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________________________________________________________________________ 
 
Discriminative sequential learning models like Conditional Random Fields (CRFs) have achieved significant 
success in several areas such as natural language processing or information extraction. Their key advantage is 
the ability to capture various nonindependent and overlapping features of inputs. However, several unexpected 
pitfalls have a negative influence on the model's performance; these mainly come from a high imbalance among 
classes, irregular phenomena, and potential ambiguity in the training data. This article presents a data-driven 
approach that can deal with such difficult data instances by discovering and emphasizing important 
conjunctions or associations of statistics hidden in the training data. Discovered associations are then 
incorporated into these models to deal with difficult data instances. Experimental results of phrase-chunking 
and named entity recognition using CRFs show a positive improvement in accuracy. In addition to the technical 
perspective, our approach also highlights a potential connection between association mining and statistical 
learning by offering an alternative strategy to enhance learning performance with interesting and useful patterns 
discovered from large datasets. 
 
Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning; G.3 [Probability and Statistics] 

General Terms: Algorithms; Experimentation 

Additional Key Words and Phrases: Discriminative sequential learning, feature selection, association rule 
mining, information extraction, text segmentation 
________________________________________________________________________ 
 
 
1. INTRODUCTION  

Discriminative models like Maximum Entropy (MaxEnt) [Berger et al. 1996], 
Discriminative HMMs [Collins 2002], Maximum Entropy Markov Models (MEMMs) 
[McCallum et al. 2000], and CRFs [Lafferty et al. 2001] have achieved significant 
success in many labeling and segmenting tasks for sequence data such as POS tagging 
[Ratnaparkhi 1996], text shallow parsing [Peng et al. 2004; Sha and Pereira 2003], 
information extraction [Kristjansson et al. 2004; Pinto et al. 2003], object detection in 
computer vision [Torralba et al. 2004], image analysis and labeling [Kumar and Hebert  
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2003; He et al. 2004], and biological sequence modeling [Yeo and Burge 2003]. The 
noticeable advantage of these models is their flexibility in integrating a variety of 
arbitrary, overlapping, and nonindependent features at different levels of granularity from 
the observed data. 
        However, applications employing these models with fixed and hand-built feature 
templates usually generate a huge number of features, up to millions, e.g., in Sha and 
Pereira [2003]. This is because one usually utilizes complex templates, including 
conjunctions of atomic statistics, for instance, n-gram of words or POS tags, to cover as 
many combinations of statistics as possible without eliminating irrelevant ones. As a 
result, models using long and fixed conjunction templates are heavily overfitting and time 
consuming to train because they contain many teacher-specific and redundant features. 
To reduce these drawbacks, McCallum [2003] proposed a likelihood-driven feature 
induction for CRFs that is based on a famous feature inducing strategy for exponential 
models [Pietra et al. 1997]. This method iteratively adds conjunctions of statistics that 
most increase conditional log-likelihood into the model until some stopping criteria are 
reached. In spite of attaining a trade-off between the number of used features and model 
accuracy, this strategy may ignore rare but sensitive conjunctions with smaller likelihood 
gains that are still critical to model performance. Also, when the number of atomic 
statistics is large, the number of conjunctions becomes explosive, and thus ranking all 
conjunctions by likelihood gain is very expensive. 
        In this article, we propose a data-driven approach that can identify and emphasize 
rare but important conjunctions or co-occurrences of statistics1 hidden in training data in 
order to improve prediction accuracy for difficult data instances. The main motivation 
and the underlying idea of this approach are based on the fact that sequence data, such as 
natural language or biological information, potentially contain the following phenomena 
that can be the major sources of prediction errors: 

- Ambiguous data instances usually contain unclear contextual clues that may result in 
misleading predictions. For instance, it is quite difficult for a phrase-chunker to 
determine whether the word  plans in the text the trip plans for Japan is a singular 
verb or a plural noun. 

- Irregular instances are recognized as exceptions to the common statistics or 
decisions. For example, a POS tagger may mark walk as a noun in the sentence The 
disabled walk very slowly because of a regular sequential dependency that a noun 
should follow an adjective. However, the correct interpretation is that The disabled is 
the subject and walk is a plural verb rather than a noun. 

- Unbalanced data occurs when the distribution of classes in the training data is 
unbalanced. For example, the number of English noun phrases is much larger than 
that of other phrase types, for example, adjective phrases. This may lead to low 
prediction accuracy for minor classes due to the dominance of major ones. 

- Frequently vs. less-observed data, for instance, a named entity recognizer may 
identify New York University as a location, while it is in fact an organization. This is 
because New York is observed more frequently than New York University. 

- Long dependencies in sequence data. Several kinds of sequential training data 
contain long dependencies among observations at different positions in a sequence. 
The problem is that one can not always use a large sliding window to capture such 
useful clues because it would generate too many irrelevant features. 

                                                 
1 In this article, terms like “(atomic) context predicates”, “(singleton) statistics”, or “(atomic) observational 
tests” are used interchangeably to refer to particular kinds of contextual information observed from the training 
data 



        Data instances falling into these situations should be difficult data examples. Thus, 
the prediction of their labels does not usually obey the frequently observed statistics. In 
other words, the simple aggregation of singleton statistics may lead to misleading 
predictions because the common statistics always overwhelm uncommon ones. To 
overcome this pitfall, a model should rely on higher-order features that are based on 
special conjunctions of singleton statistics to win the dominance of common decisions. 
Although those conjunctions may only occur several times in a whole dataset, their 
appearance is an important source of evidence to deal with difficult data instances. 
        In spite of their benefit, searching such conjunctions from big datasets is challenging 
because the number of candidates is prohibitively large. Fortunately, we find that recent 
association rule mining techniques are very useful for discovering such patterns. In our 
method, those conjunctions belong to a subset of rare but highly confident association 
rules discovered from the training data. Selected conjunctions are then integrated into the 
discriminative models in three ways to improve their prediction accuracy: (a) 
conjunctions as normal features, (b) conjunctions as weighted features, and (c) 
conjunctions as constraints for the inference process. 
        The rest of this article is organized as follows. Section 2 briefly introduces linear-
chain CRFs, a typical sequential learning model. Section 3 presents the framework for 
discovering important associations of statistics from training data. Section 4 describes 
how to learn sequential models with discovered associations. Section 5 describes and 
discusses the experimental results. Section 6 reviews related work. Finally, conclusions 
and future work are given in Section 7. 

2. DISCRIMINATIVE SEQUENTIAL LEARNING 

The goal of labeling/tagging for sequence data is to learn to map observation sequences 
to their corresponding label sequences, for instance, the sequence of POS tags for words 
in a sentence. Discriminative HMMs [Collins 2002], MEMMs [McCallum et al. 2000], 
and CRFs [Lafferty et al. 2001] were intentionally designed for such sequential learning 
applications. In contrast to generative models like HMMs [Rabiner 1989], these models 
are discriminative, that is, trained to predict the most likely label sequence given the 
observation sequence. In this article, CRFs are referred to as the undirected linear-chain 
of model states, that is, conditionally-trained finite state machines (FSMs) that obey the 
first-order Markov independence assumption. The strength of CRFs is that they can 
combine both the sequential property of HMMs and the maximum entropy principle as 
well as global normalization that can avoid the label-bias problem. In our work, CRFs 
were used to conduct all experiments. 

2.1 Conditional Random Fields 

Let o = (o1, o2, …, oT) be some observed data sequence. Let S be a set of FSM states, 
each of which is associated with a label, l ∈ L. Let s = (s1, s2, …, sT) be some state 
sequence, Lafferty et al. [2001] define CRFs as the conditional probability of a state 
sequence given an observation sequence as 
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label sequences. fk denotes a feature function in the language of maximum entropy 
modeling and λk is a learned weight associated with feature fk. Each fk is either a per-state 
or a transition feature: 
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where δ  denotes the Kronecker-δ . A per-state feature (2) combines the label l of 
current state st and a statistic or context predicate, i.e., the binary function xk(o, t) that 
captures a particular property of the observation sequence o at time position t. For 
example, the current label is JJ (adjective) and the current word is sequential. A transition 
feature (3) represents sequential dependencies by combining the label l' of the previous 
state st-1 and the label l of the current state st, such as the previous label l' = JJ and the 
current label l = NN (noun). 

2.2 Inference in Conditional Random Fields 

Inference in CRFs is to find the most likely state sequence s* given the observation 
sequence o, 
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        In order to find s*, one can apply a dynamic programming technique with a slightly 
modified version of the original Viterbi algorithm for HMMs [Rabiner 1989]. To avoid 
an exponential time search over all possible settings of s, Viterbi stores the probability of 
the most likely path up to time t, which accounts for the first t observations and ends in 
state si. We denote this probability to be ϕt(si) (0 ≤ t ≤ T - 1) and ϕ0(si) to be the 
probability of starting in each state si. The recursion is given by 
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        The recursion terminates when t = T - 1 and the biggest unnormalized probability is 
[ ])(maxarg* iTi sp ϕ= . At this time, we can backtrack through the stored information 

to find the most likely sequence s*. 

2.3 Training Conditional Random Fields 

CRFs are trained by setting the set of weights θ = {λ1, … } to maximize the log-
likelihood, L, of a given training data set { }N
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where the second sum is a Gaussian prior over parameters with variance σ2, which 
provides smoothing to deal with sparsity in the data [Chen and Rosenfeld 1999]. 
        When the labels make the state sequence unambiguous, the likelihood function in 
exponential models such as CRFs is convex, thus searching the global optimum is 
guaranteed [McCallum 2003]. However, the optimum can not be found analytically. 
Parameter estimation for CRFs requires an iterative procedure. It has been shown that 
quasi-Newton methods, such as L-BFGS [Liu and Nocedal 1989], are most efficient 
[Malouf 2002; Sha and Pereira 2003]. This method can avoid the explicit estimation of 
the Hessian matrix of the log-likelihood by building up an approximation of it using 
successive evaluations of the gradient. 



        L-BFGS is a limited memory quasi-Newton procedure for unconstrained 
optimization that requires the value and gradient vector of the function to be optimized. 
Let sj denote the state path of training instance j in training set D, then the log-likelihood 
gradient component of λk is 
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fk(st-1, st, o, t) values for all positions, t, in the training sequence. The first two terms show 
the difference between the empirical and the model expected values of fk. The last term is 
the first derivative of the Gaussian prior. 

Table I. Unlabeled Data among Class Labels 

Label sequence B-NP I-NP O B-NP I-NP B-VP 
Observation 
sequence 

NNP 
Westwood 

NNP 
Brick 

CC 
and 

NNP 
Westwood

NNP 
Group 

VBP 
Are 

Label sequence B-NP I-NP I-NP B-ADVP I-ADVP I-ADVP 
Observation 
sequence 

NN 
Company 

NNS 
personnel 

NN 
policy

RB 
backwards

CC 
and 

RB 
forwards 

Time steps:   -2 -1 0 +1 

3. MINING IMPORTANT ASSOCIATIONS OF STATISTICS IN SEQUENCE 
DATA 

3.1 The Need of Discovering Important Associations of Statistics 

As stated earlier, sequence data such as natural language or biological information, 
potentially contain difficult observations that might come from highly ambiguous and 
unbalanced data. These observations do not always obey frequent statistics and common 
sequential dependencies. Thus they are the main source of prediction errors. Furthermore, 
a prediction error made at a particular position in a sequence can be propagated though 
the sequence and influence the other positions. Table I shows an example of unbalanced 
phenomenon in which the observation {and, CC} and the label {O} (of the first 
sequence) occur 2,472 times in the whole CoNLL2000 shared task corpus. However, the 
same observation was annotated with the label {I-ADVP} (in the second sequence) only 
22 times in the same corpus. 
        It is common that one can rely on contextual information in the form of statistics 
around each data observation in order to make the prediction more discriminative. 
However, the singleton statistics are not discriminative and strong enough to recognize 
difficult data observations. Therefore, previous methods usually utilize higher-order or 
complex statistics by combining two or more singleton statistics, by using fixed templates 
[Sha and Pereira 2003]. This once again encounters the problem that long fixed templates 
would generate too many complex statistics (due to the combination explosion) and thus 
leading to the overfitting problem. Our solution is to use short fixed templates in order to 
keep the model as simple as possible. In addition, we discover important 
associations/conjunctions of singleton statistics from sequential training data to deal with 
difficult data observations. Those associations are rare (i.e., occur only several times in 
the whole corpus) but confident enough to highlight difficult observations. Recall the 
example in Table I about the imbalanced problem. It is useful if we can discover and use 
the association {t-1:rb ∧ t0:cc ∧ w0:and ∧ t1:rb} → i-advp} to predict the label for the 



observation {and, CC} in the second sequence. This is because the previous association 
is rare (occurs only 4 or 5 times) but highly confident (100%) to win the dominance of 
frequent statistics. The next two sections describe how to represent data and discover 
such important associations from sequential training data. 

3.2 Data Representation for Discovering Important Associations of Statistics 

Table II. Sequential Training Data 

Label sequence B-NP B-PP B-NP I-NP B-VP I-VP I-VP 
Observation 
sequence 

NN 
Confidence

IN 
in 

DT 
the 

NN 
pound

VBZ
is 

RB 
widely

VBN 
expected 

Time steps of 
sliding window 

0 
-1 
-2 

1 
0 
-1 
-2 

2 
1 
0 
-1 

 
2 
1 
0 

 
 

2 
1 

 
 
 
2 
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observation and label sequence. The top part of Table II shows an example of a training 
sequence for English phrase-chunking where each observation (in the observation 
sequence) consists of both a word and its part-of-speech tag, and a class label of each 
observation is B-NP, I-NP, etc. },...,,{ 21 MAAAA =  is the set of M statistic templates in 
which each template Ai captures a particular type of contextual information about data 
observations. Applying all templates in A to each position (i.e., timestep) in every 
training sequence of the training set D, we obtain a transactional database T in which 
each transaction consists of a list of statistics and a particular class label. 
        Table II shows an example of a training data sequence. For instance, we set a sliding 
window of size 5 and move it along the sequence, and at each timestep, we choose the 
current word and its POS tag (w0 and t0) and those of the previous two positions (w-2, t-2, 
w-1, t-1) and next positions (w1, t1, w2, t2) as the set of statistic templates A. Scanning this 
set of statistic templates over all training sequences in D, we obtain the corresponding 
transactional database. Table III shows a part of a transactional database corresponding to 
the sequence in Table II in which each line is a transaction that includes a list of statistics 
and a particular label. For instance, the statistic “w1:the” in the second transaction (line) 
says that “the next word is the” and the statistic “t-1:nn” says that “the previous word is a 
noun”. The b-pp (begin of prepositional p) at the end of the second line is the class label 
of the current observation. 

Table III. Transactional Database for Discovering Important Associations of Statistics 

w0:confidence  w1:in  w2:the  t0:nn  t1:in  t2:dt  b-np 
w-1:confidence  w0:in  w1:the  w2:pound  t-1:nn  t0:in  t1:dt  t2:nn  b-pp 
w-2:confidence  w-1:in  w0:the  w1:pound w2:is t-2:nn  t-1:in  t0:dt t1:nn  t2:vbz  b-np 
w-2:in  w-1:the  w0:pound  w1:is w2:widely t-2:in  t-1:dt  t0:nn  t1:vbz  t2:rb  i-np 
w-2:the  w-1:pound  w0:is  w1:widely w2:expected  t-2:dt  t-1:nn  t0:vbz  t1:rb  t2:vbn  b-vp 
w-2:pound  w-1:is  w0:widely  w1:expected w2:to t-2:nn  t-1:vbz  t0:rb  t1:vbn  t2:to  i-vp 
w-2:is  w-1:widely  w0:expected  w1:to  w2:take t-2:vbz  t-1:rb  t0:vbn  t1:to  t2:vb i-vp 
... 

3.3 Important Associations of Statistics: A Formal Definition 

Let  be the set of all statistics in transactional database T. Let L be the 
set of all class labels in T. Our target is to examine every (predictive) association rule r 
[Agrawal and Srikant 1994] having the following form 

},...,,{ 21 nxxxI =

                                                                ,                                                            (8) lX ⇒



where the left-hand side (LHS) of r, IxxxX ipii ⊂∧∧∧= }...{ 21 , is a conjunction of p 
statistics in I, and the right-hand side (RHS) of r, Ll ∈ , is a particular class label. The 
support of r, denoted as supp(r), is the number of transactions in T containing , 
and the confidence of r, denoted as conf(r), is the conditional probability that a 
transaction in T has the label l given that it contains X, that is, conf(r) = 
supp( )/supp(X). In a sense, this kind of rule is similar to the associative 
classification rules in Li et al. [2001] and Liu et al. [1998]. 

Xl ∪}{

Xl ∪}{

        Derived from the predictive association rules defined in (8) and the concepts of 
support and confidence factors, we present a descriptive definition of rare-but-confident 
associations. 
        Definition 1: Let lsupp and usupp be two integers that are much smaller than the 
total number of transactions in T (i.e., lsupp ≤ usupp <<|T|), and let lconf be a real 
number that satisfies the condition 0 ≤ lconf ≤ 1 and lconf ≈ 1. A predictive association 
rule r in (8) is called rare-but-confident if: 

lsupp ≤ supp(r) ≤ usupp and conf(r) ≥ lconf. 

        All predictive association rules satisfying Definition 1 are rare-but-confident. 
However, not all of them are important. This is based on the important observation that if 
most statistics in the LHS of a rare-but-confident rule r individually tend to characterize 
label l, then the rule r is trivial. In other words, if most statistics in the LHS of r largely 
support label l in a separated manner, there is no need to examine the co-occurrence of all 
statistics in the LHS. Based on this observation, we define the concept of important 
associations as follows. 
        Definition 2: A rare-but-confident association rule r: X ⇒ l is considered to be 
important if there exists at least another label l' ∈ L such that the sum of support counts 
for the label l' from the statistics in the LHS of r is larger than that for the label l, that is, 
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        Why are predictive association rules satisfying Definition 2 important? Intuitively, if 
such a rule, r, exists in the training data but is not discovered and emphasized, the model 
may predict the label l' for any data transaction holding all statistics in the LHS of, r 
when the correct label is l. This is because most singleton statistics in the LHS of r tend 
to support l' rather than l. This is why the appearance of predictive association rules 
satisfying Definition 2 is important. There should be more sophisticated definitions and 
conditions of important associations. However, we choose the previous definition 
because of the trade-off between the rigorousness and the simplicity of calculation. 
        Table IV shows some examples of important associations discovered from 
transactional database T (Table III), using association rule mining techniques [Agrawal 
and Srikant 1994; Han et al. 2000] and two filtering criteria in Definitions 1 and 2. The 
first column displays important associations in which the LHSs are conjunctions of 
statistics and the RHSs are class labels (l). The second column shows the support and 
confidence factors and the last column is the label l' that satisfy Definition 2. 

Table IV. Examples of Important Associations of Statistics Discovered from Training 
Data 

Important associations:  lX ⇒ Supp & Conf Label l’ 
{w1:in ∧ t1:in ∧ t0:vb ∧ t-1:md ∧ w0:result} ⇒ i-vp 
{w2:the ∧ t1:in ∧ t2:dt ∧ t0:in ∧ t-1:vbd ∧ w0:that} ⇒ b-sbar 
{w2:the ∧ t1:in ∧ t2:dt ∧ t-1:nns ∧ w1:as ∧ w0:such} ⇒ b-pp 
{w2:the ∧ t2:dt ∧ t0:rb ∧ t1:vb ∧ t-1:md ∧ w0:only} ⇒ i-vp 

(5, 100%) 
(7, 100%) 
(5, 100%) 
(4, 100%) 

i-np 
b-np 
b-np 
i-np 



{w2:the ∧ t1:in ∧ w0:even ∧ w1:though} ⇒ b-sbar 
{t1:in ∧ t2:nnp ∧ t-1:nns ∧ w1:of ∧ w0:south} ⇒ b-advp 
{w2:the ∧ t2:dt ∧ t0:nns ∧ w-1:for ∧ w0:years} ⇒ b-np 
{t0:in ∧ t-2:vbn ∧ t2:cd ∧ w0:at ∧ w1:least} ⇒ b-np 
{t0:in ∧ t2:nn ∧ w0:as ∧ w-2:as ∧ w-1:well} ⇒ i-conjp 
{w1:in ∧ t1:in ∧ t0:rb ∧ w0:early} ⇒ b-advp 
{t1:in ∧ t2:dt ∧ t0:jj ∧ w1:for ∧ w0:good} ⇒ b-adjp 
… 

(4, 100%) 
(4, 100%) 
(4, 100%) 
(4, 100%) 
(4, 100%) 
(4, 100%) 
(4, 100%) 
 

b-advp 
b-np 
i-np 
b-pp 
b-adjp 
b-np 
b-np 
 

3.4 Important Associations of Statistics in the Context of Exception Rule Mining 

Discovering exception rules is one of the important directions in association rule mining. 
The target is to find out interesting exception rules/patterns that decision makers can use 
for advantageous actions. However, finding such rules is quite difficult because it is 
much harder to know which of the discovered rules are really interesting. Interestingness 
is a relative issue since it always depends on the user's prior knowledge about the domain. 
Interestingness can be either user's (biased) belief or estimated relative to the 
commonsense rules found in the data. 
        An interesting exception is something that contradicts the user's common belief. 
Exceptions [Padmanabhan and Tuzhilin 1998; Silberchats and Tuzhilin 1996; Suzuki and 
Shimura 1996; Suzuki 1997] can play an important role in making critical decisions. 
Exceptions and commonsense rules point in opposite directions. Exceptions are usually 
minority, they are either not known or omitted from the normal discovery process. 
Intuitively, exceptions contradict the commonsense rules, and they have a low support 
[Suzuki 1997]. Therefore, exception rules are weak in terms of support, but have high 
confidence similar to commonsense rules. A weak rule of low support may not be reliable. 
A user can specify minimum support for exceptions to ensure mining reliable exception 
rules. In addition, exception rules are evaluated by several other criteria, such as 
generality, monotonicity, reliability, search range, interpretation of the evaluation 
measure, use of domain knowledge, and success in real applications. 
        Most of the previous studies discovered exception rules/patterns for supporting data 
analysis or decision making. Our work, on the other hand, focuses on searching important 
associations of statistics in linguistic data to improve prediction accuracy in natural 
language learning problems. Our important associations of statistics, in a sense, follow 
some criteria of exception rules (e.g., low support, high confidence, contradicting to 
commonsense rules, etc.). However, they are different in the discovery process, filtering 
criteria, and the reasons to discover them. 

3.5 Discovering Important Associations of Statistics 

To discover important associations of statistics, we first apply one of the association 
mining techniques to discover normal associations (of statistics). Then, those associations 
are filtered using the conditions previously stated to obtain only the important ones. 
Mining normal associations includes two main steps: (1) discovering frequent patterns 
(i.e., frequent itemsets) and (2) generating associations from those frequent patterns. The 
first step is most challenging, while the second step, rule generation, is quite 
straightforward. Thus, almost all studies have focused on the first one to reduce the 
overall complexity of the mining process. 
        Frequent-pattern mining plays an essential role not only in mining associations, but 
also in discovering correlations, causality, sequential patterns, episodes, multidimensional 
patterns, partial periodicity, emerging patterns, and many other important data mining 
tasks [Han et al. 2004]. In principle, we can use any previous frequent-pattern mining 
technique to find frequent patterns for generating important associations of statistics in 
linguistic corpora. However, due to the characteristics of this kind of rule, such as rare 
and highly confident, not all of them are efficient for this task. Here, we briefly introduce 



one of the most efficient techniques for discovering frequent patterns, which is 
particularly appropriate for mining important associations. 
        Most previous studies in mining frequent patterns adopt an Apriori-like approach, 
which is based on the anti-monotone Apriori heuristic [Agrawal and Srikant 1994]: if any 
length k pattern is not frequent in the database, its length (k+1) super-pattern can never be 
frequent. The essential idea is to iteratively generate the set of candidate patterns of 
length (k+1) from the set of frequent patterns of length k (for k ≥ 1), and check their 
corresponding occurrence frequencies in the database. 
        The Apriori-like heuristic achieves good performance gained by reducing the size of 
candidate sets. However, in situations with a large number of frequent patterns, long 
patterns, or quite low minimum support thresholds, an Apriori-like algorithm may suffer 
from the following nontrivial costs. 

- It is costly to handle a huge number of candidate sets. This is very critical because 
the number of combinations of statistics in linguistic data is extremely large due to 
the fact that natural language data is diverse and sparse. For instance, if we have 10 
statistic templates and each generates 2000 statistics on average, then the number of 
combinations is approximately 1033. Frequent-pattern mining techniques can, of 
course, prune unnecessary candidates using the Apriori heuristic, however this 
explosion of candidates strongly degrades the performance of Apriori-like algorithms. 

- Important associations are rare, that is, their supports are very small in comparison 
with the database size (i.e., the total number of transactions |T|). This is probably the 
biggest challenge for mining important associations. In fact, Apriori-like algorithms 
are infeasible for mining important associations from large linguistic corpora. 

        The previous challenges seem to prevent us from discovering all possible important 
associations in linguistic corpora. Fortunately, FP-growth [Han et al. 2000; Han et al. 
2004], a frequent-pattern mining algorithm without candidate generation, can discover 
such associations in an acceptable computational time. This is because FP-growth 
employs a FP-tree (an extended prefix tree structure) to store crucial, quantitative 
information about frequent patterns in such a way that more frequently occurring items 
will have better chances of sharing nodes than less frequently occurring ones. All mining 
operations are then performed on the FP-tree in a partitioning, recursive fashion without 
candidate generation. See Han et al. [2004] for a complete description of this algorithm. 

Table V. Steps for Discovering Important Associations of Statistics from Linguistic 
Corpora 

Step Description 
1. 
2. 
 
3. 
 
4.  

Converting the linguistic corpus D into a transactional database T 
Finding frequent patterns from T with minimum support threshold 
lsupp using the FP-growth algorithm 
Generating normal associations from the above frequent patterns 
that satisfy the condition in Definition 1. 
Filtering the normal associations using the Definition 2 to obtain 
important associations of statistics. 

        Table V shows the steps necessary for discovering important associations of 
statistics. The first thing we have to do is to convert the original sequence training data 
set into its transactional form as described earlier. Next, the FP-growth algorithm will be 
used to discover all frequent patterns/itemsets that satisfy the minimum support threshold 
lsupp. Then, normal associations are generated from those frequent patterns/itemsets. 
This step is quite straightforward and much cheaper than the second one. See Agrawal 
and Srikant [1994] for a complete description of the rule generation algorithm. Finally, 



the resulting normal associations will be filtered using the condition in Definition 2 to 
obtain important ones. 
        Because the first, third, and the last steps are much cheaper in comparison with the 
second step, the computational time of the discovery process depends on that of the FP-
growth algorithm. As stated earlier, because the FP-growth can discover frequent patterns 
without candidate generation, it can avoid the problem of combination explosion. As 
proved in Han et al. [2000, 2004], this algorithm is much more efficient than Apriori-like 
algorithms, especially when the minimum threshold is much smaller than the database 
size. Our empirical study also shows that FP-growth is appropriate for mining patterns in 
linguistic corpora even though natural language is much more diverse and sparse in 
comparison to traditional numerical and categorical data. 

4. LEARNING CRFS WITH IMPORTANT ASSOCIATIONS OF STATISTICS 

This section presents three ways to incorporate the important associations discovered 
from the training data into CRFs: (1) associations as normal features, (2) associations as 
features with emphasized feature functions, and (3) associations as constraints for the 
inference process. 

4.1 Important Associations as Normal CRF Features 

All important associations of statistics are in the form of  in which lX ⇒

IxxxX ipii ⊂∧∧∧= }...{ 21
 is a conjunction of p statistics, and l ∈ L is a particular label. 

These associations can be integrated into CRFs in terms of normal per-state features as 
follows. 
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        These per-state features are similar to those in (2) except that they capture a co-
occurrence of p singleton statistics rather than a single one. The features are treated as 
normal features of CRFs and are trained together. 

4.2 Important Associations as Weighted CRF Features 

It is noticeable that important features are infrequently observed in the training data, and 
thus their learned weights should be small. This means that their contributions, in several 
cases, may not be sufficient to win the dominance of common statistics, that is, 
frequently observed singleton features. To overcome this drawback, we emphasize 
important features by assigning larger feature function values compared to normal 
features. 
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where ),( lstδ  are considered as logic expressions, and v is larger than 1 (the feature value 
of normal features). v should be large if the occurrence frequency of the feature (also the 
support of the important association) is small. Thus, for each feature generated from a 
important association r, v is equal to (usup - supp(r) + 2). This ensures that v is always 
bigger than 1 and inversely proportional to the support of r, that is, the occurrence 
frequency of the feature. 

4.3 Important Associations as Constraints for Inference in CRFs 

Constrained CRFs are extensions of CRFs in which useful constraints are incorporated 
into the inference process (i.e., the Viterbi algorithm) to correct potential errors existing 
in the most likely output state sequence for each input observation sequence. Kristjansson 



et al. [2004] proposed this extension with the application to interactive form-filling in 
which users can examine the filling process and make necessary corrections in terms of 
their own constraints. A recorrection applied at a particular position will propagate 
though the Viterbi sequence to make automatic updates for labels at other positions, that 
is, the correction propagation capability. 
        This section presents the integration of important associations with 100% confidence 
into the Viterbi algorithm in terms of data-driven constraints to make corrections directly 
to the inference process of CRFs. Unlike those used in Kristjansson et al. [2004], our 
constraints are 100% confidence associations and are automatically discovered from the 
training data. 
        Normally, CRFs use a variant of the traditional Viterbi algorithm to find the most 
likely state sequence given an input observation sequence. To avoid an exponential-time 
search over all possible settings of state sequence, this algorithm employs a dynamic 
programming technique with a forward variable ϕt+1(si)  in Equation (5). 
        Let R = {r1, r2, …, rq} be a set of q important associations with 100%-confidence, 
and each ru (1 ≤ u ≤ q) has the form {xu1 ∧ xu2 ∧… ∧ xup} ⇒ lu (lu ∈ L). Each ru ∈ R is 
considered to be a constraint for the inference process. At each time position in the 
testing data sequence, we check whether or not the set of active statistics at the current 
position holds the LHS of any rule ru ∈ R. If yes, the most likely state path must go 
though the current state with the label lu (i.e., the RHS or rule ru), and the possibility of 
passing though other labels equals zero. The constrained forward variable is redefined as 
follows. 
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        The constraint applied at the time position t will propagate though the whole 
sequence and make some recorrections for labels at other positions (mostly around the 
position t). 
        One problem is that when the number of constraints (i.e., the number of 100%-
confidence important associations) is large, the time for examining the LHS of every rule 
at each position in the testing sequence also becomes large. To overcome this obstacle, 
we propose the following algorithm for fast-checking constraints at a particular time 
position t in the testing sequence. 
        Let R = {r1, r2, …, rq} be the set of 100%-confidence rules, also known as 
constraints, and let X = {x1, x2, …, xm} be the set of m active statistics observed at the 
current position t. The target of the following algorithm is to check whether or not X 
holds the LHS of any constraint ru ∈ R. If yes, choose the constraint with the longest LHS. 

- For each xi ∈ X, look up the set of constraints Ri ⊂ R in which the LHS of every 
constraint in Ri contains xi. Denote R' = {R1 ∪ R2 ∪ … ∪ Rm}. 

- For each constraint rj ∈ R', let cj be the sum of occurrence frequency of rj ∈ R1, R2, 
…, Rm. 

- Find the pair <rj, cj> (1 ≤ j ≤ |R'|) such that cj is the largest number satisfying the 
condition: cj equals to the number of all statistics in the LHS of rj. 

        If this algorithm finds a constraint rj, then apply this constraint to the current 
position t with Equation (9), otherwise, apply the normal Viterbi recursion as in Equation 
(5). 



        For an efficient implementation, we maintain a map between statistics and the rules 
containing them. Each map component is a pair of a statistic and a list of rule indexes that 
contain that statistic in their left-hand side. We can use a hash table or any indexing data 
structures for maintaining this map in the main memory. The initialization of this map is 
performed only once when loading the rules into the memory. The complexity of the 
previous algorithm is determined as follows. Let m  be the average number of active 
statistics in X; let l  be the average length of the list of rule indexes in each map pair; let t  
be the average time for looking up a statistic in the map. The time complexity of the first 
step in the algorithm is O( tm ). This is because we have to lookup m  statistics of X in the 
map. The second step scans over the all the lists of rule indexes returned in the first step 
to count the occurrence frequencies of those rules. Thus the complexity of this step is 
O( lm ). The final step finds the pair <rj, cj> such that cj is the largest number satisfying 
the condition cj equals to the number of statistics in LHS of rj. The complexity of this 
step in the worst case is O ( lm ). Therefore, the overall complexity is O( tm + lm + lm ) = 
O( tm + lm ). 
        As we will see later in the experiments, the average number of active statistics ( m ) 
is around 20 or 30. The number of rules  is around ten thousand and thus the looking up 
time in the map is very fast. We observed that if the number of rules is not too large, the 
constrained Viterbi inference using this algorithm can be realtime. 

5. EMPIRICAL EVALUATION 

5.1 Experimental Settings 

All the experiments were performed with our C/C++ implementation of CRFs - 
FlexCRFs2 - on a 3Gb RAM, Intel Core 2 desktop with Fedora Core 5. All CRF models 
were trained using the limited memory quasi-Newton method for unconstrained 
optimization, L-BFGS [Liu and Nocedal 1989]. The variance σ in the Gaussian prior for 
smoothing is 10. Unlike those used in Sha and Pereira [2003], our CRF models follow 
first-order Markov property, that is, the label of the current state depends only on the 
label of the previous state. Training and testing data for phrase-chunking and named 
entity recognition can be found at the shared tasks of CoNLL20003 and CoNLL20034, 
respectively. 

5.2 Phrase Segmentation 

        Phrase-chunking, an intermediate step toward full parsing of natural language, 
identifies phrase types (e.g., noun phrase - NP, verb phrase - VP, PP - prepositional 
phrase, etc.) in text sentences. Here is an example of a sentence with phrase marking: [NP 
He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 
1.8 billion] [PP in] [NP September]. 

        Training and Testing Data. The training and testing data for this task is available at 
the shared task for CoNLL-2000. The data consist of the same partitions of the Wall 
Street Journal corpus (WSJ): sections 15-18 as training data (8,936 sentences, 211,727 
tokens) and section 20 as testing data (2,012 sentences, 47,377 tokens). Each line in the 
annotated data is for a token and consists of three columns: the token (a word or a 
punctuation mark), the part-of-speech tag of the token, and the phrase type label (label for 
short) of the token. The label of each token indicates whether the token is outside a 

                                                 
2 The source code and documents of FlexCRFs are available at http://flexcrfs.sourceforge.net/. 
3 http://cnts.uia.ac.be/conll2000/chunking/. 
4 http://cnts.uia.ac.be/conll2003/ner/. 



phrase (O), starts a phrase (B-<PhraseType>), or continues a phrase (I-<PhraseType>). 
For example, the label sequence of the previous sentence is B-NP B-VP B-NP I-NP I-NP 
I-NP B-VP I-VP B-PP B-NP I-NP I-NP I-NP B-PP B-NP O. This dataset contains 11 
phrase types as shown in the first column of Table VII. Two consecutive data sequences 
(sentences) are separated by a blank line.         

Table VI. Feature Templates for Phrase Chunking 

Transition feature templates 
Current state si Previous state si-1 

l L’ 
Per-state feature templates 

Current state si Statistics x(o, i) 
l w-2; w-1; w0; w1; w2; w-1 ∧ w0; w0 ∧ w1; 

t-2; t-1; t0; t1; t2; t-2 ∧ t-1; t-1 ∧ t0; t0 ∧ t1; t1 ∧ t2; t-2 ∧ t-1 ∧ t0; t-1 ∧ t0 ∧ t1;   
t0 ∧ t1 ∧ t2 

        On the phrase-chunking dataset, we use feature templates as shown in Table VI. All 
transition features obey the first-order Markov dependency that the label (l) of the current 
state depends on the label (l') of the previous state (e.g., “l = I-NP” and “l' = B-NP”). 
Each per-state feature expresses how much influence a statistic x(o, i) observed 
surrounding the current position i has on the label (l) of the current state. A statistic 
captures a particular property of the observation sequence. For instance, the per-state 
feature “l = I-NP” and “word-1 is the” indicates that the label of the current state should 
be I-NP (i.e., continue a noun phrase) if the previous word is the. Table VI describes both 
transition and per-state feature templates. Statistics for per-state features are identities of 
words, POS tags around the current position such as words and POS tags at -2, -1, 1, 2. 
        We also employ 2-order conjunctions of the current word with the previous (w-1 ∧ 
w0) or the next word (w0 ∧ w1), and 2-order and 3-order conjunctions of two or three 
consecutive POS tags within the current window to make use of the mutual dependencies 
among singleton properties. With the feature templates shown in Table VI and the feature 
rare threshold of 1 (i.e., only features with occurrence frequency larger than 1 are 
included into the CRF model), 321,526 statistics (100,626 after pruning) and 152,856 
CRF features were generated from 8,936 training sequences. 

        Mining Important Associations of Statistics. Let I be the itemset of 84,951 data 
items (only singleton statistics are used for mining), that is, the union set of 84,951 
statistics and 22 phrase labels; T be the set of 211,727 data transactions corresponding to 
211,727 tokens of the training data. Let the lower support (lsupp) threshold be 2 (usupp is 
100%); let the lower confidence (lconf) threshold be 100%. We also confine the length of 
the LHS of all important associations to 2 or 3. There are several reasons why we confine 
the LHS length to 2 or 3. First, although simple rules (i.e., with shorter LHS length) are 
usually useful for generalization, we both examine both simple and complex rules 
provided that they are rare and confident because our main target is to deal with hard data 
instances which are not frequently observed in the training data. We also observed that 
important associations with short LHS length are useful for reducing overfitting. Second, 
rules with LHS length more than 3 are usually too specific and most of them are covered 
by rules with LHS length of 2 and 3. Also, mining and generating all long rules is time-
consuming. 
        The mining process for important associations took 2 hours, using the FP-growth 
algorithm and the filter criteria presented in Definitions 1 and 2. The output was a set of 
494,881 important associations with an LHS length of 2 or 3, minimum support of 2, and 
confidence of 100%. This set of associations were integrated into the CRF model in terms 
of normal features and normal features with weighted feature values. We select 13,700 



rules with support larger or equal to 20 to serve as constraints for the inference process to 
examine whether or not inference constraints as rare but important associations can 
improve the performance.  

        Results. Table VII shows the results for English phrase-chunking. The first column 
is the phrase type. The second column is the number of phrases. The next four columns 
display the F1 scores of four cases: (A) without important associations, (B) important 
associations as normal CRF features, (C) important associations as weighted CRF 
features, and (D) important associations as constraints for Viterbi inference. The last two 
lines are the macro-average and micro-average of F1 scores calculated in two ways: 
precision-recall-based and phrase-based. The former is based on the precision and recall 
values of separated phrase types, while the latter is based on the average numbers of 
human-annotated, model, and correct phrases. Intuitively, the macro-average of F1 
reflects the balance and the trade-off among per-label F1, while the micro-average of F1 
reflects the total performance. 

Table VII. English Phrase-Chunking Performance using CRFs with Important 
Associations 

PhraseTypes #Phrases (A) F1 (B) F1 (C) F1 (D) F1 
NP 12422 93.57 93.81 93.76 93.51 
PP 4811 97.15 97.04 97.21 96.93 
VP 4658 93.60 93.60 93.90 92.94 

SBAR 535 85.55 86.32 86.01 85.61 
ADJP 438 72.49 72.32 74.15 72.49 
ADVP 866 79.31 79.58 80.66 79.74 
PRT 106 74.63 75.49 77.83 75.24 
LST 5 0.00 0.00 0.00 0.00 
INTJ 2 66.67 66.67 40.00 66.67 

CONJP 9 48.00 45.45 50.00 40.00 
UCP 0 0.00 0.00 0.00 0.00 

Macro-avg  72.34 71.98 69.82 71.11 
Micro-avg 23852 93.12 93.27 93.39 92.94 

        In the first case, we obtained the highest micro-average F1 of 93.12%. In the second 
case, we achieved the highest performance of 93.27% F1 with 0.15% higher than the 
original performance. In the third case, we obtained the micro- verage F1 of 93.39%, i.e., 
0.27% higher than the original result (i.e., 4% error reduction). And in the fourth case, we 
obtained the highest micro-average F1 score of 92.94 (i.e., 0.18% lower than the original 
result) when using important associations as constraints for inference. 
        Table VIII shows an accuracy comparison between ours and that of the other state-
of-the-art chunking systems on the CoNLL-2000 dataset. Daumé III and Marcu [2005] 
proposed a LaSO (Learning as Search Optimization) framework that can accelerate both 
the training and decoding phases of structured classification by relying on an approximate 
search strategy. They used a rich set of features as well as several external lists of names, 
locations, abbreviations, etc. and achieved the highest F1 of 94.4 on chunking. Because 
their feature set is quite different from ours, it is not easy to compare the learning power 
between LaSO and CRFs. Ando and Zhang [2005] proposed a nice semi-supervised 
learning framework that can extract additional information from thousands of auxiliary 
learning problems relevant to the main task. They used an extra 15 million words from 
the TREC corpus as unlabeled data to improve this task and obtained the highest F1 
scores of 94.39. Kudo and Matsumoto [2001] used a SVM combination for this task. 
They obtained F1 scores of 93.85. Carreras and Marquez [2003] used two-layer 
Perceptron and achieved F1 of 93.74. Zhang et al. [2002] used generalized winnow and 



obtained F1 score of 93.57. They exploited enhanced linguistic features from a full parser 
and got the highest F1 of 94.17. 

Table VIII. Phrase-Chunking Performance Comparison among State-of-the-Art Systems 

Methods F1 
Daumé III & Marcu 2005: (LaSO) + external lists of named entities, etc. 94.4x 
Ando & Zhang 2005: semi-supervised + 15 million unlabeled words 94.39 
Ours (second-order Markov CRFs) 93.92 
Ours (first-order Markov CRFs + important associations of statistics) 93.39 
Ours (first-order Markov CRFs) 93.12 
Kudo & Matsumoto 2001 (SVM combination) 93.85 
Carreras & Marquez 2003 (two-layer Perceptron) 93.74 
Zhang et al 2002 (generalized winnow + enhanced features from full parser) 94.17 

        Our three CRF models following three different experimental setups (a) first-order 
Markov dependency, (b) first-order Markov dependency plus important associations of 
statistics, and (c) second-order Markov dependency without important associations of 
statistics) achieved F1 scores of 93.12, 93.39, and 93.92, respectively. We observed that 
the F1 of the first-order Markov CRF model with important associations, in this case, is 
smaller than that of the second-order Markov CRF model without important associations. 
However, the computational time is much different. The second-order CRF model needed 
more than 200 hours (estimated, i.e., more than 8 days) to train while the first-order 
Markov model took only 4 hours for training and an additional 2 hours for discovering 
important associations of statistics. Training second-order Markov CRFs is very time-
consuming due to the fact that their time complexity is O(|L|3) rather than O(|L|2) like 
first-order Markov models, where L is the set of all class labels. In this case, |L| is 22, and 
the computational time is much different between the two cases. We had to use a parallel 
implementation of CRFs on massively parallel computers to evaluate the second-order 
Markov configuration. 

5.3 Named Entity Recognition 

Named entity recognition (NER), a subtask of information extraction, identifies names of 
persons (PER), organizations (ORG), locations (LOC), times (TIME), and quantities 
(NUMBER, CURRENCY, PERCENTAGE) in natural language. Here is an example of 
an English sentence with named entities marked: [LOC Germany] 's representative to the 
[ORG European Union] 's veterinary committee [PER Werner Zwingmann] said on 
Wednesday ...  

        Training and Testing Data. The training and testing data for English named entity 
recognition are provided at the shared task for CoNLL-2003. The dataset is a collection 
of news wire articles from the Reuters Corpus. The training set consists of 14,041 
sentences (20,3621 tokens), and the testing data contains two parts: the development test 
set (testa: 3,250 sentences, 51,362 tokens) and the final test set (testb: 3,453 sentences, 
46,435 tokens). The data files contain four columns separated by a blank space. Each 
token (a word or a punctuation mark) has been put on a separate line, and there is an 
empty line after each sentence (sequence). The first item on each line is a token, the 
second is the part-of-speech tag of the token, the third is a phrase type tag (like the label 
in phrase chunking) of the token, and the fourth is the named entity label (label for short). 
The label of each token indicates whether the token is outside a named entity (O), or 
inside a named entity (I-<NamedEntityType>). If two named entities of the same type 
immediately follow each other, the first token of the second named entity will have tag B-
<NamedEntityType>. For example, the named entity label sequence of the above 
sentence is I-LOC O O O O I-ORG I-ORG O O O I-PER I-PER O O O. 



        Feature Generation. On the named entity recognition dataset, we used the feature 
templates shown in Table IX. All transition features also conform to the first Markov 
property. Each statistic for a per-state feature is one of the following types: (1) the 
identities of words (w-2, w-1, w0, w1, w2), (2) the POS tags of words (t-2, t-1, t0, t1, t2), (3) 
the phrase tags of words (c-2, c-1, c0, c1, c2), and (4) several simple regular expressions or 
formats of words such as “the first character of a word is capitalized” (IsInitCap), “all 
chars of a word are capitalized” (IsAllCap), etc. We also use the lengh-2 conjunctions of 
POS tags and chunk tags. Like the phrase-chunking task, all statistics are captured within 
a window with a size of 5. Our feature templates are much simpler than those used in the 
previous work presented at the CoNLL2003 shared task and in McCallum [2003] in two 
ways, that is, only five simple format properties were captured (compared to 16 regular 
expressions in McCallum [2003]), and no external dictionaries were used such as the lists 
of people names, organization names, countries, cities, etc. We only used the list of 
names generated from training data for look-up features. 

Table IX. Feature Femplates for NER 

Transition feature templates 
Current state si Previous state si-1 

l L’ 

Per-state feature templates 
Current state si Statistics x(o, i) 

l w-2; w-1; w0; w1; w2; t-2; t-1; t0; t1; t2; t-2 ∧ t-1; t-1 ∧ t0; t0 ∧ t1; t1 ∧ t2;  
c-2; c-1; c0; c1; c2; c-2 ∧ c-1; c-1 ∧ c0; c0 ∧ c1; c1 ∧ c2; 

IsInitCap (wk); IsAllCap (wk); IsNumber(wk); IsAlphaNumber(wk); 
IsFirstWord(wk) where k ∈ {-2, -1, 0, 1, 2}; 

List of names generated from training set for look-up features 

        Mining Important Associations of Statistics. Let I be the itemset of 124,919 data 
items, that is, the union set of 124,910 statistics and 9 named entity labels; T be the set of 
203,621 data transactions corresponding to 203,621 tokens of the training data. Let the 
lower support (lsupp) threshold be (usupp is 100%); let the lower confidence (lconf) 
threshold be 100%. We also examine rules with the LHS length of 2 or 3. 

Table X. Some Examples of Important Associations of Statistics Discovered from the 
CoNLL2003 Training Set 

Important associations:  lX ⇒ Supp & Conf Label l’ 
{w:0:EU ∧ w:-1:The ∧ w:1:’s} ⇒ B-ORG 
{w:0:IsInitCap ∧ w:2:IsInitCap ∧ w:0:Everton} ⇒ B-ORG 
{w:0:IsInitCap ∧ w:2:IsInitCap ∧ w:-1:der } ⇒ I-PER 
{w:0:Soviet ∧ w:1:Union} ⇒ B-LOC 
{w:0:IsAllCap ∧ w:0:REUTER} ⇒ B-PER 
{w:0:IsInitCap  ∧ w:1:IsInitCap ∧ w:-1:meeting} ⇒ B-LOC
{w:-1:Rio  ∧ w:0:de} ⇒ I-LOC 
{w:-2:The  ∧ w:-1:New ∧ w:0:York} ⇒ I-ORG 
{w:-1:Banco  ∧ w:0:de } ⇒ I-ORG 
{w:-1:of ∧ w:0:Pennsylvania} ⇒ I-ORG 
{w:0:Le ∧ w:1:Gras} ⇒ I-PER 
… 

(3, 100%) 
(2, 100%) 
(2, 100%) 
(4, 100%) 
(3, 100%) 
(2, 100%) 
(3, 100%) 
(2, 100%) 
(2, 100%) 
(2, 100%) 
(2, 100%) 
 

B-LOC 
B-LOC 
B-PER 
B-ORG 
B-ORG 
B-PER 
I-PER 
I-LOC 
I-PER 
B-LOC 
B-ORG 

        The mining process for important associations took about 1.5 hours using the FP-
growth algorithm and the filter criteria described in Definitions 1 and 2. The output was a 
set of 391,376 rare-but-important associations with an LHS length of 2 or 3, support 
larger or equal to 2, and confidence of 100%. Table X shows several examples of 



important associations discovered from the CoNLL2003 training dataset for NER. This 
set of associations was integrated into the CRF model in terms of normal features and 
normal features with weighted feature values. We also selected 6,820 rules with support 
larger or equal to 20 to serve as constraints for the inference process to examine whether 
or not constraints as rare but important associations can improve the performance. 
        Results. Table XI shows the results of named entity recognition. The first column is 
named entity type. The second column is the number of named entities. The next four 
columns display the F1 scores of four cases: (A) without important associations, (B) 
important associations as normal CRF features, (C) important associations as weighted 
CRF features, and (D) important associations as constraints for Viterbi inference. The last 
two lines are the macro-average and micro-average of F1 scores. 

Table XI. NER Performance using CRFs with Important Associations on Development 
Set (testa) 

NE Types #NEs (A) F1 (B) F1 (C) F1 (D) F1

ORG 1325 79.64 78.43 79.26 79.23 
PER 1829 88.16 88.56 88.88 87.88 
LOC 1832 89.03 89.85 90.24 88.77 
MISC 916 81.64 83.83 84.02 81.48 

Macro-avg  84.65 85.18 85.61 84.37 
Micro-avg 5902 85.57 86.01 86.44 85.28 

Fig. 1. NER Results using CRFs with Important Associations on Development Set (testa) 

76

78

80

82

84

86

88

90

92

ORG PER LOC MISC

F1
-m

ea
su

re
 (%

)

A B C D

 

        In the first case, we obtained the highest micro-average F1 of 85.57%. In the second 
case, we achieved the highest micro-average F1 of 86.01% with 0.44% higher than the 
original performance. In the third case, we obtained the micro-average F1 of 86.44%, that 
is, 0.87% (i.e., 6% error reduction) higher than the original result. And in the fourth case, 
we obtained the highest micro-average F1 score of 85.28% (i.e., 0.29% less than the 
original result) when using important associations as constraints for inference. Figure 1 
graphically demonstrates the extent to which important associations can improve the 
prediction performance. We also evaluate our methods on the final test set (testb) but the 
improvement is lower (F1 score from 80.86 to 81.12). 

Table XII. NER Performance Comparison among Feature Induction/Selection Methods 

Methods F1 
McCallum 2003 (CRFs + likelihood-driven feature induction) 89.00 
McCallum 2003 (CRFs – without feature induction) 73.30 
Ours (CRFs + important associations of statistics) 86.44 
Ours (CRFs – without important associations of statistics ) 85.57 



        Table XII shows the difference in performance improvement between our method 
and McCallum’s feature induction [McCallum 2003]. These results were obtained from 
the development test dataset (testa) but using different feature templates. Our feature 
templates are much simpler than those of McCallum, both in the number of regular 
expressions and external dictionaries. They used external information such as names of 
countries, publicly-traded companies, surnames, stop-words, universities, organizations, 
NGOs, and nationalities. Also, our CRFs provide much higher baseline performance 
(85.57 compared to 73.30). That is why we cannot give a direct comparison between the 
two methods. 
        On the test set (testb), Ando and Zhang [2005] used their semi-supervised learning 
framework to improve this task using an additional 27 million unlabeled words from 
Reuters and ECI Multilingal Text Corpus. They achieved the highest F1 of 89.31. Florian 
et al. [2003] combined classifiers, used gazetteers, and achieved F1 of 88.76±0.7. Chieu 
and Ng [2003] used maximum entropy classifiers with carefully selected features plus 
gazetteers, and got F1 of 88.31±0.7. 

5.4 Discussion 

We can see that the integration of important associations into CRFs can improve the 
performance of both the phrase-chunking and named entity recognition tasks. The F1-
score of phrase-chunking increases from 93.12 to 93.39. Similarly, the F1-score of NER 
increases from 85.57 to 86.44%. These are not a big improvement in performance5 . 
However, they show that our method can automatically discover important associations 
from data to improve the accuracy for given a fixed set of feature templates. 
        Filtering association rules is probably the most important step in our method that 
strongly influences the prediction performance. In this work, we applied quite simple 
filtering criteria that might not completely reflect the nature/properties of rare but 
important associations discovered from training data. We observed that there are still a lot 
of redundant or meaningless associations in the selected rule sets. We believe that we can 
improve the prediction accuracy more if we can filter more fine-grained and significant 
rare but important associations. 
        The experiments also show that rare but important associations do not improve the 
accuracy if they are used as constraints for inference. This is because a lot of important 
associations discovered from the training data no longer have 100%-confidence in the test 
dataset. Using them as constraints for inference is too risky even we select only rules with 
support greater than or equal to 20. The experiments provided lower results in 
comparison with the baseline performance in both cases, phrase-chunking and NER6. 
Rules should be used as constraints for inference if we completely make sure that they 
are very reliable in any testing or future unseen data. 
        Using important associations as normal CRF features can significantly enhance the 
total performance. However, treating important associations as normal features might not 
fully utilizes their advantages. Treating important associations as weighted features 
should be the favorable choice because they are neither too loosely nor too tightly 
integrated with the models. The experimental results show that this way achieved highest 
improvement in accuracy. 
        We also did the experiments with rare-but-confident rules. We observed two 
important points that (1) the numbers of rare-but-confident rules (both noun phrase- 
chunking and named entity recognition) were much larger than those of important ones; 

                                                 
5 The results in our KDD paper [Phan et al. 2005] are incorrect due to some evaluation mistakes. We 
unintentionally included the labels in training and testing datasets when we match association rules back to 
training data and look up constraints for testing sets. 
 



and (2) the experimental results were sometimes worse because of the overfitting 
problem. This means that there is a large proportion of rare-but-confident rules that are 
unnecessary for capturing difficult data instances. 
        One of the important points in the proposed technique is how to determine the 
values for the parameters, such as lower bound (lsupp) and upper bound (usupp) of 
support factor of important associations of statistics, as well as the emphasized values for 
weighted features of CRFs. In both experimental tasks, we chose the lsupp of 2 is 
because we want to capture as many  associations of statistics as possible. This helps us 
to capture more patterns in testing and future unseen data to reduce overfitting problem. 
We also tried larger lsupp values, such as 3 and 4, but they provided lower accuracy. We 
did not confine the upper support bound (usupp) because when the confidence bound is 
100%, the number of rules with large support is very small. And after filtering using 
Definition 2, selected rules tend to have small support values. In addition, choosing the 
length of the LHS of important associations is quite important for two main reasons, 
computational time and the overfitting problem. Generating long associations is quite 
time-consuming since the number of associations exponentially increases according to 
their LHS length. Also, many of the long (and very confident) associations are covered 
by shorter ones, thus including them in the models is unnecessary. Determining values 
for weighted features of CRFs in our method is quite heuristic but reasonable because we 
tend to highlight rare associations by pretending to increase their occurrence frequency in 
the training data. 
        Computational time in our method is also one of the important factors. Because 
important associations of statistics are discovered prior to training CRFs, the time 
complexity of discovering important associations and time complexity of training CRFs 
are independent. The former is proportional to the complexity of the FP-growth algorithm 
for mining frequent patterns from training data. The authors of the FP-growth only 
reported the frequent-pattern mining time and the comparison with the other mining 
algorithms (e.g., Apriori) rather than pointing out explicitly the time complexity of the 
algorithm. The comparison showed that the mining time of FP-growth is very efficient in 
comparison with the Apriori and TreeProjection algorithm, especially when the support 
threshold is small. In our algorithm, we needed only 2 and 1.5 hours for discovering and 
filtering important associations of statistics from phrase-chunking and named entity 
recognition datasets, though these linguistic datasets are large enough and the support 
threshold is very small in comparison with the databases' sizes. Time complexity of 
training CRFs is also large, but it is the common problem that our method and other 
methods incur. The time complexity of training first-order Markov CRFs is 
O(ma|L|2NTe), in which m is the number of training iterations, a is the average number of 
active context predicates, L is the set of class labels, N is the total of sequences in the 
training dataset, and Te is the average length of each training sequence. Training a CRF 
model is very expensive because we have to perform a very costly forward-backward 
computation on a series of matrices in order to evaluate the log-likelihood function of the 
CRF model and its gradient vector at every training iteration. The complexity of the 
algorithm that using important associations of statistics as constraints for the inference 
process of CRFs was reported in Section 4.3. 
        The experimental results reported in this article do not represent the best possible 
performances on phrase-chunking and named entity recognition because (1) our feature 
templates are relatively simple to keep the set of features compact; this is convenient for 
mining associations, training again and again while conducting the experiments; (2) 
unlike the CRF model in Sha and Pereira [2003], all our CRF models obey the first-order 
Markov property to reduce the complexity. 

6. RELATED WORK 



Discriminative (sequential) learning models have been applied successfully in different 
natural language processing and information extraction tasks, such as POS tagging 
[Ratnaparkhi 1996], text-chunking [Peng et al. 2004; Sha and Pereira 2003], information 
extraction [Kristjansson et al. 2004; Pinto et al. 2003], computer vision and image 
analysis [Kumar and Hebert 2003; He et al. 2004; Torralba et al. 2004], and biological 
modeling [Yeo and Bruge 2003]. Normally, one can extract features from sequential data 
within a relatively large window size (i.e., the history size of contextual information) and 
make high-order combinations of atomic observational tests (e.g., the conjunctions of two 
or three consecutive words in a sentence) in the hope that they will capture as many 
useful predictive clues as possible. Unfortunately, such useful conjunctions are sparsely 
distributed in the feature space, and thus one unintentionally includes a large number of 
redundant conjunctions into the model. Inspired by this obstacle, our work aims at 
picking up useful conjunctions from a large array of conjunction candidates while 
keeping the set of features simple. The data-driven search with respect to support and 
confidence factors based on association rule mining techniques can discover desired 
conjunctions with an acceptable computational time. 
        There have been several previous studies about the discovery of interesting and/or 
exceptional patterns in databases [Liu et al. 1999; Padmanabhan and Tuzhilin 1998; 
Silberchats and Tuzhilin 1996; Suzuki and Shimura 1996]. The concept of interesting 
patterns/rules varies in different papers but, in general, implies the associations of weak 
statistics that have small support but large confidence. However, most of the work 
focused on finding exception rules for data analysis purposes rather than using them for 
improving classification accuracy. Also, these studies worked with numerical data instead 
of linguistic data like ours. Discovering important associations of statistics in linguistic 
data for improving discriminative sequential learning was actually our original proposal. 
        McCallum [2003] proposed an automated feature induction for CRFs that can 
reduce the number of used features dramatically. This likelihood-driven approach 
repeatedly adds features with high likelihood gains into the model. The set of induced 
features contains both atomic observational tests and conjunctions of them. The main 
difference between this work and ours is that McCallum focuses on features with high 
likelihood-gains in order to reduce the number of used features as much as possible, 
while the main target of our method is to discover important associations or co-
occurrences of weak statistics from the training data to highlight difficult examples. 
Further, our method can examine any combination or conjunction of statistics because of 
the exhaustive working method of association rule mining techniques. 
        An error-driven method that combines boosting technique into the training process 
of CRFs [Altun et al. 2003] to minimize an upper bound on the ranking loss that was 
adapted to label sequences. This method also focuses on hard observation sequences, but 
without integrating new useful conjunctions of basic features. Another boosting-like 
training for CRFs is based on the use of a gradient tree [Dietterich 2004] to learn many 
conjunctions of features. One problem is that this method requires adding many trees for 
the training process. 

7. CONCLUSIONS AND FUTURE WORK  

In this article, we proposed a data-driven approach that can discover and highlight 
important associations or co-occurrences of singleton statistics from the sequential 
training data to deal with hard examples. Discovered associations are integrated into the 
exponentially-trained sequential learning models as normal features, features with 
weighted values, and constraints for the inference process. The experimental results show 
that important associations can improve the model performance by fighting against the 
dominance of singleton but common statistics in the training data. 



        Though important associations can enhance the prediction accuracy for hard 
examples, our approach is currently based on the occurrence frequency of statistics and 
the existence of important associations in the training data. We believe that there is an 
indirect mathematical relation between the occurrence frequencies of statistics and the 
learned weights of the model's features. Our future work will focus on this potential 
relation to estimate the extent to which useful patterns (e.g., important associations) 
discovered from the training data can improve the performance of discriminative 
(sequential) learning models. 
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