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PAPER Special Section on Knowledge, Information and Creativity Support System

Method for Visualizing Complicated Structures Based on Unified
Simplification Strategy

Hiroki OMOTE†, Nonmember and Kozo SUGIYAMA†a), Member

SUMMARY In this paper, we present a novel force-directed method
for automatically drawing intersecting compound mixed graphs (ICMGs)
that can express complicated relations among elements such as adjacency,
inclusion, and intersection. For this purpose, we take a strategy called uni-
fied simplification that can transform layout problem for an ICMG into that
for an undirected graph. This method is useful for various information vi-
sualizations. We describe definitions, aesthetics, force model, algorithm,
evaluation, and applications.
key words: information visualization, graph drawing, intersecting com-
pound mixed graph, force-directed method

1. Introduction

Many methods for automatic graph drawing so far have been
developed to nicely draw rather simple classes of graphs
such as trees, planar graphs, directed graphs, and undi-
rected graphs [1]. Recently, it is often needed to treat com-
plicated structures in information visualization, visual edit-
ing and so on. One of recent research directions in graph
drawing area is to draw more complicated graphs: mixed
graphs [2] where two types of adjacencies (i.e. directed and
undirected edges) are admitted, and compound digraphs [3]
and clustered graphs [4] where inclusion relations (or nest-
ing) among vertices are allowed as well as adjacency. Fur-
ther, intersection relations among vertices are introduced in
an intersecting clustered graph [5]. Classification of graphs
and visual representations of them are shown in Fig. 1. An
intersecting compound mixed graph (ICMG) can express
more complicated information and knowledge structures.
Examples of this include KJ diagram [6] in creativity sci-
ence (see Fig. 2), Higraph [7] in software engineering, Con-
ceptual graph [8] in knowledge engineering, and Web ontol-
ogy [9] in the Internet engineering.

As drawn objects become more complicated, drawing
techniques also become more complex. Theoretical algo-
rithms (e.g. orthogonal drawing [1]) can attain aesthetic cri-
teria exactly, but it is often difficult to understand and imple-
ment them. On the contrary, heuristic algorithms (e.g. force-
directed drawing [1]) cannot attain aesthetic criteria exactly,
but are relatively easier to understand and implement them.
This ease of use is especially important for the user who
wants to develop and improve drawing tools by oneself.

In this paper, we develop a heuristic method to draw a
graph called an ICMG where adjacency, inclusion, and in-

Manuscript received February 13, 2007.
Manuscript revised April 23, 2007.
†The authors are with JAIST, Nomi-shi, 923–1292 Japan.

a) E-mail: sugi@jaist.ac.jp
DOI: 10.1093/ietisy/e90–d.10.1649

tersection among vertices, and both types of directed and
undirected edges are allowed. We adopt force-directed
placement techniques based on simulation of a virtual phys-
ical system. These techniques also are suitable for inter-
actively editing diagrams with preserving the user’s men-
tal map in an interactive environment. As one of the early
works for drawing an undirected graph, Eades [11] proposed

Fig. 1 Classification of graphs.

Fig. 2 Example of complicated structure: KJ diagram that is used for
idea organizing [10].

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers
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the spring embedder, though similar idea was previously
discovered in [12], [13]. We extend this into a new method
by introducing several types of forces to treat more compli-
cated structures. It looks very complicated but actually we
can easily implement and modify the method. Our method
is characterized by:

• Unified simplification of layout problem for a given
complicated graph by transforming it into layout prob-
lem for an undirected graph,
• Parameter tuning for coping with the increase in the

number of parameters controlling forces due to the
transformation, and
• Scheduling so as to switch the exertion of forces on/off.

In the subsequent sections, we describe definitions,
aesthetics, model and algorithm, performance evaluation,
and applications.

2. Preliminaries

2.1 Intersecting Compound Mixed Graph

Referring to Sugiyama and Misue [3], when two kinds of bi-
nary relations, inclusion and adjacency relations, are defined
on a finite set V of vertices, we can introduce two specific
graphs to the relations. An inclusion hierarchy (or rooted
multi-level directed graph) is a pair GH = (V, E) where E is a
finite set of inclusion edges whose element (u, v) ∈ E means
that u includes v. A vertex including no vertex is called a
leaf, and a vertex including vertices is called a cluster. An
adjacency graph is a pair GA = (V, F) where F is a finite set
of adjacency edges whose element (u, v) ∈ F means that u
and v are adjacent. In GA, element (u, v) ∈ F usually undi-
rected but can be directed. An ICMG is defined as a triple
GI = (V,E, F) obtained by compounding these two graphs
(see Fig. 3). For simplicity, it is provided that every element
in F is undirected in this paper.

(Here root h is omitted in GI because it is an outer frame in drawing.)

Fig. 3 Example of an ICMG.

2.2 Aesthetics

Aesthetics is a set of drawing conventions and rules. Draw-
ing conventions are conditions that should be exactly satis-
fied, and drawing rules are conditions that are satisfied as
much as possible. We adopt the following two simple draw-
ing conventions:

• Rectangle (c1): a vertex is drawn as a rectangle or an
ellipse (i.e. vertex area);
• Straight-line (c2): an edge is drawn as a segment of a

straight line.

In addition, we adopt five rather complicated rules to
draw an ICMG nicely as follows (in priority order):

• Vertex-inclusion (r1): a vertex belonging to a cluster is
drawn within the area of the cluster, and a vertex not
belonging to clusters (except the root) is drawn outside
the clusters;
• Vertex-overlap-reduction (r2): undesirable overlapping

of vertices (except intersecting vertices) is reduced;
• Vertex-even-distribution (r3): Vertices are distributed

evenly;
• Vertex-closeness (r4): adjacent vertices are placed

closely but not too closely; and
• Edge-crossing-reduction (r5): crossings of edges are

reduced.

The last three rules (r3, r4, r5) are generally accepted
and succeeded in the forth-directed placement for general
undirected graphs (for example, see [14]). The former two
rules (r1, r2) are specific for this study: if we assign these
two rules as drawing conventions instead, solving such a
layout problem becomes very complicated like the draw-
ing method for compound directed graphs appeared in [3].
Therefore, we concern the former two rules in the evalua-
tion of our method although it is incidentally successful in
satisfying the last three rules.

3. Drawing Method

3.1 Unified Simplification of Layout Problem

We show how to transform a given complicated graph into
an undirected graph for the sake of unified simplification of
layout problem for an ICMG.

First, we introduce three kinds of dummy vertices for
each cluster in a given graph. Each cluster is replaced with
a dummy vertex that is placed at the center of the cluster
area. Second, each side of a rectangle corresponding to the
cluster is replaced with a dummy vertex for a vertical side
or horizontal side as shown in Fig. 4.

In order to adjust the width and height of a cluster, we
introduce two kinds of dummy edges between dummy ver-
tices for horizontal sides of a cluster, and between dummy
vertices for vertical sides of a cluster (see Fig. 5). The
lengths of these edges control the size of a cluster.
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Fig. 4 Three kinds of dummy vertices.

(a) Horizontal dummy
edge (ε1).

(b) Vertical dummy edge
(ε2).

Fig. 5 Two kinds of dummy edges for a cluster.

In order to layout intersection between clusters, we pre-
pare two ways: (1) dummy edges are introduced between a
vertex shared by clusters and dummy vertices for sides of the
clusters, and (2) the intersection is separated as a dummy
cluster that is connected to its each mother cluster with a
dummy edge (see Fig. 6). Further, a dummy edge is added
between intersecting clusters. The transformation of an in-
clusion relation by adding dummy edges is shown in Fig. 7.

As the results, we have a new undirected graph G =
(V ′, E′) corresponding to a given ICMG, where V ′ called a
set of elements and E′ a set of links. This introduction of
dummy vertices and dummy edges can transfer our layout
problem for an ICMG into a unified force-directed draw-
ing problem for an undirected graph. For example, newly
obtained undirected graph G corresponding to graph GI in
Fig. 3 is:

G′ = (V ′, E′)
V ′= {a,b,c,d,e, f , g, fd, gd, fv1, fv2, fh1, fh2,gv1,gv2,gh1,gh2}
E′ = {(a, b),(b, c),(b,d),(c, d),(d, e),(e, g),( f , g),( fd, a),

(gd, c), (gd, d), ( fv1, fv2), ( fh1, fh2), (gv1, gv2),

(gh1, gh2),( fv1, b),( fv2, b),( fh1, b),( fh2, b), (gv1, b),

(gv2, b),(gh1, b),(gh2, b),( fv1, fd),( fv2, fd),( fh1, fd),

( fh2, fd), (gv1, gd), (gv2, gd), (gh1, gd), (gh2, gd)}.

3.2 Forces

To develop a force model, we introduce three types of forces
fs, fa, and fr exerted on a pair of elements. If these forces are
positive, they are repulsive, and negative attractive. These
forces are defined by

fs = −Cs log(d/ls) (1)

fa = −C d (2)

fr =

{
C d if d < lr
0 if d ≥ lr

(3)

(a) Dummy edges for an intersection (ε3).

(b) Dummy edges and vertex for an intersection (ε4).

(c) Display images of both ways (1) and (2).

Fig. 6 Two ways of transformations of intersection relations.

Fig. 7 Transformation of an inclusion relation (ε5).

where Cs, and C are positive coefficients, and d is the dis-
tance between paired elements on which force is exerted.
Force fs is similar to a spring-type force since there exists
the concept of ideal distance ls between paired elements.
Force fs is repulsive when d < lr, and attractive when d ≥ lr.
Thus, this force can control the distance between paired el-
ements so as to be close to the ideal distance. Force fa is
always attractive (i.e. negative), and varies linearly accord-
ing to d. Similarly, force fr is a linear function of d but it is
repulsive (i.e. positive) when d < lr or zero when d ≥ lr.

The type of force which is defined for a pair of elements
depends on the kinds of elements paired (i.e. leaves, dummy
vertices for clusters, and/or dummy vertices for sides of
clusters) and the relations between them: for example, force
fs is exerted between adjacent leaves.

Let p = (e1, e2|r) be a pair of elements where e1 and e2

specify one kind of element and r a kind of relation. We can
distinguish four kinds of elements (see Figs. 4–6):

Le: leaf
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Dc: dummy vertex for a cluster
Dv: dummy vertex for a vertical side of a cluster
Dh: dummy vertex for a horizontal side of a cluster

Further, we can identify eleven kinds of relations be-
tween elements:

ρ1: between non-adjacent leaves
ρ2: between adjacent leaves
ρ3: between a leaf included in a cluster and a leaf not in-

cluded in the cluster
ρ4: between two leaves included in a cluster
ρ5: between a leaf included in a cluster and a leaf included

in another cluster where both clusters do not intersect
ρ6: between a leaf included in a cluster and a leaf included

in another cluster where both clusters intersect, but
both leaves are not shared by the clusters

ρ7: between adjacent leaves shared by two clusters
ρ8: between a leaf and a cluster where both are non-

adjacent
ρ9: between a leaf and a cluster where the leaf is included

in the cluster
ρ10: between non-adjacent clusters
ρ11: between intersecting clusters

These are shown in the second and third columns of Ta-
ble 1 formally and schematically, respectively. Thus,
we have ei ∈ {Le,Dc,Dv,Dh}, i = 1, 2, and r ∈
{ε1, ε2, ε3, ε4, ε5, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, ρ7, ρ8, ρ9, ρ10, ρ11}
for p = (e1, e2|r).

We define a force exerted on every pair of elements
according to the specification of pairs presented in Table 1,
where schematic representations for relation r are shown in
the third column.

3.3 Algorithm

Our algorithm is based on the standard force-directed
method [11]. First, the given ICMG GI is transformed into
an undirected graph G = (V ′, E′). Second, a force is defined
for each pair of elements according to Table 1. It should
be noted that each force has its own parameters used in any
one of the force equations (1)–(3), which is one of the char-
acteristics of our method. Though the number of parameters
increases, controlling the positions of the elements becomes
more flexible and easier.

Next, the direction and magnitude of the total force ex-
erted at each element is calculated, and the position of the
element is moved according to its direction and magnitude.
Then, given graph GI is revived, and drawn on the screen.
The computational complexity of the algorithm is similar to
the original algorithm [11]: O(|V |2), or higher because the
number of iterations tends to become large as |V | becomes
large. But this relationship is not evaluated.

algorithm DRAW-ICG (GI : an ICMG, n: the number of
repetitions);

1. Transform GI into G and define forces on each pair of
elements;

Table 1 Classification of relations, forces, and rules.

2. Place elements of G in random;
3. Repeat n times

3-1) Calculate the force exerted on each element by
combining forces based upon force specification
given in Table 1 and phase specification shown in
Fig. 8;

3-2) Move each element by δ×(force on the element);

4. Revive GI from G;
5. Draw the graph on a screen.

3.4 Parameter Tuning

Parameter tuning is an important mechanism for calculation
in our force-directed graph drawing method. When the num-
ber of elements is expressed as m, there exist m2(= N) pairs
of elements: P = {p1, p2, . . . , pN}. Finite set P is partitioned
by the specification shown in Table 1, where each partition
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is identified with the Force ID. In our method, a force is de-
fined on every pair of elements. Therefore, we need to treat
many parameters for Cs, C, ls, and lr.

Parameters Cs, C, ls, and lr are empirically determined,
which is shown in Table 2. The values of Cs and C for forces
S5, S6, A1, A2, R1, and R2 are set as 0.3 initially, and in-
creased gradually up to 1.0 in the algorithm while drawing
rules corresponding to these forces were not well satisfied.
For example, for a relation between a leaf and a cluster that
includes the leaf (see Fig. 8), if the leaf is not within the
cluster area, parameter Cs of the force exerted on the paired
elements is increased (this is the case for S5 in Table 1). For
a relation of nesting of clusters, if the relation is not satisfied,
parameter C is increased (this is the case for A2 in Table 1).

The width and height of every leaf is given initially,
which define the area for labelling the leaf. The width and
height of every cluster is calculated in the algorithm as the
lengths of dummy edges shown in Figs. 4, respectively.

Fig. 8 Scheduling of forces and their purposes.

Table 2 Parameter tuning.

In Table 2, LENGTH is defined as the maximum value
among widths and heights of paired elements, and is used
for adjusting parameter ls. Similarly, WIDTH and HEIGHT
of a cluster control the width and height of the cluster as the
ideal distances for spring forces, which are determined so
that the cluster area can geometrically cover all the areas for
leaves and clusters included by the cluster.

3.5 Scheduling

Scheduling for switching on/off of forces is another im-
portant mechanism to control the process to get successful
drawings by synchronizing many various forces and elimi-
nating unwilling mutual influences among forces. This can
make calculation more efficient and effective than exerting
every force at all times. For example, while it is important
to attain the distributed and/or intersecting layout of clusters
in the initial stage, the fine-tuning of layout such as adjust-
ing the size of clusters becomes more important in the final
stage. Based upon this idea, we schedule the on/off switch-
ing of forces: when and which force should be exerted or not
exerted during the course of computation. Figure 8 shows
tentative scheduling in our method, which is empirically de-
veloped through trial and error. The time duration for each
phase is given as the number of iterations. The scheduling
affects the performance of the method significantly. There-
fore, more detailed exploration on scheduling is strongly de-
sired as future study.

4. Evaluation

We have made three experiments to evaluate the perfor-
mance of our method in terms of the following three criteria:

• Undesirable placements for inclusion and intersection
(error rate %)
• Undesirable overlapping of clusters (error rate %)
• Undesirable overlapping of leaves (error rate %)

In the experiments, we have randomly generated fifty
samples of an ICMG for various cases under the conditions
such as: (1) the number of vertices is 100, (2) the mean
degree for each vertex is 3, (3) the number of clusters is 2–
20, and (4) the number of intersections is 1–10.

Through the experiment, parameter tuning and
scheduling are kept as shown in Table 2 and Fig. 8 respec-
tively. Results are obtained after 500 steps in runtime, where

Table 3 Average error rates in the three criteria.
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the number of steps for each phase in the scheduling is fixed
as 50–100 through the evaluation.

Effects of increase in the numbers of clusters, intersec-
tions without nested clusters, and intersections with nested
clusters are evaluated in Experiments 1, 2, and 3, respec-
tively. We have the following results (see [5] for more de-
tail):

• The values of the criteria all are satisfactorily low.
• In all experiments, the overlap of clusters is zero.
• We can find increasing tendencies in overlaps of leaves

in Experiments 1 and 2, and placement of leaves in Ex-
periment 3.
• Overall average error rates in the three criteria are sum-

marized in Table 3. All values are very small, which
means that our method is well satisfied in the perfor-
mance.

5. Drawing Examples

Figure 9 shows small examples of drawings of graphs. In
Fig. 9 (a), leaves are drawn as small circles, and clusters
rectangles. The centered cluster includes three subclusters
that share two leaves. The inclusion relations between clus-
ters and the relations for sharing both are well drawn in the
figure. Figure 9 (b) is another drawing variation of the same

Fig. 10 A real example: Ontology.

graph.
We developed a system for drawing and editing

ICMGs. Figure 10 shows a drawing on the screen of our
tool: ontology appeared in EURATOM thesaurus [15] is
graphically arranged. In the drawing, we can see fifty-
five leaves, two intersections, and three-level nesting among
clusters and leaves. Figure 11 shows snapshots in interactive

(a) (b)

Fig. 9 Drawing examples.



OMOTE and SUGIYAMA: METHOD FOR VISUALIZING COMPLICATED STRUCTURES
1655

visual editing for a real situation: (a) initial drawing and (b)
final result, where forty-one books are organized in terms

(a) Initial drawing.

(b) Final drawing.

Fig. 11 Snapshots in interactive visual editing for a real work: organizing books.

of similarity and user’s view. In Fig. 11 (b), two leaves are
shared by five clusters. In the drawing, the intersection is
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separated as a new cluster that is connected to the rest part
of each mother cluster with an undirected edge, as shown in
Fig. 6 (b).

6. Conclusions

In this paper, we have developed a heuristic method for
drawing an ICMG where inclusions and intersections are
allowed, as well as adjacencies. We adopt force-directed
placement techniques to develop this method based on sim-
ulation of a virtual physical system. It looks very com-
plicated, but actually we can easily implement and modify
the method. Our method is characterized by the techniques
called unified simplification, parameter tuning, and schedul-
ing.

Intersections can express elements with several at-
tributes, and clusters can express groupings of similar ele-
ments. ICMGs can be used as tools to foster human thought
in a variety of fields.

We have described definitions, aesthetics, model and
algorithm, performance evaluation, and applications. Spe-
cially, we have explained the details of techniques for uni-
fied simplification, force definitions, parameter tuning, and
scheduling. Results of performance tests show that the val-
ues of the three criteria (error rate %) are satisfactorily low.
This means that the techniques of our method efficiently per-
form to create aesthetic drawings for an ICMG.

In the future, we will apply our method to real situa-
tions more. Thus our software must be improved in func-
tional usability, for example a provision of an editable graph
viewer etc. We will upgrade performance and functional as-
pects through developing a system. We do not treat control-
ling the direction of directed edges in this paper. It can be
implemented employing the notion of the magnetic spring
algorithm [2].
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