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The total stress tensor for immiscible polymer blends is calculated based on the theoretical expression by Batchelor
(1970), and Mellema and Willemse (1983) in the last stage of the stress relaxation under large step shear strains. In this
stage, the shape of droplets is spheroid and the retraction of isolated droplets is calculated according to the theory
developed by Okamoto et al. (1999). The calculated results are compared with experimental data for a polyisobutylene/
polydimethylsiloxane blend. Contribution of the motion of the interface (the interface velocity term) to the total stress
tensor in the theoretical expression for the isolated droplets is 37 % − 50 %, which cannot be neglected compared with
the contribution of the pressure difference beyond the interface (the Laplace pressure term). The summation of both
terms agrees well with the experimental data at step strain γ = 1, in which effects inherent in multiple droplet systems are
the smallest. The γ dependence of the reduced stress appearing in the experimental data, which cannot be predicted by
the theoretical calculation for the isolated droplets, is qualitatively explained by considering droplet size distribution in
the theoretical calculation.
Key Words: Stress tensor / Stress relaxation / Polymer blend / Interface velocity / Droplet size distribution

1.   INTRODUCTION

There have been many theoretical studies to express the
stress tensor due to the interface in mixtures of two fluids
under large deformation. The equation proposed by Batchelor1)

and modified by Mellema and Willemse2) is one of the most
general expressions for the stress tensor for mixtures of two
Newtonian fluids. They calculated the macroscopic stress
tensor from the volume average of the local stress tensor. Their
expression includes the contributions from the motion of the
interface (the interface velocity term) and the pressure
difference beyond the interface (the Laplace pressure term).
These terms allow us to evaluate the stress tensor from the
velocity and the shape of the interface.

Later, the Laplace pressure term was closely examined.
Onuki3) derived the same expression as the Laplace pressure
term for critical binary mixtures. Doi and Ohta4) used the same
expression to calculate the stress tensor for mixtures of
Newtonian fluids with equal viscosities and equal volume
fractions, and found the scaling relation for the stress tensor.

This scaling relation was experimentally examined for
mixtures of Newtonian fluids and immiscible polymer blends
with various volume fractions, and with equal or different
viscosities under shear flow. It was found that the scaling
relation works well for the blends with K ≅ 15- 7) and K < 18),
where K is the viscosity ratio defined by the ratio of viscosity
of droplet phase to that of matrix phase. For the stress relaxation
of polymer blends with K < 1 under large step shear strains, the
Laplace pressure term evaluated from the shape recovery data
of isolated droplets agrees fairly well with experimentally
obtained stress relaxation data.9-11)

Recently, the interface velocity term is taken into account in
some theories.12-14) The total stress including the interface
velocity and the Laplace pressure terms is compared with
literature data of dynamic moduli, steady shear flow and start-
up of shear flow for polymer blends.13) The agreements
between the theoretical predictions and the experimental data
seem to be well. However, the significance of the interface
velocity term compared with the Laplace pressure term is not
clear in their studies since the contributions of the two terms
are not separately shown.

On the other hand, Yu and Zhou15) theoretically considered† To whom correspondence should be addressed.
E-mail: mdt@kit.ac.jp, Tel/Fax: +81-75-724-7835
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the effect of the droplet size distribution, and revealed that the
droplet size distribution has significant influence on the excess
first normal stress difference of polymer blends in start-up of
shear flow. Takahashi et al.10) also reported that the experimental
results of the stress relaxation for a hydroxypropylcellulose
aqueous solution/polydimethylsiloxane (PDMS) blend agree
with the stress calculated by the Laplace pressure term only
when the droplet size distribution is considered. In addition,
Takahashi and Okamoto11) speculated that the droplet size
distribution affects the strain dependence of the stress
relaxation for a polyisobutylene (PIB)/PDMS blend especially
for the retraction of spheroidal droplets.

In the present study, we focus on the last stage of the stress
relaxation under large step shear strains, in which the shape of
the droplets is spheroid. In this stage, the time evolution of the
droplet shape is well described by the theory for the retraction
of spheroidal droplet.11,16) Here, we evaluate the interface
velocity and the Laplace pressure terms using the time
evolution of the droplet shape calculated by this theory. The
theoretical predictions are compared with experimental results
of the stress relaxation for a PIB/PDMS blend.9) A merit in
treating the last stage is that viscoelasticity of component
polymers does not have significant influence on the stress
relaxation, and no subtraction procedure for the experimental
data is necessary to compare the data with the theoretical
predictions since the component polymers relax before this
stage. The objective of the present study is to clarify the
contribution of the velocity term to the total stress in the last
stage. The effect of the droplet size distribution is also
considered in the theoretical calculation and is discussed.

2.   THEORY

2.1 Contributions of Interface to the Stress Tensor
The stress tensor  for a mixture of two Newtonian fluids at

low Reynolds number, where the inertial force is negligible,
can be written as follows:1,2)

Here p is the isotropic part of the stress,  the unit tensor, ηm the
viscosity of matrix phase, ηd the viscosity of droplet phase,  ∇v
is the velocity gradient tensor, Γ the interfacial tension between
two phases, V the total volume of the system, S0 the total area of
the interface, u the local velocity vector on the interface, and n
the unit outward normal vector on the interface.

The first term in Eq. 1 represents the isotropic pressure. The
second term expresses the viscous stress of the matrix fluid
without any dispersed phase. The third term (the interface
velocity term) is the contribution from the viscous flows of the
matrix phase and the dispersed phase due to the local flow
caused by the displacement of the interface. The forth term
arises from the difference of the normal stress beyond the
interface due to the Laplace pressure (the Laplace pressure
term), which is given by the following equation:17,18)

where m,local and d,local represent the local stress tensor on
the surface at the matrix phase and at the droplet phase,
respectively. The forth term in Eq. (1) corresponds to the
excess stress due to the interface tensor.3,4)

For the mixtures of viscoelastic fluids, the other terms,
which describe contribution from the viscoelasticity of the
fluids, should be added to Eq. (1). In addition, u may be
affected by the viscoelasticity of the fluids.14) However, we
focus only on the last stage of the stress relaxation under large
step shear strains in the present study. In this last stage, the
matrix and the dispersed phase behave as Newtonian fluids,
and only the third and the forth terms in Eq. 1 are significant.
Therefore, we simplify Eq. (1) and express the shear stress σxy

during the last stage of the stress relaxation as follows:

where σv,xy and σL,xy respectively denote the xy components of
the third (the interface velocity) and the fourth (the Laplace
pressure) terms in Eq. (1). x and y correspond to the flow
direction and the direction of the velocity gradient,
respectively (the vorticity direction is denoted by z in the
present paper).

In the last stage of the stress relaxation, the shape of droplets
is spheroid.19) Figure 1 shows the droplet shape in the last
stage. a , b  ( a > b ) and θ  respectively denote the length of the
semi-major axis, the length of the semi-minor axes and the
orientation angle of the droplet. The major stretch ratio λa and
the minor stretch ratio λb of the droplet can be defined by

(1)

(2)

(3)

(4a)

(4b)
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where r0 represents the radius of the spherical droplet before
the deformation. We assume the volume conservation for the
droplet, which results in λb =λa

−1/2. In this case, the Laplace
pressure term is given by9,20)

where φ denotes the volume fraction of the dispersed phase. In
the stress relaxation under large step shear strains, θ has been
found to be independent of time and equal to the angle given
by the affine deformation assumption for mixtures with
0.048 ≤ K ≤ 0.54:19,21,22)

Concerning the interface velocity term, the time evolution of
the semi-axes for the ellipsoidal droplet can be written as12)

where G describes the shape of the droplet (the shape tensor),
L the droplet velocity gradient tensor and D/Dt the material
derivative. In Cartesian coordinates X = (X,Y,Z ) , whose
origin and axes respectively coincide with the center and the
axes of the ellipsoidal droplet (see Fig. 1), the points on the
surface of the droplet satisfy G:XX = 1,12) and G for the
spheroid is given by

Since no rotation of the droplet occurs throughout the relaxation
process, L is considered to be diagonal, and LXX = d ln a/dt and
LYY = LZZ = d ln b/dt are obtained from Eqs. (7) and (8).23)

While the velocity field around the droplet is complex, the
instantaneous local velocity u in the droplet including the
interface can be written as

for ellipsoidal droplets,12) where R represents the tensor of the
transformation from the coordinates X to x = (x,y,z).

The unit normal vector n can be written as

where rΘ and rΦ are respectively given by rΘ = ∂r/∂Θ and
rΦ = ∂r/∂Φ as functions of the parameters Θ and Φ with the
position vector r(Θ,Φ) of the points on the spheroid.

From Eqs. (9) and (10), the integration of the interface
velocity term in Eq. (3) becomes

where V = 4πab2/(3φ ) is used.

2.2 Time Evolution of the Interface Velocity Term σv,xy 
The viscoelastic relaxation time τD of droplets for small

deformation is given by24,25)

For the retraction of isolated droplets, τD can be determined by
extrapolating φ → 0.19) Experimental results show that plots of
λa versus (t − ts)/τD make a single curve for the shape retraction
of spheroidal droplets independently of r0 and γ,11) where ts is
the time at which the shape of the droplets becomes spheroid,
and λa at t = ts is experimentally determined as λa(ts) = 1.49.19,20)

This means that the reduced velocity gradient tensor  of
isolated droplets, which is independent of r0 and γ, can be
defined as a function of (t − ts)/τD by

These definitions lead

The time evolution of λb can be written as11,16)

(5)

(6)

(7)

(8)

Fig. 1. Cartesian coordinate systems x,y,z  and X,Y,Z  for a spheroidal
droplet with semi axes a,b (a > b). The flow direction is x and the
direction of velocity gradient is y. θ is the orientation angle.

(9)

(10)

(11)

(12)

(13a)

(13b)

(14)
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where χ0 is the hydrodynamic factor for spheroidal droplets.
The differentiation of both sides of Eq. (15) by t/τD leads:

Equations (11), (12), (14) and (16) give

Equation (17) describes the time evolution of σv,xy through the
time evolution of λb, which can be calculated by Eq. (15).

Equation (17) predicts that σv,xy is positive for mixtures with
K < 1. This prediction is explained by the local flow during the
retraction. Figure 2 illustrates the projection of the spheroidal
droplets at t1 (solid line) and at t2 (dotted line) on the xy plane
(ts < t1 < t2). The open arrows and the arrows filled with
oblique lines indicate the flow of the matrix in the vicinity of
the interface, and the flow inside the droplet, respectively.
Because of the retraction during t1 → t2, compression in the X
direction and elongation in the Y direction occur in the droplet.
On the other hand, the matrix in the vicinity of the interface
experiences elongation in the X direction at the tops of the
major axis and compression in the Y direction at the tops of the
minor axes owing to the constraint of the matrix fluid around.
The local flows in the matrix and in the droplet should be
canceled out in each direction since they totally vanish under
the large step strains without average (macroscopic) flow. As a
result, the summation of the stresses due to the Newtonian

flow of both fluids can be elongation in the X direction and
compression in the Y direction for mixtures with K < 1, since
ηm is larger than ηd. This means σv,xy > 0, and this expectation
agrees with the prediction by Eq. (17).

2.3 Effects of Droplet Size Distribution
In our previous study,10) droplet size distribution was

incorporated into the expression for σL,xy. Here, we derive
expressions for σv,xy and σL,xy at the last stage of the stress
relaxation for blends with droplet size distribution. For the i-th
droplet with radius ri and volume fraction φi in a blend, the
stress (σξ,xy )i can be written as

where ξ = v for the interface velocity term and ξ = L for the
Laplace pressure term. Fv and FL are respectively determined
by Eqs. (17) and (5), where λb is a function of (t − ts (ri))/τD(ri)
given by Eq. (15). The reduced time ts (ri)/τD(ri) can be written
as  ts (ri) /τD(ri) = ts/τD, where ts/τD is a function of γ and
independent of ri.

11) The ri-independence of ts/τD means that
both ts and τD are proportional to the droplet size. Provided that
the interactions between the droplets are negligible, σξ,xy is
given by the summation of Eq. (18) for all the droplets in the
blend as follows:

where N denotes the total number of the droplets in the blend.
Then, the reduced stress (8rV /3Γφsin2θ )σξ,xy can be written as
a function of reduced time (t − ts (rV))/τD(rV)

where rV is the volume average radius defined by

and the function g is given by

(15)

(16)

(17)

Fig. 2. Projection of a spheroidal droplet at t1 (solid line) and t2 (dotted line)
on the xy plane during retraction (ts< t1 < t2), showing compression
and elongation of the droplet (arrows filled with oblique lines) and
the matrix in the vicinity of the interface (open arrows).

(18)

(19)

(20)

(21)

(22)
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where the relationship ts (ri)/τD(ri) = ts (rV)/τD(rV) = ts/τD is used.
Equation (22) shows that g is less than (t − ts (rV))/τD(rV) for the
droplets with ri > rV, and such droplets delay the stress relaxation.
Moreover, Eq. (22) indicates that this delay is more significant
at larger γ since ts/τD increases with increasing γ.11) As a result,
non-linear behavior of the reduced stress can be predicted by
Eq. (20) for the blends with droplet size distribution, in which
the summation of Fξ is made after the vertical shifts given by
(rV /ri)/(φi/φ ) and the time shifts given by g are necessary.

3.   COMPARISON WITH EXPERIMENTAL 
DATA

Figure 3 shows plots of the droplet Hencky strain ln(a/r0)
(= lnλa) versus (t − ts)/τD. Symbols show experimental results
of the shape recovery in the last stage for the PIB droplets with
different radii in a PDMS matrix (K = 0.067) at various step
shear strains.19,20) The solid line represents the calculated result
by Eq. (15) with χ0 = 0.110.11) The calculated result agrees well
with the experimental data. From Eq. (13a), the slope of this
line gives ΛXX , and thus LXX from Eq. (14). We can see from
the slope of the solid line in Fig. 3 that |ΛXX | and |LXX | decrease
with increasing (t − ts)/τD and become zero at  (t − ts)/τD→ ∞.
This means that LYY (= −LXX /2 > 0) and σv,xy decrease with
increasing (t − ts)/τD and vanish at  (t − ts)/τD→∞ .

Figure 4 shows comparison between stress predictions and
experimental data. The ordinate and the abscissa indicate
the reduced stress (8rV /3Γφsin2θ )σxy and the reduced time
(t − ts)/τD, respectively. Symbols denote the experimental data
of the reduced stress relaxation curves under various large step

shear strains for PIB/PDMS = 20/80 (wt/wt) blend9) with
K = 0.081 (with slightly different viscosities of components
from those of the isolated droplet system). The solid and the
broken lines indicate the reduced stress relaxation curves of
σv,xy + σL,xy and σL,xy calculated by Eqs. (5), (15) and (17) with
r0 = rV. To clarify the contribution of σv,xy, the time evolution of
the ratio σv,xy /(σv,xy + σL,xy ) is also shown by the dotted line. In
the experimental results, θ is given by Eq. (6), τD is obtained
from Eq. (12) substituting r0 = rV, and ts/τD is determined by
the relationship ts/τD = 0.637γ 1.82 based on the experimental
data of the retraction.11)

The reduced σL,xy and the reduced σv,xy + σL,xy decrease with
increasing (t − ts)/τD. The total stress σv,xy + σL,xy is larger than
σL,xy as a result of positive σv,xy. The ratio σv,xy /(σv,xy + σL,xy)
increases with increasing (t − ts)/τD and seems to be constant in
the limits of  (t − ts)/τD→ 0 and   (t − ts)/τD→ ∞. An anonymous
reviewer kindly pointed out that these limiting behaviors can be
understood as follows. Expanding Eqs. (5) and (17) in powers of
droplet strain ε, the reduced stress σL,xy/(3Γφsin2θ /(8r0)) and
λb

2−λb
5 are respectively obtained as σL,xy/(3Γφsin2θ /(8r0)) =

(16/5)ε and λb
2−λb

5 = (3/2)ε as far as terms of the first order,
where λa = 1+ε . This means that σv,xy and σL,xy are proportional
to ε at ε → 0. Therefore, σv,xy/(σv,xy + σL,xy) is independent of
time and is given by a function of K at the end of the last
stage. For K = 0.081, σv,xy/(σv,xy + σL,xy) = 0.50 is evaluated
using the above relations. This agrees with σv,xy/(σv,xy + σL,xy) at
(t − ts) /τD = 10 in Fig. 4. On the other hand, substituting
λa = λa(ts) = 1.49 into Eq. (5) and λb = {λa(ts)}

−1/2 = 0.819 into

Fig. 3. Plots of the droplet Hencky strain ln(a/r0) versus (t − ts)/τD.
Symbols show experimental results for isolated PIB droplets with
different radii in a PDMS matrix at various step shear strains γ.
The solid line represents the calculated result of Eq. 15 with the
constant χ0 = 0.110.

Fig. 4. Plots of reduced stress (8rV /3Γφ sin2θ )σxy versus reduced time
(t − ts(rV))/τD(rV), and the ratio σv,xy/(σv,xy + σL,xy) versus (t − ts(rV))/τD(rV).
Lines show predicted contributions and symbols show the
experimental results for the PIB/PDMS blend.

Vol36_1.book  47 ページ  ２００８年１月１７日　木曜日　午前９時４分



48

Nihon Reoroji Gakkaishi Vol.36 2008

Eq. (17) yields σv,xy/(σv,xy + σL,xy) = 0.37 for K = 0.081 at (t − ts)/
τD = 0. These results clearly show that σv,xy is not negligible
compared with σL,xy.

The calculated curves for σv,xy and σv,xy + σL,xy agree fairly
well with the experimental results for the PIB/PDMS = 20/80
blend. However, closer look at the experimental data reveals
that both of the magnitude and the decay rate of the reduced
stress decreases with increasing γ. This result is different from
the prediction, in which the reduced stresses are independent
of γ. In order to explain the strain dependence of the reduced
stress, other factors such as attractive interaction with adjacent
droplets, droplet size distribution and uncertainty of ts/τD in
polydisperse system should be considered. The effects of these
factors become weaker with decreasing γ. At γ = 1, σv,xy + σL,xy

is closer to the experimental data than σL,xy. It seems that σv,xy as
well as σL,xy is essential to consider the stress due to the
interface in blends.

Figure 5 shows the predicted curves of the reduced σv,xy + σL,xy

at various γ as functions of (t − ts (rV))/τD(rV) calculated by
Eq. (20) with Eqs. (5) and (17) assuming the model droplet
size distribution in Table I. The polydispersity index rV /rn of
the model distribution is rV /rn = 1.20, where rn is the number
average radius of droplets. This rV /rn value is chosen since
the value is close to roughly estimated value of rV /rn for the
PIB/PDMS blend.10) We plot the calculated results only at
t ≥ ts(rmax), where rmax denotes the radius for the largest droplet,
since the largest droplet is not spheroidal shape at t < ts(rmax),
and thus the calculations at those times are out of the scope of
the present paper.

In Fig. 5, the decay rate of the reduced stress decreases with
increasing γ. As a result, the reduced stress increases with
increasing γ at long times. The magnitude of the reduced stress
at short times slightly decreases with increasing γ. These
results qualitatively agree with the experimental results in
Fig. 4 although the γ dependence are weaker than that of the
experimental results for the PIB/PDMS blend. One reason of
this quantitative disagreement may be the interactions between
the dispersed droplets in the blend, which is neglected in
Eq. (20). For the quantitative evaluation of the effect of the
interactions, studies are necessary for blends with well-
evaluated droplet size distributions.

4.   CONCLUSIONS

Time evolution of total stress tensor for immiscible polymer
blends is calculated in the last stage of the stress relaxation
under large step shear strains as volume average of local stress
tensor1,2) using the time evolution of droplet shape, which is
calculated by the theory for retraction of isolated droplets
with spheroidal shape.16) These theories are connected by the
reduced velocity gradient of the droplet defined as the
differentiation of the Hencky strain of the isolated droplets by
the reduced time. In the last stage of the stress relaxation, the
total stress tensor is given by the summation of the
contributions from the motion of the interface (the interface
velocity term) and the pressure difference beyond the interface
(the Laplace pressure term). The calculated results are compared
with the experimental data for a PIB/PDMS blend with the
viscosity ratio K = 0.081.9)

The interface velocity term for K = 0.081 is 37 % of the total
stress at the beginning of the last stage and 50 % at the end.
Therefore, this term is not negligible compared with the
Laplace pressure term. The time evolution of the reduced
stress calculated by the theories is independent of step shear
strains γ, while the time evolution of the reduced stress

Fig. 5. Reduced stress (8rV /3Γφsin2θ )σxy at various step shear strains γ
calculated using the droplet size distribution in Table I as
functions of reduced time ( t − ts (rV))/τD(rV).

Table I. Model distribution of droplet size for the calculation shown in
Fig. 5. fi denotes the number fraction of i-th droplet.
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determined from the experimental data exhibits significant γ
dependence. At γ = 1, in which effects inherent to polydisperse
system (such as attractive interaction between adjacent
droplets, droplet size distribution and uncertainty of the
starting time of the last stage) is the smallest, the total stress
(the summation of the interface velocity term and the Laplace
pressure term) agrees well with the experimental data. This
indicates that the interface velocity term is essential to predict
the total stress tensor in immiscible polymer blends. The γ
dependence of the reduced stress in the experimental data can
be qualitatively explained by considering droplet size
distribution in the theoretical calculation but there is still
quantitative disagreement between the experimental data and
the theoretical calculation. This disagreement may be caused
by the interaction between adjacent droplets.
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