
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Counting the number of independent sets in

chordal graphs

Author(s) Okamoto, Yoshio; Uno, Takeaki; Uehara, Ryuhei

Citation Journal of Discrete Algorithms, 6(2): 229-242

Issue Date 2008-06

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/7872

Rights

NOTICE: This is the author's version of a work

accepted for publication by Elsevier. Yoshio

Okamoto, Takeaki Uno, Ryuhei Uehara, Journal of

Discrete Algorithms, 6(2), 2008, 229-242,

http://dx.doi.org/10.1016/j.jda.2006.07.006

Description

Title: Counting the Number of Independent Sets in Chordal Graphs 1

Author names and affiliations:

Yoshio Okamoto, Department of Information and Computer Sciences,

Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi,

Aichi 441-8580, Japan. okamotoy@ics.tut.ac.jp

Takeaki Uno, National Institute of Informatics, Hitotsubashi 2-1-2,

Chiyoda-ku, Tokyo 101-8430, Japan. uno@nii.jp

Ryuhei Uehara, School of Information Science, Japan Advanced Institute

of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan.

uehara@jaist.ac.jp

Corresponding author: Ryuhei Uehara

Abstract: We study some counting and enumeration problems for chordal

graphs, especially concerning independent sets. We first provide the follow-

ing efficient algorithms for a chordal graph: (1) a linear-time algorithm for

counting the number of independent sets; (2) a linear-time algorithm for

counting the number of maximum independent sets; (3) a polynomial-time

algorithm for counting the number of independent sets of a fixed size. With

similar ideas, we show that enumeration (namely, listing) of the independent

sets, the maximum independent sets, and the independent sets of a fixed

size in a chordal graph can be done in constant amortized time per output.

On the other hand, we prove that the following problems for a chordal graph

are #P-complete: (1) counting the number of maximal independent sets; (2)

counting the number of minimum maximal independent sets. With similar

ideas, we also show that finding a minimum weighted maximal independent

set in a chordal graph is NP-hard, and even hard to approximate.

Keywords: Chordal graph, counting, enumeration, independent set, NP-

completeness, #P-completeness, polynomial time algorithm.

1 An extended abstract of this paper appeared in the proceedings of the 31st Inter-

national Workshop on Graph-Theoretic Concepts in Computer Science (WG 2005),

pages 433-444, Lecture Notes in Compter Science Vol. 3787, Springer Verlag, 2005.

1

1 Introduction

How can we cope with computationally hard graph problems? There are sev-

eral possible answers, and one of them is to utilize the special graph structures

arising from a particular context. This has been motivating the study of special

graph classes in algorithmic graph theory [3,14]. This paper deals with count-

ing and enumeration problems from this perspective. Recently, counting and

enumeration of some specified sets in a graph have been widely investigated,

e.g., in the data mining area. In general, however, from the graph-theoretic

point of view, those problems are hard even if input graphs are quite restricted.

For example, counting the number of independent sets in a planar bipartite

graph of maximum degree 4 is #P-complete [22]. Therefore, we wonder what

kind of graph structures makes counting and enumeration problems tractable.

In this paper, we consider chordal graphs. A chordal graph is a graph in which

every cycle of length at least four has a chord. From the practical point of

view, chordal graphs have numerous applications in, for example, sparse ma-

trix computation (e.g., see Blair & Peyton [2]), relational databases [1], and

computational biology [4]. Chordal graphs have been widely investigated, and

they are sometimes called triangulated graphs, or rigid circuit graphs (see, e.g.,

Golumbic’s book [14, Epilogue 2004]). A chordal graph has various character-

izations; for example, a chordal graph is an intersection graph of subtrees of a

tree, and a graph is chordal if and only if it admits a special vertex ordering,

called perfect elimination ordering [3]. Also, the class of chordal graphs forms

a wide subclass of perfect graphs [14].

It is known that many graph optimization problems can be solved in polyno-

mial time for chordal graphs; to list a few of them, the maximum weighted

clique problem, the maximum weighted independent set problem, the mini-

mum coloring problem [13], the minimum maximal independent set problem

[9]. There are also parallel algorithms to solve some of these problems effi-

2

Table 1

Summary of the results. We denote the number of vertices and edges by n and m

respectively. The running times for enumeration algorithms refer to time per output.

Chordal graphs Counting [ref.] Enumeration [ref.]

independent sets O(n + m) O(1)

[this paper] [this paper]

maximum independent sets O(n + m) O(1)

[this paper] [this paper]

independent sets of size k O(k2(n + m)) O(1)

[this paper] [this paper]

maximal independent sets #P-complete O(n + m)

[this paper] [8,16]

minimum maximal independent sets #P-complete

[this paper]

ciently [15]. However, relatively fewer problems have been studied for enumer-

ation and counting in chordal graphs; the only algorithms we are aware of are

the enumeration algorithms for all maximal cliques [12], all maximal indepen-

dent sets [16] (see also conclusions in a paper of Eppstein [8]), all minimum

separators and minimal separators [5], and all perfect elimination orderings

[6].

In this paper, we investigate the problems concerning the number of indepen-

dent sets in a chordal graph. Table 1 lists the results of the paper. We first

give the following efficient algorithms for a chordal graph; (1) a linear-time al-

gorithm to count the number of independent sets, (2) a linear-time algorithm

to count the number of maximum independent sets, and (3) a polynomial-

3

time algorithm to count the number of independent sets of a given size. The

running time of the third algorithm is linear when the size is constant. Note

that in general counting the number of independent sets and the number

of maximum independent sets in a graph is #P-complete [18], and counting

the number of independent sets of size k in a graph is #W[1]-complete [11]

(namely, intractable in a parameterized sense). Let us also note that the time

complexity here refers to the arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated

with a chordal graph and perform a bottom-up computation via dynamic

programming on the clique tree. A clique tree is based on the characterization

of a chordal graph as an intersection graph of subtrees of a tree. Since a

clique tree can be constructed in linear time and the structure of a clique

tree is simple, this approach leads to simple and efficient algorithms for the

problems above. However, a careful analysis is necessary to obtain the linear-

time complexity.

Along the same idea, we can also enumerate all independent sets, all maximum

independent sets, and all independent sets of constant size in a chordal graph

in O(1) time per output.

On the other hand, we show that the following counting problems are #P-

complete: (1) counting the number of maximal independent sets in a chordal

graph, and (2) counting the number of minimum maximal independent sets

in a chordal graph. Using a modified reduction, we furthermore show that the

problem to find a minimum weighted maximal independent set is NP-hard.

We also show that the problem is even hard to approximate. More precisely,

there is no polynomial-time approximation algorithm to find such a set within

a factor of c ln |V |, for some constant c, unless NP ⊆ DTIME(nO(log log n)). This

is in contrast with a linear-time algorithm by Farber that finds a minimum

weighted maximal independent set in a chordal graph when the weights are 0

4

or 1 [9].

The organization of the paper is as follows. Section 2 introduces the concept

of a clique tree. In Section 3, we devise a linear-time algorithm for counting

the number of independent sets, and in Section 4, we discuss how to count the

maximum independent sets in linear time. In Section 5, we provide an efficient

algorithm for counting the number of independent sets of each size simultane-

ously. In Section 6, we briefly describe how to apply our method for counting

to enumeration, which leads to constant time algorithms. In Section 7, we

prove that counting the number of maximal independent sets and counting

the number of minimum maximal independent sets are hard. In Section 8, we

modify the reduction in Section 7 to show that it is hard to find a minimum

weighted maximal independent set, and even hard to approximate.

2 Preliminaries

A graph G = (V,E) consists of a finite set V of vertices and a collection E of

2-element subsets of V called edges. The vertex set and the edge set of G are

often denoted by V (G) and E(G) respectively. The neighborhood of a vertex v

in a graph G = (V,E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and the degree

of a vertex v is |NG(v)| and is denoted by degG(v). If no confusion can arise

we will omit the subscript G. We denote the closed neighborhood NG(v)∪{v}

by N [v]. Given a graph G = (V,E) and a subset U ⊆ V , the subgraph of G

induced by U is the graph (U, F), where F = {{u, v} ∈ E | u, v ∈ U}, and

denoted by G[U]. A vertex set I is an independent set of G if G[I] contains no

edge, and a vertex set C is a clique if all pairs of vertices in C are joined by

an edge in G. We regard an empty set as an independent set of size zero. An

independent set is maximum if it has the largest size among all independent

sets. An independent set is maximal if none of its proper supersets is an

independent set. An independent set is minimum maximal if it is maximal and

5

has the smallest size among all maximal independent sets. A maximum clique,

a maximal clique and a minimum maximal clique are defined analogously.

An edge which joins two vertices of a cycle but is not itself an edge of the cycle

is a chord of the cycle. A graph is chordal if each cycle of length at least four

has a chord. Given a graph G = (V,E), a vertex v ∈ V is simplicial in G if

NG(v) is a clique in G. An ordering v1, . . . , vn of the vertices of V is a perfect

elimination ordering of G if the vertex vi is simplicial in G[{vi, vi+1, . . . , vn}]

for all i = 1, . . . , n. It is known that a graph is chordal if and only if it has a

perfect elimination ordering [3, Section 1.2]. Given a chordal graph a perfect

elimination ordering of the graph can be found in linear time [19,21].

To a chordal graph G = (V,E), we associate a tree T , called a clique tree of G,

satisfying the following three properties. (A) The nodes of T are the maximal

cliques of G. (B) Two nodes of T are adjacent only if their intersection is

non-empty. (C) For every vertex v of G, the subgraph Tv of T induced by the

maximal cliques containing v is a tree. (In the literature, the condition (A) is

sometimes weakened as each node is a (not necessarily maximal) clique of G.)

It is well known that a graph is chordal if and only if it has a clique tree, and

in such a case a clique tree can be constructed in linear time. Some details are

explained in books [3,20]. The following property is important in the running

time analysis of our algorithms.

Lemma 1 Let G = (V,E) be a chordal graph, and denote by K the family of

maximal cliques of G. Then, it holds that
∑

K∈K |K| = O(|V | + |E|).

PROOF. Take any perfect elimination ordering v1, v2, . . . , vn of G. Let

C(vi) := NG[vi] ∩ {vi, vi+1, . . . , vn}. It is known that for every maximal clique

K of G there exists a vertex vi ∈ V such that K = C(vi) holds [12]. Since

C(vi) ⊆ NG[vi], we have |C(vi)| ≤ |NG[vi]| = 1 + degG(vi). Putting together,

we obtain
∑

K∈K |K| ≤ ∑
v∈V |C(v)| ≤ ∑

v∈V (1 + degG(v)) = |V | + 2|E| =

6

O(|V | + |E|). 2

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of indepen-

dent sets in a chordal graph G. The basic idea of our algorithm is to divide

the input graph into subgraphs induced by subtrees of the clique tree. If two

subtrees T1 and T2 in the clique tree are node-disjoint, the set of vertices in

G shared by T1 and T2 induces a clique C. Then C is a separator of the

chordal graph G; removing C separates G into two subgraphs such that one

of them contains vertices in T1 only, and the other one contains vertices in

T2 only. This property is very useful for counting the number of independent

sets since every independent set can contain at most one vertex of the clique

C. More precisely, we can partition the family of independent sets into two

groups; a family of independent sets that contains one vertex from C, and the

other family of independent sets that contains no vertex from C. In each case,

we can divide the counting problem onto two disjoint subgraphs obtained by

removing the vertices in C. Hence we can use a recursive approach.

First, we introduce some notations and state some lemmas. Given a chordal

graph G = (V,E), we construct a clique tree T of G. We now pick up any

node in the clique tree T , regard the node as the root of T , and denote it

by Kr. This is what we call a rooted clique tree. For a maximal clique K in

a chordal graph G and a rooted clique tree T of G, a maximal clique K ′ in

G is a descendant of K (with respect to T) if K ′ is a descendant of K in T .

For convenience, we consider K itself a descendant of K as well, and when

no confusion arises we omit saying “with respect to T .” Let prt(K) be the

parent of K in T . We also denote the set of children of K in T by chd(K). For

convenience, we define prt(Kr) and chd(K`) for each leaf K` as ∅. We denote

by T (K) the subtree of T rooted at the node corresponding to the maximal

7

clique K. Let G(K) denote the subgraph of G induced by the vertices included

in at least one node in T (K). Observe that G(K) is a chordal graph of which

T (K) is a clique tree.

For a graph G, let IS(G) be the family of independent sets in G. For a

vertex v, let IS(G, v) be the family of independent sets in G including v, i.e.,

IS(G, v) := {S | S ∈ IS(G), v ∈ S}. For a vertex set U , let IS(G,U) be the

family of independent sets in G including no vertex of U , i.e., IS(G,U) :=

{S | S ∈ IS(G), S ∩ U = ∅}.

Lemma 2 Let G be a chordal graph and T be a rooted clique tree of G. Choose

a maximal clique K of G, and let K1, . . . , K` be the children in chd(K).

Furthermore let v ∈ K and S ⊆ V (G(K)). Then, S ∈ IS(G(K), v) if and

only if S is represented by S = {v}∪S1∪· · ·∪S` such that Si ∈ IS(G(Ki), v)

if v belongs to Ki, and Si ∈ IS(G(Ki), K ∩Ki) otherwise. Furthermore, such

a representation is unique.

PROOF. We first show the only-if part. Assume that S ∈ IS(G(K), v). Let

Si := S ∩ G(Ki) for every i = 1, . . . , `. Then, S includes the union of {v}

and S1, . . . , S`. Let us show the converse inclusion. Choose an arbitrary vertex

x ∈ S. If x = v, then x is certainly included in the union of {v} and S1, . . . , S`.

Otherwise, we have x ∈ V (G(K)) \K. Since V (G(K)) = K ∪∪`
i=1 V (G(Ki)),

the vertex x belongs to Si for some i = 1, . . . , `. Therefore, S is included in the

union of {v} and S1, . . . , S`. Now, we need to show that for every i = 1, . . . , `

the set Si satisfies the property required in the lemma. Fix i = 1, . . . , `. If v

belongs to Ki, then Si belongs to IS(G(Ki), v) since v also belongs to S. If

v 6∈ Ki, then Si belongs to IS(G(Ki), Ki∩K) since v is adjacent to any vertex

of Ki ∩ K. Thus the required property is satisfied. This completes the proof

of the only-if part.

Next, we prove the if part. Assume that S is the union of {v} and S1, . . . , S`

8

satisfying that Si ∈ IS(G(Ki), v) if v ∈ Ki, and Si ∈ IS(G(Ki), K ∩ Ki)

otherwise. When v ∈ Ki, since v is adjacent to all vertices of K \ {v}, every

vertex in Si \ {v} belongs to V (G(Ki)) \K. When v 6∈ Ki, by the definition of

IS(G(Ki), K∩Ki), every vertex in Si\{v} belongs to V (G(Ki))\K. Therefore,

for each i = 1, . . . , ` it holds that Si \ {v} ⊆ V (G(Ki)) \ K. This implies that

S \ {v} ⊆ V (G(K)) \ K. Now, we show that for every i, j ∈ {1, . . . , `} with

i 6= j, (Si \ {v}) ∪ (Sj \ {v}) is independent. To show that, suppose not.

Since Si and Sj are independent, there must be an edge {x, y} ∈ E such that

x ∈ Si \ {v} and y ∈ Sj \ {v}. Since {x, y} is an edge of G, it is included

in some maximal clique Kxy of G. Since Tx and Ty are subtrees of T , this

implies that x or y must belong to K. Without loss of generality, assume

that x belongs to K. (Remember that x ∈ Si \ {v}.) If Si ∈ IS(G(Ki), v),

then Si ∩ K ⊇ {v, x}. This is a contradiction to Si being independent. If

Si ∈ IS(G(Ki), K ∩Ki), then Si cannot contain any vertex of K, particularly

x. This is also a contradiction. Thus the claim is verified, and it implies that

S \ {v} is an independent set of G(K). Together with the observation that no

vertex of G(Ki) \ K is adjacent to v if v 6∈ Ki, this further implies that S is

an independent set of G(K). Since v ∈ S, this shows that S ∈ IS(G(K), v).

To show the uniqueness, suppose that S is the union of {v}, S1, . . . , S` and

also the union of {v}, S ′
1, . . . , S

′
` such that there exists i with Si 6= S ′

i. Without

loss of generality assume that Si 6= ∅. Choose a vertex u ∈ Si\S ′
i, where u 6= v.

Then, there must exist j 6= i with u ∈ S ′
j. Hence, there exists a node L ∈ T (Ki)

such that u ∈ L and a node L′ ∈ T (Kj) such that u ∈ L′. Then, by Property

(C) in the definition of a clique tree, the nodes on the path connecting L and

L′ in T contain u. In particular we have u ∈ K. Therefore, u and v belong to

the clique K and at the same time they belong to the independent set S. This

is a contradiction. 2

By a close inspection of the proof above, we can observe that for every i, j ∈

9

{1, . . . , `}, i 6= j, it holds that V (G(Ki))\K is disjoint from V (G(Kj))\K. This

property gives a nice decomposition of the problem into several independent

parts, and enables us to perform the dynamic programming on a clique tree.

By similar discussion as above, we obtain the following lemma.

Lemma 3 Let G be a chordal graph and T be a clique tree of G. Choose a

maximal clique K of G, and let K1, . . . , K` be the children in chd(K).

(1) We have S ∈ IS(G(K), K) if and only if S is the union of S1, . . . , S`

such that Si ∈ IS(G(Ki), K ∩Ki). Furthermore, such a representation is

unique.

(2) For each i = 1, . . . , `, we have Si ∈ IS(G(Ki), K ∩ Ki) if and only if Si

belongs either to IS(G(Ki), v) for some v ∈ Ki \K or to IS(G(Ki), Ki).

Furthermore, Si belongs to exactly one of them.

PROOF. (1) Similar to Lemma 2, we omit.

(2) First, assume that Si ∈ IS(G(Ki), v) for some v ∈ Ki \ K. Since Ki is a

clique, Si cannot include any vertex of Ki \{v}, particularly of K∩Ki. There-

fore, Si ∈ IS(G(Ki), K ∩ Ki). Secondly, assume that Si ∈ IS(G(Ki), Ki).

Then, Si includes no vertex of Ki ∩ K, since Ki ∩ K ⊆ Ki. Hence, Si ∈

IS(G(Ki), K ∩ Ki). This proves the if part.

Let us prove the only-if part and the uniqueness. Assume that Si belongs to

IS(G(Ki), Ki ∩ K). When Si includes a vertex v of Ki \ K, we have Si ∈

IS(G(Ki), v). Note that v is a unique element in Si ∩ (Ki \ K) since Si is

an independent set and Ki \ K is a clique. Therefore, Si 6∈ IS(G(Ki), u) for

u ∈ (Ki \ K) \ {v}. When Si includes no vertex of Ki \ K, it follows that

Si ∈ IS(G(Ki), Ki). 2

From these lemmas, we have the following recursive equations for IS.

10

Equations 1 Let G be a chordal graph and T be a rooted clique tree of G. For

a maximal clique K of G which is not a leaf of the clique tree, let K1, . . . , K` be

the children of K in T . Furthermore, let v ∈ K. Then, the following identities

hold. (We remind that ∪̇ means “disjoint union.”)

IS(G(K)) = IS(G(K), K) ∪̇
∪̇

v∈K
IS(G(K), v);

IS(G(K), v) =

{S ∪ {v} | S =
∪̀
i=1

Si, Si ∈


IS(G(Ki), v) if v ∈ Ki

IS(G(Ki), Ki ∩ K) otherwise


};

IS(G(K), K) = {S | S =
∪̀
i=1

Si, Si ∈ IS(G(Ki), Ki ∩ K)};

IS(G(Ki), Ki ∩ K) =

IS(G(Ki), Ki) ∪̇
∪̇

u∈Ki\K
IS(G(Ki), u) for each i = 1, . . . , `.

These equations lead us to the following algorithm to count the number of

independent sets in a chordal graph (we remind that an empty set is an inde-

pendent set).

Algorithm #IndSets

Input: A chordal graph G = (V,E);

Output: The number of independent sets in G;

1: construct a rooted clique tree T of G with root Kr;

2: call #IndSetsIter(Kr);

3: return
∣∣∣IS(G,Kr)

∣∣∣ +
∑

v∈Kr
|IS(G(Kr), v)|.

Procedure #IndSetsIter(K)

Input: A maximal clique K of the chordal graph G;

Output: The number of independent sets in G(K);

4: if K is a leaf of T then

11

5:
∣∣∣IS(G(K), K)

∣∣∣ := 1 and |IS(K, v)| := 1 for each v ∈ K;

6: else

7: foreach child K ′ of K do call #IndSetsIter(K ′);

8: foreach child K ′ of K do compute
∣∣∣IS(G(K ′), K ′ ∩ K)

∣∣∣ by∣∣∣IS(G(K ′), K ′)
∣∣∣ +

∑
u∈K′\K |IS(G(K ′), u)|;

9: compute
∣∣∣IS(G(K), K)

∣∣∣ by
∏

K′∈chd(K)

∣∣∣IS(G(K ′), K ′ ∩ K)
∣∣∣;

10: foreach v ∈ K do compute |IS(G(K), v)| by∣∣∣IS(G(K), K)
∣∣∣ × ∏

K′∈chd(K),v∈K′ |IS(G(K′),v)|∏
K′∈chd(K),v∈K′ |IS(G(K′),K′∩K)| ;

// The correctness of the equation is proved in the text.

11: endif.

Theorem 4 The algorithm #IndSets outputs the number of independent sets

in a chordal graph G = (V,E) in O(|V | + |E|) time.

PROOF. From Equations 1, we only need to check that Step 10 computes

correctly. This can be seen as follows:

|IS(G(K), v)|
=

∏
K′∈chd(K)

∣∣∣IS(G(K ′), K ′ ∩ K)
∣∣∣

=
∏

K′∈chd(K),v∈K′

|IS(G(K ′), v)| ×
∏

K′∈chd(K),v 6∈K′

∣∣∣IS(G(K ′), K ′ ∩ K)
∣∣∣

=
∣∣∣IS(G(K), K)

∣∣∣ × ∏
K′∈chd(K),v∈K′ |IS(G(K ′), v)|∏

K′∈chd(K),v∈K′

∣∣∣IS(G(K ′), K ′ ∩ K)
∣∣∣ .

Let us consider the computation time t(K) taken by a call to #IndSetsIter(K).

The overall running time of #IndSets is t(Kr) + O(|Kr|). Steps 7 and

8 take O(t(K ′)) and O(|K ′|) time for each K ′ ∈ chd(K) respec-

tively. Step 9 can be done in O(chd(K)). Next, we analyze the com-

putation time for Step 10. Since |IS(G(K), v)| can be computed in

O(|{K ′ ∈ chd(K) | v ∈ K ′}|) time for each v ∈ K, Step 10 can be

12

done in O(
∑

v∈K |{K ′ ∈ chd(K) | v ∈ K ′}|) time. Therefore, the accumu-

lated time taken by a call to #IndSetsIter(Kr) is
∑

K′∈chd(Kr)(O(t(K ′)) +

O(|K ′|)) + O(|chd(Kr)|) + O(
∑

v∈Kr
|{K ′ ∈ chd(Kr) | v ∈ K ′}|). By ex-

panding t(K ′) inside the sum, we can see that this is at most

O(
∑

K∈K(|K| +
∑

v∈K |{K ′ ∈ chd(K) | v ∈ K ′}|)), where K denotes the set

of nodes in the clique tree, i.e., the family of maximal cliques of G. By

Lemma 1, we have
∑

K∈K |K| = O(|V | + |E|). Furthermore, it follows

that
∑

K∈K
∑

v∈K |{K ′ ∈ chd(K) | v ∈ K ′}| =
∑

v∈V |{K ′ ∈ K | v ∈ K ′}| =∑
K∈K |K| = O(|V | + |E|) again by Lemma 1. Hence, the overall running

time is O(|V | + |E|). 2

4 Linear-Time Algorithm to Count the Maximum Independent

Sets

In this section, we modify Algorithm #IndSets to count the number of max-

imum independent sets in a chordal graph. For a set family S, we denote by

max(S) the maximum size of a set in S, and argmax(S) denotes the family

of sets in S of the maximum size. For a graph G, let MIS(G) be the family

of maximum independent sets in G. For a vertex v, let MIS(G, v) be the

family of maximum independent sets in G including v, i.e., MIS(G, v) :=

{S ∈ MIS(G) | v ∈ S}. For a vertex set U , let MIS(G, U) be the

family of maximum independent sets in G including no vertex of U , i.e.,

MIS(G,U) := {S ∈ MIS(G) | S ∩ U = ∅}. We note that MIS(G, v)

and MIS(G,U) are ∅ when there is no maximum independent set that sat-

isfies the conditions.

From lemmas stated in Section 3 and Equations 1, we immediately have the

following equations.

Equations 2 With the same set-up as Equations 1, the following identities

13

hold.

MIS(G(K)) = argmax(MIS(G(K), K) ∪̇
∪̇

v∈K

MIS(G(K), v));

MIS(G(K), v) =

argmax({S | S =
∪̀
i=1

Si, Si ∈


MIS(G(Ki), v) if v ∈ Ki

MIS(G(Ki), Ki ∩ K) otherwise


, v ∈ S});

MIS(G(K), K) = argmax({S | S =
∪̀
i=1

Si, Si ∈ MIS(G(Ki), Ki ∩ K)});

MIS(G(Ki), Ki ∩ K) =

argmax(MIS(G(Ki), Ki) ∪̇
∪̇

u∈Ki\K
MIS(G(Ki), u)).

Since the sets of each family on the left hand side have the same size in each

equation, the cardinality of the set can be computed in the same order as

Algorithm #IndSets. For example, MIS(G(K)) can be computed as follows.

(1) Set N := 0 and let M be the size of a maximum independent set in

MIS(G(K), K) ∪ ∪
v∈K MIS(G(K), v);

(2) if the size of a member of MIS(G(K), K) is equal to M , then N :=

N +
∣∣∣MIS(G(K), K)

∣∣∣;
(3) for each v ∈ K, if the size of a member of MIS(G(K), v)) is equal to

M , then N := N + |MIS(G(K), v))|;

(4) output N .

In this way we have the following theorem.

Theorem 5 The number of maximum independent sets in a chordal graph

G = (V,E) can be computed in O(|V | + |E|) time.

14

5 Efficient Algorithm to Count the Independent Sets of Size k

In this section, we modify Algorithm #IndSets to count the number of in-

dependent sets of size k. For a graph G and a number k, let IS(G; k)

be the family of independent sets in G of size k. For a vertex v, let

IS(G, v; k) be the family of independent sets in G of size k including v, i.e.,

IS(G, v; k) := {S ∈ IS(G; k) | v ∈ S}. For a vertex set U , let IS(G,U ; k)

be the family of independent sets in G of size k including no vertex of U , i.e.,

IS(G,U ; k) = {S ∈ IS(G; k) | S ∩ U = ∅}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the

following equations.

Equations 3

IS(G(K); k) = IS(G(K), K; k) ∪̇
∪̇

v∈K

IS(G(K), v; k);

IS(G(K), v; k) =

{S | S =
∪̀
i=1

Si, |S| = k, Si ∈


IS(G(Ki), v) if v ∈ Ki

IS(G(Ki), Ki ∩ K) otherwise


, v ∈ S};

IS(G(K), K; k) = {S | S =
∪̀
i=1

Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)};

IS(G(Ki), Ki ∩ K; k) = IS(G(Ki), Ki; k) ∪̇
∪̇

u∈Ki\K
IS(G(Ki), u; k).

In contrast to Equations 1, the second and third equations of Equations

3 do not give a straightforward way to compute |IS(G(K), v; k)| and∣∣∣IS(G(K), K; k)
∣∣∣, respectively, since we have to count the number of combi-

nations of S1, . . . , S` which generate an independent set of size k. To compute

them, we use a little more sophisticated algorithm.

Theorem 6 (1) The number of independent sets of size k in a chordal graph

G = (V,E) can be computed in O(k2(|V | + |E|)) time.

15

(2) The numbers of independent sets of all sizes from 0 to |V | in a chordal

graph G = (V,E) can be simultaneously computed in O(|V |2(|V | + |E|))

time.

PROOF. Here we show an efficient algorithm that computes∣∣∣IS(G(K), K; k)
∣∣∣ and |IS(G(K), v; k)|. Fix an arbitrary vertex v ∈ K.

For each `′ ≤ `, we define IS(G(K), K; k)≤`′ := {S | S = ∪`′
i=1Si, |S| =

k, Si ∈ IS(G(Ki), Ki ∩ K)}. Then we can compute
∣∣∣IS(G(K), K; k)

∣∣∣ =∣∣∣IS(G(K), K; k)`

∣∣∣ based on the following recursive equation:

∣∣∣IS(G(K), K; k)≤`′

∣∣∣ =
∣∣∣IS(G(K1), K1 ∩ K; k)

∣∣∣ if `′ = 1,

∑k
h=0

(∣∣∣IS(G(K), K; h)≤`′−1

∣∣∣ × ∣∣∣IS(G(K`′), K`′ ∩ K; k − h)
∣∣∣) otherwise.

Hence for a fixed k and each `′ = 1, 2, . . . , `, we can compute∣∣∣IS(G(K), K; k)≤`′

∣∣∣ in O(k`) = O(k|chd(K)|) time. Simultaneously, we can

compute
∣∣∣IS(G(K), K; k′)≤`′

∣∣∣ for all 0 ≤ k′ ≤ k in O(k2`) time, which will be

required in a recursion.

Next we turn to the computation of IS(G(K), v; k). Then, according to a fixed

v, the children of K are divided into two sets such that K1, . . . , Kp include v

and Kp+1, . . . , K` do not. Here we define two sets as follows.

IS(G(K), v; k)≤`′ := {S | S =
`′∪

i=1

Si, |S| = k, v ∈ S, Si ∈ IS(G(Ki), v)}

for each `′ with 1 ≤ `′ ≤ p, and

IS(G(K), v; k)>`′′ := {S | S =
∪̀

i=`′′+1

Si, |S| = k, Si ∈ IS(G(Ki), Ki ∩ K)}

16

for each `′′ with p ≤ `′′ ≤ ` − 1. We note that each S in IS(G(K), v; k)≤`′

contains v, and each S in IS(G(K), v; k)>`′′ does not. Then, it holds that

|IS(G(K), v; k)| =
k∑

h=0

(
|IS(G(K), v; h)≤p| ×

∣∣∣IS(G(K), v; k − h)>p

∣∣∣) .

Using the same technique above, we can compute |IS(G(K), v; h)≤p| from h =

0 up to h = k in O(hp) time in total, and
∣∣∣IS(G(K), v; h′)>p

∣∣∣ from h′ = k down

to h′ = 0 in O(h′(`−p)) time in total. Thus we can obtian |IS(G(K), v; k)| for a

fixed v and k in O(hp+h′(`−p)) = O(k`) time. Simultaneously, for a fixed v, we

can compute |IS(G(K), v; k′)| for all 0 ≤ k′ ≤ k in O(k2`) = O(k2|chd(K)|)

time.

We further reduce the computation time. At a clique K with children

K1, . . . , K`, we first compute
∣∣∣IS(G(K), K; k′)

∣∣∣ with 0 ≤ k′ ≤ k in O(k2`)

time. Next, for all v ∈ K and k′ = 0, . . . , k, we compute |IS(G(K), v; k′)|.

For a fixed v, we can compute |IS(G(K), v; k′)| for all 0 ≤ k′ ≤ k in

O(k2`) time. When we compute |IS(G(K), v; k′)| for all v ∈ K, we can

omit some computation for IS(G(K), v; k)>`′′ = {S | S =
∪`

i=`′′+1 Si, |S| =

k, Si ∈ IS(G(Ki), Ki ∩ K)} since it is independent from v. More pre-

cisely,
∣∣∣{Si ∈ IS(G(Ki), Ki ∩ K) | |Si| = k′}

∣∣∣ for each k′ ≤ k can be pre-

computed in O(k2) time in total. Hence, we can compute
∣∣∣IS(G(K), K; k′)

∣∣∣
and |IS(G(K), v; k′)| for all v ∈ K and k′ = 0, . . . , k in O(k2(` +∑

v∈K |{K ′ ∈ chd(K) | v ∈ K ′}|)) time. Therefore, the total computation time

over all iterations can be bounded in the same way as the above section, and

we have the theorem. 2

6 Enumeration

In this section we give enumeration algorithms using the same technique as

our counting algorithms in the previous sections.

17

First, we describe a simple algorithm to enumerate all independent sets in

a chordal graph. Equations 1 in Section 3 give a recursive structure for the

family of independent sets. Thus we can construct the following algorithm in

a straightforward way. We first set S := ∅. Then, for each maximal clique

K of a given chordal graph, we iteratively add a vertex of K \ prt(K) into

S (or no vertex to S) in a depth-first-search manner. Then each vertex in

K\prt(K) gives us a distinct independent set. Hence we pick up each of them

to enumerate all independent sets. A simple implementation of the algorithm

is as follows (for notational convenience, let Kn+1 := ∅).

Algorithm EnumIndSets

Input: A chordal graph G = (V,E);

Output: All independent sets in G;

1: construct a rooted clique tree T of G;

2: let K1, . . . , Kn be the maximal cliques ordered in a depth first manner on T ;

3: set S := ∅ and call EnumIndSetsIter(K1, S).

Procedure EnumIndSetsIter(Ki, S)

Input: A maximal clique Ki and an independent set S;

Output: All independent sets S ′ such that S ′ ∩ (K1 ∪ K2 ∪ · · · ∪ Ki) = S;

4: if i = n + 1 then // output an independent set at the bottom level

5: output S and return;

6: else

7: call EnumIndSetsIter(Ki+1, S);

8: if Ki ∩ S = ∅ then // S includes no vertex of Ki

9: foreach u ∈ Ki \ prt(Ki) do call EnumIndSetsIter(Ki+1, S ∪ {u});

10: endif

11: endif.

The correctness of the simple algorithm follows from Equations 1 in Section

3. Since G is a chordal graph, the number n of maximal cliques is bounded by

18

|V |. Hence the algorithm outputs each independent set in O(|V |) time. More

precisely, the algorithm consumes O(|V |) time between two consecutive inde-

pendent sets. We modify the simple algorithm to reduce the time complexity.

Theorem 7 After O(|V |4) time and O(|V |4) space precomputation, all inde-

pendent sets in a chordal graph can be enumerated in a (worst-case) constant

time for each.

We remind that the number of independent sets can be exponential, which

implies that the cost of a polynomial time precomputation can be negligible.

PROOF. Let T be a computation tree of the simple algorithm, in which

each node (K,S) corresponds to a recursive call to EnumIndSetsIter(K,S) gen-

erated by the algorithm 2 . A node (K,S) is the parent of a node (K ′, S ′) if

EnumIndSetsIter(K ′, S ′) is invoked in EnumIndSetsIter(K,S) (or EnumIndSets

if K ′ = K1 and S ′ = ∅). When K = Kn+1, each node (K,S) is a leaf and the

algorithm outputs an independent set.

A node (K,S) is called unnecessary if it has exactly one child in T . By lines

7, 8, and 9 in the algorithm, a node (K,S) is unnecessary if and only if

K ∩ S 6= ∅. We also call a node (K,S) necessary if it is not unnecessary. In

general, T may contain many unnecessary nodes, and T cannot be traversed

by the algorithm efficiently. Hence we here aim at skipping unnecessary nodes

of T in the computation. Let T ′ be the reduced computation tree, which only

contains necessary nodes. We say that a vertex v ∈ V hits a clique K if v ∈ K.

We first observe that a node (Ki, S) is necessary if and only if Ki∩S = ∅. At a

necessary node (Ki, S), the algorithm picks up each vertex u in Ki \ prt(Ki).

Then, since S contains no vertex in Ki and u ∈ Ki, the next necessary node(s)

visited by the simple algorithm after Ki depends on Ki and u as we describe

2 To distinguish a vertex in G, we say T consists of “nodes.”

19

below.

First, we assume that u does not hit some cliques which are descendants

of Ki in the rooted clique tree T . Let Kj0 , Kj1 , · · ·, Kj`
be the descendant

cliques of Ki that are the roots of the subtrees obtained by removing the

maximal cliques hit by u from the rooted clique tree T . We assume that

(i <) j0 < j1 < · · · < j`. Then those roots are the necessary nodes with

respect to Ki and u, and it suffices to visit them after the node (Ki, S) in

the reduced computation tree T ′ as children of the nodes (Ki, S) (with the

independent set S ∪ {u}). Thus we define next(Ki, u) by the set {Kj0 , Kj1 ,

· · ·, Kj`
} and we implement next(Ki, u) by a linked list.

Second, we assume that u hits all cliques that are descendants of Ki in T .

Then we define next(Ki, u) by ∅ unless u hits the last clique Kn. When u

hits Kn, we define next(Ki, u) = {Kn+1} to jump to step 5.

The modified algorithm performs the following step 9’ instead of the step 9:

9’: foreach u ∈ Ki \ prt(Ki) do

foreach K ∈ next(Ki, u) do call EnumIndSetsIter(K,S ∪ {u});

By the above arguments, the modified algorithm correctly performs its com-

putation along the computation tree T ′. We now show its complexity. Since

S ∪ {u} is an independent set and u ∈ Ki, the set next(Ki, u) is uniquely

determined by u and i; it consists of the nodes Kj of the rooted clique tree T

such that u 6∈ Kj, j > i, and all maximal cliques K ′ between Ki and Kj on T

contain u. For each pair (Ki, u) with u ∈ Ki, the set next(Ki, u) consists of

O(n) cliques. Hence next(Ki, u) can be computed in O(n2) time by a simple

depth first search on T . Hence, all the next(Ki, u) can be precomputed in

O(n4) = O(|V |4) time and space. Since next(Ki, u) is a linked list for each

Ki and u, the algorithm can obtain each K ∈ next(Ki, u) in O(1) time in

step 9’.

20

Now we finalize the proof. Every inner node of T ′ has at least two children.

Thus the total number of the inner nodes is bounded by the number of leaves,

which is equal to the number of independent sets. Therefore, the total number

of the nodes in T ′ is O(M), where M is the number of independent sets.

Each traverse of an edge of the computation tree T ′ takes O(1) time. Using

the odd-even search technique (each output is controlled by the parity of the

depth of the node in T ′; see, e.g., [17]) to make the output interval balanced,

all independent sets can be enumerated in a constant time for each. 2

Corollary 8 After O(|V |5) time and O(|V |5) space precomputation, (1) all

maximum independent sets in a chordal graph can be enumerated in a constant

time for each, and (2) all independent sets of size k in a chordal graph can be

enumerated in a constant time for each.

PROOF. Let T be a rooted clique tree of a chordal graph G defined by

the maximal cliques K1, K2, . . . , Kn. Then the simple implementations of the

algorithms from Equations 2 and 3 are straightforward. In the algorithms, we

handle the size k′ of an independent set as follows. For given maximal cliques,

we can precompute the size of a maximum independent set in the (chordal)

graph G(Ki) induced by the subtree rooted at Ki. Using the information,

we can define and precompute a list next(Ki, u; k′) of the next necessary

maximal cliques K with respect to Ki and u such that G(K) can provide an

independent set of size k′. The modification of the algorithms using the notion

next(Ki, u; k′) is straightforward but tedious, so omitted here. 2

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of max-

imal independent sets in a chordal graph. First we consider the following

21

counting problem.

Problem: # Maximal Independent Sets in a Chordal Graph

Instance: A chordal graph G = (V,E);

Output: The number of maximal independent sets of G.

Although finding a maximal independent set is easy even in a general graph,

we show that the counting version of the problem is actually hard.

Theorem 9 The problem “# Maximal Independent Sets in a

Chordal Graph” is #P-complete.

The proof is based on a reduction from the counting problem of the number

of set covers. Let X be a finite set, and S ⊆ 2X be a family of subsets of X.

A set cover of X is a subfamily F ⊆ S such that
∪F = X. The following

problem is #P-complete [18].

Problem: # Set Covers

Instance: A finite set X and a family S ⊆ 2X ;

Output: The number of set covers of X.

PROOF of Theorem 9. The membership in #P of “# Maximal Indepen-

dent Sets in a Chordal Graph” is immediate. To show the #P-hardness,

we reduce “# Set Covers” to “# Maximal Independent Sets in a

Chordal Graph” in polynomial time.

Let X be a finite set and S ⊆ 2X be a family of subsets of X, and consider

them as an instance of # Set Covers. Let us put S := {S1, . . . , St}. From

X and S, we construct a chordal graph G = (V,E) in the following way.

22

We set V := X ∪ S ∪ S ′, where S ′ := {S ′
1, . . . , S

′
t}. Namely, S ′ is a copy of

S. Now, we draw edges. There are three kinds of edges. (1) We connect every

pair of vertices in X by an edge. (2) For every S ∈ S, we connect x ∈ X

and S by an edge if and only if x ∈ S. (3) For every S ∈ S, we connect S

and S ′ (a copy of S) by an edge. Formally, we define E := {{x, y} | x, y ∈

X} ∪ {{x, S} | x ∈ X,S ∈ S, x ∈ S} ∪ {{S, S ′} | S ∈ S}. This completes

our construction. This construction can be done in polynomial time. Fig. 1

illustrates the construction.

S′
2 S′

3

S1 S2 S3

S′
1

1 2 3 4X

S

S ′

Fig. 1. Illustration of the reduction. In this example, X = {1, 2, 3, 4},

S = {S1, S2, S3}, S1 = {1, 2}, S2 = {1, 3, 4}, and S3 = {2, 3}.

First, let us check that the constructed graph G is indeed chordal. Let C be a

cycle of length at least four in G. Since the degree of a vertex in S ′ is one, they

do not take part in any cycle of G. So forget them. Since S is an independent

set of G, vertices in S cannot appear along C in a consecutive manner. Then,

since the length of C is at least four, there have to be at least two vertices of

X which appear in C not consecutively. Then, these two vertices give a chord

since X is a clique of G. Hence, G is chordal.

Now, we look at the relation between the set covers of X and the maximal in-

dependent sets of G. Let U be a maximal independent set of G. We distinguish

two cases.

Case 1. Consider the case in which U contains a vertex x ∈ X. Since X

23

is a clique of G, U cannot contain any other vertices of X. Let Gx :=

G \NG[x]. (Remember that NG[x] is the closed neighborhood of x, i.e., the

set of vertices adjacent to x in G and x itself.) By the construction, we have

that V (Gx) = {S ∈ S | x 6∈ S} ∪ S ′ and E(Gx) = {{S, S ′} | S ∈ S, x 6∈ S}.

Then, a vertex S ′ ∈ S ′ such that x ∈ S is an isolated vertex of Gx. Therefore,

this vertex must belong to U by the maximality of U . For each S ∈ S such

that x 6∈ S, U must contain either S or S ′, but not both. This means that

the number of maximal independent sets containing x is exactly 2|{S∈S|x 6∈S}|.

Case 2. Consider the case in which U contains no vertex of X. Then, for each

S ∈ S, due to the maximality, U must contain either S or S ′. Furthermore,

U ∩S has to be a set cover of X (otherwise an element of X not covered by

U ∩S could be included in U). Hence, the number of maximal independent

sets containing no vertex of X is equal to the number of set covers of X.

To summarize, we obtained that the number of maximal independent sets of G

is equal to the number of set covers of X plus
∑

x∈X 2|{S∈S|x6∈S}|. Since the last

sum can be computed in polynomial time, this concludes the reduction. 2

As a variation, let us consider the following problem.

Problem: # Minimum Maximal Independent Sets in a Chordal

Graph

Instance: A chordal graph G = (V,E);

Output: The number of minimum maximal independent sets of G.

Note that a minimum maximal independent set in a chordal graph can be

found in polynomial time [9]. In contrast to that, it is hard to count the

number of minimum maximal independent sets in a chordal graph:

Theorem 10 The problem “# Minimum Maximal Independent Sets in

24

a Chordal Graph” is #P-complete.

PROOF. We use the same reduction as in the proof of Theorem 9. Look at

the case distinction in that proof again. The maximal independent sets arising

from Case 1 have |S| + 1 elements, while the maximal independent sets from

Case 2 have |S| elements. Therefore, the minimum maximal independent sets

of the graph G constructed in that proof are exactly the maximal independent

sets arising from Case 2, which precisely correspond to the set covers of X. 2

We note that the chordal graph G in this section is very close to a split graph

G′ which consists of the clique X and an independent set S in G. However,

for a split graph, it is easy to solve the problems of this section in polynomial

time since a split graph contains only two types of maximal independent sets;

one type consists of one vertex v in X and all vertices in S \ N(v), and the

other possible one is S itself.

8 Hardness of Finding a Minimum Weighted Maximal Indepen-

dent Set

In this section, we consider an optimization problem to find a minimum

weighted maximal independent set in a chordal graph.

Problem: Minimum Weighted Maximal Independent Set in a

Chordal Graph

Instance: A chordal graph G = (V,E) and a vertex weight w : V → IN ;

Output: A minimum weighted maximal independent set of G.

Here, the weight of a vertex subset is the sum of the weights of its vertices.

25

Notice that there is a linear-time algorithm when the weight of each vertex is

zero or one [9]. On the contrary, we show that the problem is actually hard

when the weight is arbitrary.

Theorem 11 The problem “Minimum Weighted Maximal Indepen-

dent Sets in a Chordal Graph” is NP-hard.

The proof is similar to what we saw in the previous section. We use the

optimization version of the set cover problem.

Problem: Minimum Set Cover

Instance: A finite set X and a family S ⊆ 2X ;

Output: A minimum-size set cover of X.

It is known that Minimum Set Cover is NP-hard.

PROOF of Theorem 11. For a given instance of Minimum Set Cover,

we use the same construction of a graph G as in the proof of Theorem 9.

We define a weight function w as follows: w(x) := 2|S| + 1 for every x ∈ X;

w(S) := 2 for every S ∈ S; w(S ′) := 1 for every S ′ ∈ S ′. This completes the

construction.

Now, observe that S is a maximal independent set of the constructed graph

G, and the weight of S is 2|S|. Therefore, no element of X takes part in any

minimum weighted maximal independent set of G. Then, from the discussion

in the proof of Theorem 9, if M is a maximal independent set of G satisfying

M ∩ X = ∅, then M ∩ S is a set cover of X. The weight of M is |M ∩ S| +

|S|. Therefore, if M is a minimum weighted independent set of G, then M

minimizes |M ∩ S|, which is the size of a set cover. Hence, M∩S is a minimum

set cover. This concludes the reduction. 2

26

We can further show the hardness to get an approximation algorithm running

in polynomial time. The precise statement is as follows.

Theorem 12 There is no polynomial-time algorithm for Minimum Maxi-

mal Independent Set in a Chordal Graph with approximation ratio

c ln |V |, for some fixed constant c, unless NP ⊆ DTIME(nO(log log n)).

Note that DTIME(t) is the class of languages which have a deterministic algo-

rithm running in expected time t with zero error.

It was shown by Feige [10] that there is no polynomial-time algorithm for

Minimum Set Cover with approximation ratio c′ ln |V |, for any fixed con-

stant c′ ≤ 1, unless NP ⊆ DTIME(nO(log log n)). This holds even if the size of

the family S is bounded by a polynomial p(|X|) of |X|.

Now we are ready to prove Theorem 12.

PROOF of Theorem 12. Suppose that there exists a polynomial-time al-

gorithm A with approximation ratio c ln |V | for Minimum Weighted Max-

imal Independent Set in a Chordal Graph. (The constant c will be

determined later.) We use the algorithm A to get a polynomial-time algorithm

with approximation ratio c′ ln |X| for Minimum Set Cover. Then, this will

imply that NP ⊆ DTIME(nO(log log n)).

Let X be a finite set and S ⊆ 2X be a family of subsets of X. We assume

that |X| ≥ 3 and 1 ≤ |S| ≤ |X|d for some natural number d. From them, we

construct a graph G exactly in the same way as in the proof of Theorem 9.

Setting α := dc ln(2|X|d))e|S|, we define a weight w as follows: w(x) := 2α2+1

for every x ∈ X; w(S) := 2α for every S ∈ S; w(S ′) := 1 for every S ′ ∈ S ′. This

is our construction. (Note that this construction can be done in polynomial

time.)

27

Denote by OPT an arbitrary (fixed) minimum weighted maximal indepen-

dent set of G, by APX an output of the algorithm A for G, and by w(OPT)

and w(APX) the weights of them. Since the number of vertices in G is

|X| + 2|S|, which is at most |X| + 2|X|d ≤ 3|X|d, it follows that w(APX) ≤

c ln(3|X|d)w(OPT).

As in the proof of Theorem 11, S is a maximal independent set of G and its

weight is 2α|S|. Therefore, it holds that w(OPT) ≤ 2α|S|.

Now, suppose that there exists an element x ∈ X which is contained in APX.

Then, w(APX) ≥ w(x) = 2α2 + 1. This implies that 2α2 < w(APX) ≤

c ln(3|X|d)w(OPT) ≤ dc ln(3|X|d)e × 2α|S| = 2α2. This is a contradiction.

Thus, no element x ∈ X belongs to APX. This means that APX ∩ S is a set

cover of X. Let C := APX ∩ S and we show that C approximates the optimal

value for Minimum Set Cover within a factor of c′ ln |X|.

Again, by the same argument as in the proof of Theorem 11, we get w(APX) =

(2α− 1)|C|+ |S|. Let C∗ be a minimum set cover of X. Then, similarly we get

w(OPT) = (2α− 1)|C∗|+ |S|. Since w(APX) ≤ c ln(3|X|d)w(OPT), it follows

that (2α − 1)|C| + |S| ≤ c ln(3|X|d)((2α − 1)|C∗| + |S|) ≤ c ln(3|X|d)(2α −

1)|C∗| + α. Hence, we obtain

|C|≤ c ln(3|X|d)|C∗| + α − |S|
2α − 1

≤ c ln(3|X|d)|C∗| +
α − 1

2

2α − 1

= c ln(3|X|d)|C∗| + 1

2

≤ c ln(3|X|d)|C∗| + 1

2
ln(3|X|d)|C∗|

= (c +
1

2
) ln(3|X|d)|C∗|

≤ (c +
1

2
) ln(|X|d+1)|C∗|

= ((d + 1)(c +
1

2
) ln |X|)|C∗|.

28

Setting c = c′

d+1
− 1

2
gives approximation ratio c′ ln |X|. 2

In the proof, we did not aim at optimizing the constant c′.

Note: After this work, we found that Chang proved the NP-completeness of

the weighted independent domination problem on a chordal graph [7] which

is essentially equivalent to Theorem 11. However, we leave Theorem 11 with

its proof since the reduction in the proof is extended to show Theorem 12.

Acknowledgement

The authors thank Masashi Kiyomi for enlightening discussions and pointing

out the work by Chang [7]. The authors are grateful to L. Shankar Ram

for pointing out a paper [5]. The authors also thank the anonymous referees

for their detailed comments and suggestions that improved the presentation

significantly.

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic

Database Schemes. Journal of the ACM, 30:479–513, 1983.

[2] J. R. S. Blair and B. Peyton. An Introduction to Chordal Graphs and Clique

Trees. In Graph Theory and Sparse Matrix Computation, volume 56 of IMA,

pages 1–29. (Ed. A. George and J.R. Gilbert and J.W.H. Liu), Springer, 1993.

[3] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM,

1999.

[4] P. Buneman. A Characterization of Rigid Circuit Graphs. Discrete

Mathematics, 9:205–212, 1974.

29

[5] L. S. Chandran. A Linear Time Algorithm for Enumerating All the Minimum

and Minimal Separators of a Chordal Graph. In COCOON 2001, pages 308–317.

Lecture Notes in Computer Science Vol. 2108, Springer-Verlag, 2001.

[6] L. S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and

Characterizing the Perfect Elimination Orderings of a Chordal Graph.

Theoretical Computer Science, 307:303–317, 2003.

[7] G. J. Chang. The weighted independent domination problem is NP-complete

for chordal graphs. Discrete Applied Mathematics, 143:351–352, 2004.

[8] D. Eppstein. All Maximal Independent Sets and Dynamic Dominance for Sparse

Graphs. In Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages

451–459. ACM, 2005.

[9] M. Farber. Independent Domination in Chordal Graphs. Operations Research

Letters, 1(4):134–138, 1982.

[10] U. Feige. A Threshold of lnn for Approximating Set Cover. Journal of the

ACM, 45(4):634–652, 1998.

[11] J. Flum and M. Grohe. The Parameterized Complexity of Counting Problems.

SIAM Journal on Computing, 33(4):892–922, 2004.

[12] D. R. Fulkerson and O. A. Gross. Incidence Matrices and Interval Graphs.

Pacific J. Math., 15:835–855, 1965.

[13] F. Gavril. Algorithms for Minimum Coloring, Maximum Clique, Minimum

Covering by Cliques, and Maximum Independent Set of a Chordal Graph. SIAM

Journal on Computing, 1(2):180–187, 1972.

[14] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Annals of

Discrete Mathematics 57. Elsevier, 2nd edition, 2004.

[15] P. N. Klein. Efficient Parallel Algorithms for Chordal Graphs. SIAM Journal

on Computing, 25(4):797–827, 1996.

30

[16] J. Y.-T. Leung. Fast Algorithms for Generating All Maximal Independent Sets

of Interval, Circular-Arc and Chordal Graphs. Journal of Algorithms, 5:22–35,

1984.

[17] S. Nakano and T. Uno. Constant Time Generation of Trees with Specified

Diameter. In Graph-Theoretic Concepts in Computer Science (WG 2004), pages

33–45. Lecture Notes in Computer Science Vol. 3353, Springer-Verlag, 2005.

[18] J. S. Provan and M. O. Ball. The Complexity of Counting Cuts and of

Computing the Probability that a Graph is Connected. SIAM Journal on

Computing, 12:777–788, 1983.

[19] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic Aspects of Vertex

Elimination on Graphs. SIAM Journal on Computing, 5(2):266–283, 1976.

[20] J. P. Spinrad. Efficient Graph Representations. American Mathematical Society,

2003.

[21] R. E. Tarjan and M. Yannakakis. Simple Linear-Time Algorithms to Test

Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce

Acyclic Hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.

[22] S. P. Vadhan. The Complexity of Counting in Sparse, Regular, and Planar

Graphs. SIAM Journal on Computing, 31(2):398–427, 2001.

31

