also presented in 2003 by Aoto,
Yamada, and Toyama [1]. Unfortunately, all of the above
results confused the difference between inductive theorems
and primitive inductive theorems, and erroneously used the
term “inductive theorems”. In [18], Kusakari, Sakai, and
Sakabe made a clear distinction between the concepts of
inductive theorems and primitive inductive ones. They
showed that inductive theorems correspond to initial exten-
sional algebra semantics and presented a sufficient condition
for inductive theorems to agree with primitive inductive the-
ory. At the request of Toyama, Kusakari presented a lecture
on the results in [18] to Aoto and Yamada in August 2003.
In the following year, Aoto, Yamada, and Toyama presented
results on the automated proving of inductive theorems [2]
using a formalization different from that of [18]. Further-
more, in 2002, the second author Chiba re-implemented the
higher-order KB procedure in graduate work applying it to
the glass-replacement puzzle and fusion transformation.
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